首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tacit assumption that relative enlargement and differentiation of brains reflect a progressive evolutionary trend toward greater intelligence is a major impediment to the study of brain evolution. Theories that purport to establish a linear scale for this presumed correlation between brain size and intelligence are undermined by the absence of an unbiased allometric baseline for estimating differences in encephalization, by the incompatibility of allometric analyses at different taxonomic levels, by the nonlinearity of the criterion of subtraction used to partition the somatic and cognitive components of encephalization, and by the failure to independently demonstrate any cognitive basis for the regularity of brain/body allometry. Analyzing deviations from brain/body allometric trends in terms of encephalization obfuscates the complementarity between brain and body size and ignores selection on body size, which probably determines most deviations. By failing to analyze the effects of allometry at many levels of structure, comparative anatomists have mistaken methodological artifacts for progressive evolutionary trends. Many structural changes, which are assumed to demonstrate progression of brain structure from primitive to advanced forms, are the results of allometric processes. Increased brain size turns out to have some previously unappreciated functional disadvantages.  相似文献   

2.
During postnatal ontogeny of vertebrates, allometric trends in certain morphological units or dimensions can shift drastically among isometry, positive allometry, and negative allometry. However, detailed patterns of allometric transitions in certain timings have not been explored well. Identifying the presence and nature of allometric shifts is essential for understanding the patterns of changes in relative size and shape and the proximal factors that are controlling these changes mechanistically. Allometric trends in 10 selected vertebrae (cervical 2–caudal 2) from hatchlings to very mature individuals of Alligator mississippiensis (Archosauria, Crocodylia) are reported in the present study. Allometric coefficients in 12 vertebral dimensions are calculated and compared relative to total body length, including centrum, neural spine, transverse process, zygapophysis, and neural pedicle. During the postnatal growth, positive allometry is the most common type of relative change (10 of the 12 dimensions), although the diameter of the neural canal shows a negative allometric trend. However, when using spurious breaks (i.e. allometric trends subdivided into growth stages using certain growth events, and key body sizes and/or ages), vertebral parts exhibit various pathways of allometric shifts. Based on allometric trends in three spurious breaks, separated by the end of endochondral ossification (body length: approximnately 0.9 m), sexual maturity (1.8 m), and the stoppage of body size increase (2.8 m), six types of ontogenetic allometric shifts are established. Allometric shifts exhibit a wide range from positive allometry restricted only in the early postnatal stage (Type I) to life‐long positive allometry (Type VI). This model of ontogenetic allometric shifts is then applied to interpret potential mechanisms (causes) of allometric changes, such as (1) growth itself (when allometric trend gradually decreases to isometric or negative allometric change: Type II–IV allometric shift); (2) developmental constraint (when positive allometry is limited only in the early growth stage: Type I allometric shift); and (3) functional or biomechanical drive (when positive allometry continues throughout ontogeny: Type VI allometric shift).  相似文献   

3.
There is a well-established allometric relationship between brain and body mass in mammals. Deviation of relatively increased brain size from this pattern appears to coincide with enhanced cognitive abilities. To examine whether there is a phylogenetic structure to such episodes of changes in encephalization across mammals, we used phylogenetic techniques to analyse brain mass, body mass and encephalization quotient (EQ) among 630 extant mammalian species. Among all mammals, anthropoid primates and odontocete cetaceans have significantly greater variance in EQ, suggesting that evolutionary constraints that result in a strict correlation between brain and body mass have independently become relaxed. Moreover, ancestral state reconstructions of absolute brain mass, body mass and EQ revealed patterns of increase and decrease in EQ within anthropoid primates and cetaceans. We propose both neutral drift and selective factors may have played a role in the evolution of brain-body allometry.  相似文献   

