首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of the peroxidatic mode of action of catalase   总被引:4,自引:0,他引:4  
Catalase is an enzyme which can function either in the catabolism of hydrogen peroxide or in the peroxidatic oxidation of small substrates such as ethanol, methanol, or elemental mercury (Hg0). It has been reported that native catalase can peroxidatically oxidize larger organic molecules (e.g. L-dopa) and that catalase maintained at alkaline pH for various lengths of time demonstrates an increase in peroxidase activity using guaiacol as substrate. We have shown, by using two distinct methods of H2O2 introduction for measuring peroxidase activity, that native catalase shows no peroxidatic activity toward these larger organic molecules. We have also shown, through the use of these peroxidase assays and by enzyme absorption spectra, that the peroxidase activity attributed to catalase maintained at alkaline pH is a catalytic but not enzymatic activity associated with a hematin group attached to a denatured catalase monomer. Possible mechanisms for the catalytic and peroxidatic modes of action of catalase involving hydride-ion transfer are discussed.  相似文献   

2.
The gluconic fragment of strophantin K oxidation by sodium metaperiodate yields a dialdehyde derivate conjugated with catalase. The conjugate obtained contains 11 molecules of cardiac glucoside. Adsorption and circular dichroism spectra of the native enzyme and its conjugate were compared and structural differences between both samples were revealed. The kinetics of ethanol oxidation into acetaldehyde by cumene hydroperoxide was studied at 30 degrees C in the phosphate buffer pH 6.6; this reaction was shown to proceed with the participation of catalase and its cat-str conjugate. The catalytic constants for catalase are 1.2-1.5 times as high as those for cat-str, whereas the Km values for both substrates for the conjugate as 1.5-2 times as high as those for catalase. Catalase modification by strophantin K increases the enzyme thermostability up to the isokinetic point of 40 degrees C; above this threshold the cat-str thermostability decreases as compared with the native enzyme. The thermodynamical activation parameters for catalase and cat-str inactivation were determined.  相似文献   

3.
Catalase functioned exclusively to degrade hydrogen peroxide in a reaction mixture containing methanol and hydrogen peroxide, while, when the enzyme was coupled with glucose oxidase, successful conversion of methanol to formaldehyde occurred at the optimized ratio of glucose oxidase to catalase: activity, 1.0 × 10 -3; number of molecules, 1.3; protein content, 1. These values in the coupled system were very similar to the ratio of alcohol oxidase to catalase in peroxisomes, one of the subcellular organelles from a methanol-assimilating yeast, Kloeckera sp. 2201, in which these enzymes were coupled to metabolize methanol efficiently. The presence of the optimum ratio in the coupled system in vitro was confirmed by the kinetic analysis of the expression of the peroxidatic activity of catalase coupled with glucose oxidase. Construction of the immobilized system of the coupled enzymes at the optimum ratio demonstrated that the oxidation of methanol through the peroxidatic function of catalase could be continuously and stably operated, the results indicating the usefulness of the system as a model of yeast peroxisomes. Thus, the coupled reaction with glucose oxidase brought out the latent function of catalase, which could not be expected in the system including only catalase.  相似文献   

4.
Catalase promotes the H2O2-dependent oxidation of phenylhydrazine to benzene but simultaneously is subject to a pseudo-first order inactivation process. Each inactivation event is subtended by catalytic turnover of three molecules of phenylhydrazine and 52 molecules of H2O2. The dimethyl ester of N-phenylprotoporphyrin IX is extracted with acidic methanol from the inactivated enzyme, but the prosthetic heme with a phenyl sigma-bonded to the iron atom is obtained by gentle extraction with 2-butanone. The absolute chirality of N-ethylprotoporphyrin IX isolated from catalase inactivated with ethylhydrazine confirms that the prosthetic heme has the same chiral orientation in the active site as it does in hemoglobin. The known inactivation of methemoglobin by phenylhydrazine is shown to depend on H2O2 but not oxygen. The results demonstrate that the H2O2-dependent oxidation of phenylhydrazine by catalase and other hemoproteins results in sigma-coordination of a phenyl residue to the prosthetic heme iron. This process may play a role not only in phenylhydrazine-mediated erythrocyte lysis but also in the activation of guanylate cyclase.  相似文献   