4.
Allometric methods can be used to test quantitative theories of the relationship between brain size and body size across species, and to search for ecological, behavioural, life history, and ontogenetic correlates of brain size. Brain size scales with an allometric exponent of around 0.75 against body size across mammals, but is closer to 0.56 for birds and for reptiles. The slope of the allometric line often varies depending upon the taxonomic level of analysis. However, this phenomenon, at least in mammals, may be a statistical artifact. Brain size for a given body size (relative brain size) varies among orders in birds and mammals, and some dietary associations with relative brain size have been found in particular taxa. Developmental status at birth is the most consistent correlate of relative brain size: precocial neonates have larger brains for a given maternal size than altricial neonates in both birds and mammals. Altricial neonates, however, have more brain growth following birth, and in birds also have larger relative adult brain sizes. Energetic explanations for differences in neonatal brain growth, although attractive on theoretical grounds, have largely failed to stand up to empirical tests.  相似文献   

5.
A recent analysis of brain size evolution reconstructed the plesiomorphic brain–body size allometry for the mammalian order Carnivora, providing an important reference frame for comparative analyses of encephalization (brain volume scaled to body mass). I performed phylogenetically corrected regressions to remove the effects of body mass, calculating correlations between residual values of encephalization with basal metabolic rate (BMR) and six life-history variables (gestation time, neonatal mass, weaning time, weaning mass, litter size, litters per year). No significant correlations were recovered between encephalization and any life-history variable or BMR, arguing against hypotheses relating encephalization to maternal energetic investment. However, after correcting for clade-specific adaptations, I recovered significant correlations for several variables, and further analysis revealed a conserved carnivoran reproductive strategy, linking degree of encephalization to the well-documented mammalian life-history trade-off between neonatal mass and litter size. This strategy of fewer, larger offspring correlating with increased encephalization remains intact even after independent changes in encephalization allometries in the evolutionary history of this clade.  相似文献   

6.
A negative allometric relationship between body mass (BM) and brain size (BS) can be observed for many vertebrate groups. In the past decades, researchers have proposed several hypotheses to explain this finding, but none is definitive and some are possibly not mutually exclusive. Certain species diverge markedly (positively or negatively) from the mean of the ratio BM/BS expected for a particular taxonomic group. It is possible to define encephalization quotient (EQ) as the ratio between the actual BS and the expected brain size. Several cetacean species show higher EQs compared to all primates, except modern humans. The process that led to big brains in primates and cetaceans produced different trajectories, as shown by the organizational differences observed in every encephalic district (e.g., the cortex). However, these two groups both convergently developed complex cognitive abilities. The comparative study on the trajectories through which the encephalization process has independently evolved in primates and cetaceans allows a critical appraisal of the causes, the time and the mode of quantitative and qualitative development of the brain in our species and in the hominid evolutionary lineage.  相似文献   

7.
Genomic determinants underlying increased encephalization across mammalian lineages are unknown. Whole genome comparisons have revealed large and frequent changes in the size of gene families, and it has been proposed that these variations could play a major role in shaping morphological and physiological differences among species. Using a genome-wide comparative approach, we examined changes in gene family size (GFS) and degree of encephalization in 39 fully sequenced mammalian species and found a significant over-representation of GFS variations in line with increased encephalization in mammals. We found that this relationship is not accounted for by known correlates of brain size such as maximum lifespan or body size and is not explained by phylogenetic relatedness. Genes involved in chemotaxis, immune regulation and cell signalling-related functions are significantly over-represented among those gene families most highly correlated with encephalization. Genes within these families are prominently expressed in the human brain, particularly the cortex, and organized in co-expression modules that display distinct temporal patterns of expression in the developing cortex. Our results suggest that changes in GFS associated with encephalization represent an evolutionary response to the specific functional requirements underlying increased brain size in mammals.  相似文献   