5.
Overall structural changes of enzymes in response to ligand binding were investigated by database analysis of 62 non-redundant enzymes whose ligand-unbound and ligand-bound forms were available in the Protein Data Bank. The results of analysis indicate that transferases often undergo large rigid-body domain motions upon ligand binding, while other enzymes, most typically, hydrolases, change their structures to a small extent. It was also found that the solvent accessibility of the substrate molecule was low in transferases but high in hydrolases. These differences are explained by the enzymatic reaction mechanisms. The transferase reaction requires the catalytic groups to be insulated from the water environment, and thus transferases bury the ligand molecule inside the protein by closing the cleft. On the other hand, the hydrolase reaction involves the surrounding water molecules and occurs at the protein surface, requiring only a small structural change.  相似文献   

6.
The employment of enzymes as catalysts within organic media has traditionally been hampered by the reduced enzymatic activities when compared to catalysis in aqueous solution. Although several complementary hypotheses have provided mechanistic insights into the causes of diminished activity, further development of biocatalysts would greatly benefit from effective chemical strategies (e.g., PEGylation) to ameliorate this event. Herein we explore the effects of altering the solvent composition from aqueous buffer to 1,4-dioxane on structural, dynamical, and catalytic properties of the model enzyme subtilisin Carlsberg (SBc). Furthermore, we also investigate the effects of dissolving the enzyme in 1,4-dioxane through chemical modification with poly(ethylene)-glycol (PEG, M(W) = 20 kDa) on these enzyme properties. In 1,4-dioxane a 10(4)-fold decrease in the enzyme's catalytic activity was observed for the hydrolysis reaction of vinyl butyrate with D(2)O and a 50% decrease in enzyme structural dynamics as evidenced by reduced amide H/D exchange kinetics occurred. Attaching increasing amounts of PEG to the enzyme reversed some of the activity loss. Evaluation of the structural dynamic behavior of the PEGylated enzyme within the organic solvent revealed an increase in structural dynamics at increased PEGylation. Correlation analysis between the catalytic and structural dynamic parameters revealed that the enzyme's catalytic activity and enantioselectivity depended on the changes in protein structural dynamics within 1,4-dioxane. These results demonstrate the importance of protein structural dynamics towards regulating the catalytic behavior of enzymes within organic media.  相似文献   

7.
Catalase activity of the dual-function heme enzyme catalase-peroxidase (KatG) depends on several structural elements, including a unique adduct formed from covalently linked side chains of three conserved amino acids (Met-255, Tyr-229, and Trp-107, Mycobacterium tuberculosis KatG numbering) (MYW). Mutagenesis, electron paramagnetic resonance, and optical stopped-flow experiments, along with calculations using density functional theory (DFT) methods revealed the basis of the requirement for a radical on the MYW-adduct, for oxyferrous heme, and for conserved residues Arg-418 and Asp-137 in the rapid catalase reaction. The participation of an oxyferrous heme intermediate (dioxyheme) throughout the pH range of catalase activity is suggested from our finding that carbon monoxide inhibits the activity at both acidic and alkaline pH. In the presence of H2O2, the MYW-adduct radical is formed normally in KatG[D137S] but this mutant is defective in forming dioxyheme and lacks catalase activity. KatG[R418L] is also catalase deficient but exhibits normal formation of the adduct radical and dioxyheme. Both mutants exhibit a coincidence between MYW-adduct radical persistence and H2O2 consumption as a function of time, and enhanced subunit oligomerization during turnover, suggesting that the two mutations disrupting catalase turnover allow increased migration of the MYW-adduct radical to protein surface residues. DFT calculations showed that an interaction between the side chain of residue Arg-418 and Tyr-229 in the MYW-adduct radical favors reaction of the radical with the adjacent dioxyheme intermediate present throughout turnover in WT KatG. Release of molecular oxygen and regeneration of resting enzyme are thereby catalyzed in the last step of a proposed catalase reaction.  相似文献   