8.
A restudy of the Danish brain weight data published by Pakkenberg and Voigt ('64), using partial correlation techniques, confirms and extends their earlier conclusions regarding a much stronger allometric relationship between height and brain weight than between body weight and brain weight. The relationship is particularly strong in males, and not in females, which is hypothesized to be related to higher fat components in the latter. Comparative data for smaller samples of Pan, Gorilla, Pongo, Macaca, Papio, and Saimiri using body weights, suggest that such relationship also hold more strongly in males than females, although more reliable data are greatly needed. In addition to providing within-species ranges of variability for variously derived neural statistics (e.g., encephalization quotients, “extra neurons,” etc.), for “normal” primates, it is suggested that while allometric trends do exist within species, and particularly males, evolutionary pressures leading to larger brain size were probably very diverse, and that any one homogenistic theory is unlikely.  相似文献   

9.
We studied the cranial postnatal ontogeny of Otaria byronia in order to detect sexual dimorphism in allometric terms, analyzing the rate of growth of functional variables linked to specific capacities as bite and head movements. We used 20 linear measurements to estimate allometric growth applying bivariate and multivariate analyses in females and males separately. Males were also analyzed in two partitioned subsets considering non-adult and adult stages, when the dimorphism is accentuated in order to reach optimal performance for intra-sexual competition. In the comparison of the employed techniques, we detected an empirical relationship between our multivariate results and the ordinary least square bivariate analysis. The quantitative analyses revealed different ontogenetic trajectories between non-adult and adult males in most variables, suggesting that the adult skull is not a scaled version of subadult skull. For instance, variables related with longitudinal dimensions decreased their allometric coefficients when the adult stage was reached, whereas those related with breadth or vertical dimensions increased their values. In adult males this could indicate that skull breadth and height are more important than longitudinal growth, relative to overall skull size. Conversely, inter-sexual comparisons showed that females and non-adult males shared similar ontogenetic growth trends, including more allometric trends than did males along their own ontogenetic trajectory. In general, adult males exhibited higher allometric coefficients than non-adult males in variables associated with bite and sexual behavior, whereas in comparison to females the latter showed higher coefficients values in these variables. Such patterns indicate a complex mode of growth in males beyond the growth extension, and are in partial agreement with changes previously reported for this and other species in the family Otariidae.  相似文献   

10.
Recent hypotheses that variation in brain size among birds and mammals result from differences in metabolic allocation during ontogeny are tested.
Indices of embryonic and post-embryonic brain growth are defined. Precocial birds and mammals have high embryonic brain growth indices which are compensated for by low post-embryonic indices (with the exception of Homo supiens ). In contrast, altricial birds and mammals have low embryonic and high post-embryonic indices. Altricial birds have relatively small brains at hatching and develop relatively large brains as adults, but among mammals there is no equivalent correlation between variation in adult relative brain sizes and state of neonatal development.
Compensatory brain development in both birds and mammals is associated with compensatory parental metabolic allocation. In comparison with altricial development, precocial development is characterized by higher levels of brain growth and parental metabolic allocation prior to hatching or birth and lower levels subsequently. Differences between degrees of postnatal investment by the parents in the young of precocial birds versus precocial mammals may result in the different patterns of adult brain size associated with precociality versus altriciality in the two groups.
The allometric exponent scaling brain on body size differs among taxonomic levels in birds. The exponent is higher for some parts of the brain than others, irrespective of taxonomic level. Unlike mammals, the exponents for birds do not show a general increase with taxonomic level. These pattcrns call into question recent interpretations of the allometric exponent in birds. and the reason for changes in exponent with taxonomic level.  相似文献   

11.
A problematic aspect of brain/body allometry is the frequency of interspecific series which exhibit allometry coefficients of approximately 0.33. This coefficient is significantly lower than the 0.66 value which is usually taken to be the interspecific norm. A number of explanations have been forwarded to account for this finding. These include (1) intraspecificallometry explanations, (2) nonallometric explanations, and (3) Jerison’s “extraneurons” hypothesis, among others. The African apes, which exhibit a lowered interspecific allometry coefficient, are used here to consider previous explanations. These are found to be inadequate in a number of ways, and an alternative explanation is proposed. This explanation is based on patterns of brain and body size change during ontogeny and phytogeny. It is argued that the interspecific allometry coefficient in African apes parallels the intraspecific one because similar ontogenetic modifications of body growth separate large and small forms along each curve. In both cases, body size differences are produced primarily by growth in later postnatal periods, during which little brain growth occurs. Data on body growth, neonatal scaling, and various lifehistory traits support this explanation. This work extends previous warnings that sizecorrected estimates of relative brain size may not correspond very closely to our understanding of the behavioral capacities of certain species in lineages characterized by rapid change in body size.  相似文献   