8.
Glyoxal oxidase of P. chrysosporium is a radical copper oxidase that catalyzes oxidation of aldehydes to carboxylic acids coupled to dioxygen reduction to H(2)O(2). In addition to known substrates, glycerol is also found to be a substrate for glyoxal oxidase. During enzyme turnover, glyoxal oxidase undergoes a reversible inactivation, probably caused by loss of the active site free radical, resulting in short-lasting enzyme activities and undetectable substrate conversions. Enzyme activity could be extended by including two additional enzymes, horseradish peroxidase and catalase, in addition to a redox chemical activator, such as Mn(III) (or Mn(II)+H(2)O(2)) or hexachloroiridate. Using this three-enzyme system glycerol was converted in glyceric acid in a two-step reaction, with glyceraldehyde as intermediate. A possible operation mechanism is proposed in which the three enzymes would work coordinately allowing to maintain a sustained glyoxal oxidase activity. In the course of its catalytic cycle, glyoxal oxidase alternates between two functional and interconvertible reduced and oxidized forms resulting from a two-electron transfer process. However, glyoxal oxidase can also undergo an one-electron reduction to a catalytically inactive form lacking the active site free radical. Horseradish peroxidase could use glyoxal oxidase-generated H(2)O(2) to oxidize Mn(II) to Mn(III) which, in turn, would reoxidize and reactivate the inactive form of glyoxal oxidase. Catalase would remove the excess of H(2)O(2) generated during the reaction. In spite of the improvement achieved using the three-enzyme system, glyoxal oxidase inactivation still occurred, which resulted in low substrate conversions. Possible causes of inactivation, including end-product inhibition, are discussed.  相似文献   

9.
Catalase functioned exclusively to degrade hydrogen peroxide in a reaction mixture containing methanol and hydrogen peroxide, while, when the enzyme was coupled with glucose oxidase, successful conversion of methanol to formaldehyde occurred at the optimized ratio of glucose oxidase to catalase: activity, 1.0 × 10 ?3; number of molecules, 1.3; protein content, 1. These values in the coupled system were very similar to the ratio of alcohol oxidase to catalase in peroxisomes, one of the subcellular organelles from a methanol-assimilating yeast, Kloeckera sp. 2201, in which these enzymes were coupled to metabolize methanol efficiently. The presence of the optimum ratio in the coupled system in vitro was confirmed by the kinetic analysis of the expression of the peroxidatic activity of catalase coupled with glucose oxidase. Construction of the immobilized system of the coupled enzymes at the optimum ratio demonstrated that the oxidation of methanol through the peroxidatic function of catalase could be continuously and stably operated, the results indicating the usefulness of the system as a model of yeast peroxisomes. Thus, the coupled reaction with glucose oxidase brought out the latent function of catalase, which could not be expected in the system including only catalase.  相似文献   

10.
Phospholipase A2 at the bilayer interface.   总被引:2,自引:0,他引:2  
F Ramirez  M K Jain 《Proteins》1991,9(4):229-239
Interfacial catalysis is a necessary consequence for all enzymes that act on amphipathic substrates with a strong tendency to form aggregates in aqueous dispersions. In such cases the catalytic event occurs at the interface of the aggregated substrate, the overall turnover at the interface is processive, and it is influenced the molecular organization and dynamics of the interface. Such enzymes can access the substrate only at the interface because the concentration of solitary monomers of the substrate in the aqueous phase is very low. Moreover, the microinterface between the bound enzyme and the organized substrate not only facilitates formation of the enzyme-substrate complex, but a longer residence time of the enzyme at the substrate interface also promotes high catalytic processivity. Binding of the enzyme to the substrate interface as an additional step in the overall catalytic turnover permits adaptation of the Michaelis-Menten formalism as a basis to account for the kinetics of interfacial catalysis. As shown for the action of phospholipase A2 on bilayer vesicles, binding equilibrium has two extreme kinetic consequences. During catalysis in the scooting mode the enzyme does not leave the surface of the vesicle to which it is bound. On the other hand, in the hopping mode the absorption and desorption steps are a part of the catalytic turnover. In this minireview we elaborate on the factors that control binding of pig pancreatic phospholipase A2 to the bilayer interface. Binding of PLA2 to the interface occurs through ionic interactions and is further promoted by hydrophobic interactions which probably occur along a face of the enzyme, with a hydrophobic collar and a ring of cationic residues, through which the catalytic site is accessible to substrate molecules in the bilayer. An enzyme molecule binds to the surface occupied by about 35 lipid molecules with an apparent dissociation constant of less than 0.1 pM for the enzyme on anionic vesicles compared to 10 mM on zwitterionic vesicles. Results at hand also show that aggregation or acylation of the protein is not required for the high affinity binding or catalytic interaction at the interface.  相似文献   