12.
《Journal of morphology》2017,278(8):1058-1074
Comparative information on the variation in the temporospatial patterning of mandible growth in wild and laboratory mice during early postnatal ontogeny is scarce but important to understand variation among wild rodent populations. Here, we compare mandible growth between two ontogenetic series from the second to the eighth week of postnatal life, corresponding to two different groups of mice reared under the same conditions: the classical inbred strain C57BL/6J, and Mus musculus domesticus . We characterize the ontogenetic patterns of bone remodeling of the mandibles belonging to these laboratory and wild mice by analyzing bone surface, as well as examine their ontogenetic form changes and bimodular organization using geometric morphometrics. Through ontogeny, the two mouse groups display similar directions of mandible growth, according to the temporospatial distribution of bone remodeling fields. The allometric shape variation of the mandibles of these mice entails the relative enlargement of the ascending ramus. The organization of the mandible into two modules is confirmed in both groups during the last postnatal weeks. However, especially after weaning, the mandibles of wild and laboratory mice differ in the timing and localization of several remodeling fields, in addition to exhibiting different patterns of shape variation and differences in size. The stimulation of dentary bone growth derived from the harder post‐weaning diet might account for some features of postnatal mandible growth common to both groups. Nonetheless, a large component of the postnatal growth of the mouse mandible appears to be driven by the inherent genetic programs, which might explain between‐group differences.  相似文献   

13.
The origin of eutherian mammals   总被引:2,自引:0,他引:2  
Palaeontologically recognizable eutherians originated no later than the Early Cretaceous in warm, probably moderately seasonal climates. Immediate ancestors were small, sharing many anatomical, physiological and reproductive features with small modern marsupials. Development of characteristically eutherian features involved interactions of body size, rates of metabolism, energetic costs of reproduction, anatomical/physiological processes of development and effects of each upon rates of population growth. In contrast to eutherians, marsupials have a narrow range of basal metabolic rates (lacking high rates), and show no direct links between rate of energy expenditure and gestation period, postnatal growth rate, fecundity or reproductive potential. Biological implications of this contrast are most pronounced at small body sizes. When resources are abundant, the relatively higher growth rates and earlier maturation of small eutherians (particularly those with high rates of metabolism) can lead to rapid population growth; among most marsupials, however, both pre- and postnatal constraints apparently preclude attainment of such high rates of reproduction. Also, only eutherians among the amniotes combine intimacy of placentation with prolonged active intra-uterine morphogenesis. Once established, that combination permitted (and even favoured) increases in diversity of adaptation in such disparate aspects as elevated metabolic rate, increased pre- and postnatal growth rates, increased encephalization, greater longevity, increased gregariousness, greater karyotypic flexibility, and augmented variability in adult morphology. However, all such boosts in diversity were probably secondary and dependent upon prior innovation of trophoblastic/uterine wall immunological protection of foetal tissues during prolonged intra-uterine development. Increased metabolic rates followed thereafter, with synergisms that may have speeded evolution among early eutherians. Eutherian-style trophoblast probably originated in the Mesozoic. Dependent adaptations, variably expressed, evolved later in sundry descendant lineages. Reproductive differences between marsupials and eutherians are not biologically trivial; to the contrary, breakthroughs among eutherians assured their dominance: (1) in high intensity food habits; (2) at small body masses; and (3) in very cold climates.  相似文献   

14.
On the basis of experimental and published data, the interspecific and intraspecific (ontogenetic) dependence of energy metabolism on body weight in bivalves was calculated. Changes in the parameters of intraspecific allometric dependence under the effect of environmental factors were analyzed. The rate of comparable standard metabolism (coefficient a at k = 0.76) was shown to vary in different taxonomic and zoogeographic groups of bivalves.  相似文献   

15.
Recent advances in developmental biology reveal that patterns of morphological development, even during early phases, may be highly susceptible to evolutionary change. Consequently, developmental data may be uninformative with regard to distinguishing homology and homoplasy. The present analysis evaluates postnatal ontogeny in papionin primates to test hypotheses about homology and homoplasy during later periods of development. Specifically, the analysis studies the allometric bases of craniometric resemblances among four papionin genera to test the hypothesis that homoplasy in adult cranial form, particularly of baboons (Papio) and mandrills (Mandrillus), is underwritten by divergent patterns of development. Bivariate and multivariate allometric analyses demonstrate that the developmental patterns in Papio baboons diverge markedly from ontogenetic allometric trajectories in other papionin species. The resemblances between Papio and Mandrillus (assuming that patterns of development in smaller papionins are ancestral) are largely consequences of perinatal increases in relative brain size in juvenile Papio. Postnatal growth to large size and strong negative allometry of neurocranial form results in shape similarities because developmental pathways for large papionin genera intersect. Analyses show that allometric data may not be particularly informative in revealing homoplasy. However, placed into proper phylogenetic context, such data illustrate derived patterns of development that may reflect critically important life-history or ontogenetic adaptations.  相似文献   

16.
Allometric relationships describe the proportional covariation between morphological, physiological, or life‐history traits and the size of the organisms. Evolutionary allometries estimated among species are expected to result from species differences in ontogenetic allometry, but it remains uncertain whether ontogenetic allometric parameters and particularly the ontogenetic slope can evolve. In bovids, the nonlinear evolutionary allometry between horn length and body mass in males suggests systematic changes in ontogenetic allometry with increasing species body mass. To test this hypothesis, we estimated ontogenetic allometry between horn length and body mass in males and females of 19 bovid species ranging from ca. 5 to 700 kg. Ontogenetic allometry changed systematically with species body mass from steep ontogenetic allometries over a short period of horn growth in small species to shallow allometry with the growth period of horns matching the period of body mass increase in the largest species. Intermediate species displayed steep allometry over long period of horn growth. Females tended to display shallower ontogenetic allometry with longer horn growth compared to males, but these differences were weak and highly variable. These findings show that ontogenetic allometric slope evolved across species possibly as a response to size‐related changes in the selection pressures acting on horn length and body mass.  相似文献   

17.
This study examines variation in brain growth relative somatic growth in four hominoids and three platyrrhines to determine whether there is a trade-off during ontogeny. I predicted that somatic growth would be reduced during periods of extensive brain growth, and species with larger degrees of encephalization would reach a smaller body size at brain growth completion because more energy is directed towards the brain. I measured cranial capacity and skeletal size in over 500 skeletal specimens from wild populations. I calculated nonlinear growth curves and velocity curves to determine brain/body growth allometry during ontogeny. In addition, I calculated linear regressions to describe the brain/body allometry during the postnatal period prior to brain size reaching an asymptote. The results showed that somatic growth is not substantially reduced in species with extensive brain growth, and body size at brain growth completion was larger in species with greater degrees of encephalization. Furthermore, large body size at brain growth completion was not correlated with interbirth interval, but was significantly correlated with prolonged juvenile periods and late age at maturity when data were corrected for phylogeny. These results indicate that neither reduction in body growth nor reproductive rate are compensatory mechanisms for the energetic costs of brain growth. Other avenues for meeting energetic costs must be in effect. In addition, the results show that somatic growth in encephalized species is particularly slow during the juvenile period after brain growth at or near completion, suggesting that these growth patterns are explained by reasons other than energetic costs.  相似文献   

18.
Here we describe a new method for quantifying encephalization in the growing individual and provide a worked example of the methods. The new method is based on the use of conditional SD scores derived from brain and body growth references. These encephalization SD scores control for age, sex and body size effects on brain size, and therefore, control for the confounds associated with allometry as well as growth differences between the brain and body and between the sexes. The methods also control for distribution skewness. Encephalization SD scores derived from pre- and post-natal data may be directly compared and changes in SD score over time assessed. These methods may be applied to a broad range of data where relative size during growth is to be quantified. Derived SD scores may also be applied to correlation and regression analyses where statistical relationships with other variables are of interest.  相似文献   

19.
In this review I show that the '3/4-power scaling law' of metabolic rate is not universal, either within or among animal species. Significant variation in the scaling of metabolic rate with body mass is described mainly for animals, but also for unicells and plants. Much of this variation, which can be related to taxonomic, physiological, and/or environmental differences, is not adequately explained by existing theoretical models, which are also reviewed. As a result, synthetic explanatory schemes based on multiple boundary constraints and on the scaling of multiple energy-using processes are advocated. It is also stressed that a complete understanding of metabolic scaling will require the identification of both proximate (functional) and ultimate (evolutionary) causes. Four major types of intraspecific metabolic scaling with body mass are recognized [based on the power function R=aMb, where R is respiration (metabolic) rate, a is a constant, M is body mass, and b is the scaling exponent]: Type I: linear, negatively allometric (b<1); Type II: linear, isometric (b=1); Type III: nonlinear, ontogenetic shift from isometric (b=1), or nearly isometric, to negatively allometric (b<1); and Type IV: nonlinear, ontogenetic shift from positively allometric (b>1) to one or two later phases of negative allometry (b<1). Ontogenetic changes in the metabolic intensity of four component processes (i.e. growth, reproduction, locomotion, and heat production) appear to be important in these different patterns of metabolic scaling. These changes may, in turn, be shaped by age (size)-specific patterns of mortality. In addition, major differences in interspecific metabolic scaling are described, especially with respect to mode of temperature regulation, body-size range, and activity level. A 'metabolic-level boundaries hypothesis' focusing on two major constraints (surface-area limits on resource/waste exchange processes and mass/volume limits on power production) can explain much, but not all of this variation. My analysis indicates that further empirical and theoretical work is needed to understand fully the physiological and ecological bases for the considerable variation in metabolic scaling that is observed both within and among species. Recommended approaches for doing this are discussed. I conclude that the scaling of metabolism is not the simple result of a physical law, but rather appears to be the more complex result of diverse adaptations evolved in the context of both physico-chemical and ecological constraints.  相似文献   

20.
The ontogeny of the skull has been studied in several marsupial groups such as didelphids, microbiotheriids, and dasyurids. Here, we describe and compare the post-weaning ontogeny of the skull in two species of bandicoots, Echymipera kalubu (Echymiperinae) and Isoodon macrourus (Peramelinae), analyzing specific allometric trends in both groups, describing common (and specific) patterns, and discussing them on functional and phylogenetic grounds. Growth patterns were analyzed both qualitatively and quantitatively, including bivariate and multivariate analyses of allometry. We also evaluated character transformation and phylogenetic signals of the allometric patterns in several groups of marsupials and some placentals. We identified morphological changes between juvenile and adult stages in both species of peramelids, many related to the development of the trophic apparatus. Notable differences were detected in the patterns of growth, suggesting divergences in ontogenetic trajectories between both species. Both bivariate and multivariate methods indicate that positive allometries in E. kalubu apply to longitudinal dimensions, whereas in I. macrourus, positive allometries are restricted to vertical dimensions of the skull. The comparison of the allometric trends of two bandicoots with previously studied taxa reveals that although peramelids exhibit a particularly short gestation period and divergent morphology compared to other marsupials, their pattern does not show any particular trend. Some allometric trends seem to be highly conserved among the species studied, showing weak phylogenetic signal. Marsupials in general do not show particular patterns of post-weaning skull growth compared with placentals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号