11.
The nucleotide sequence of a 2785-base-pair stretch of DNA containing the Saccharomyces cerevisiae catalase A (CTA1) gene has been determined. This gene contains an uninterrupted open reading frame encoding a protein of 515 amino acids (relative molecular mass 58,490). Catalase A, the peroxisomal catalase of S. cerevisiae was compared to the peroxisomal catalases from bovine liver and from Candida tropicalis and to the non-peroxisomal, presumably cytoplasmic, catalase T of S. cerevisiae. Whereas the peroxisomal catalases are almost colinear, three major insertions have to be introduced in the catalase T sequence to obtain an optimal fit with the other proteins. Catalase A is most closely related to the C. tropicalis enzyme. It is also more similar to the bovine liver catalase than to the second S. cerevisiae catalase. The differences between the two S. cerevisiae enzymes are most striking within four blocks of amino acids consisting of a total of 37 residues with high homology between the three peroxisomal, but low conservation between the S. cerevisiae catalases. The results obtained indicate that the peroxisomal catalases compared have very similar three-dimensional structures and might have similar targeting signals.  相似文献   

12.
Catalase is a major primary antioxidant defence component that primarily catalyses the decomposition of H(2) O(2) to H(2) O. Here we report the purification and characterization of catalase from chard (Beta vulgaris var. cicla). Following a procedure that involved chloroform treatment, ammonium sulfate precipitation and three chromatographic steps (CM-cellulose, Sephadex G-25, and Sephadex G-200), catalase was purified about 250-fold to a final specific activity of 56947 U/mg of protein. The molecular weight of the purified catalase and its subunit were determined to be 235 000 and 58 500 daltons, indicating that the chard catalase is a tetramer. The absorption spectra showed a soret peak at 406 nm, and there was slightly reduction by dithionite. The ratio of absorption at 406 and 275 nanometers was 1.5, the value being similar to that obtained for catalase from other plant sources. In the catalytic reaction, the apparent Km value for chard catalase was 50 mM. The purified protein has a broad pH optimum for catalase activity between 6.0 and 8.0. The enzyme had an optimum reaction temperature at 30 degrees C. Heme catalase inhibitors, such as azide and cyanide, inhibited the enzyme activity markedly and the enzyme was also inactivated by ?-mercaptoethanol, dithiothreitol and iodoacetamide.  相似文献   

13.
Catalase conjugates with 3, 7, 9 and 42 progesterone molecules were obtained by the reaction between the enzyme and N-oxy-succinimide ether of 3-0-carboxymethyloxime of progesterone. The enzyme modified by 42 progesterone molecules is effective in o-dianisidine oxidation by hydrogen peroxide and has a kcat/KM value of 512 M-1 s-1. The catalase conjugates with 3, 7 and 9 progesterone molecules exhibit a high activity during o-dianisidine oxidation by cumene hydroperoxide. The activity of conjugates is higher than that of the native non-modified enzyme in the same reaction. The maximum effectiveness was observed for catalase modified by 7 progesterone molecules. This conjugate is characterized by kcat/KM of 99,000 M-1 s-1 at 30 degrees C. The effect of the degree of enzyme modification on the kinetic parameters of o-dianisidine oxidation by H2O2 and cumene hydroperoxide is discussed.  相似文献   

14.
Some enzymes are inactivated by their natural substrates during catalytic turnover, limiting the ultimate extent of reaction. These enzymes can be separated into three broad classes, depending on the mechanism of the inactivation process. The first type is enzymes which use molecular oxygen as a substrate. The second type is inactivated by hydrogen peroxide, which is present either as a substrate or a product, and are stabilized by high catalase activity. The oxidation of both types of enzymes shares common features with oxidation of other enzymes and proteins. The third type of enzyme is inactivated by non-oxidative processes, mainly reversible loss of cofactors or attached groups. Sub classes are defined within each broad classification based on kinetics and stoichiometry. Reaction-inactivation is in part a regulatory mechanism in vivo, because specific proteolytic systems give rapid turnover of such labelled enzymes. The methods for enhancing the stability of these enzymes under reaction conditions depends on the enzyme type. The kinetics of these inactivation reactions can be used to optimize bioreactor design and operation.  相似文献   

15.
Since wild-type enzymes do not always have the properties needed for various applications, enzymes are often engineered to obtain desirable properties through protein engineering techniques. In the past decade, complementary to the widely used rational protein design and directed evolution techniques, noncanonical amino acid incorporation (NCAAI) has become a new and effective protein engineering technique. Recently, NCAAI has been used to improve intrinsic functions of proteins, such as enzymes and fluorescent proteins, beyond the capacities obtained with natural amino acids. Herein, recent progress on improving enzyme properties through NCAAI in vivo is reviewed and the challenges of current approaches and future directions are also discussed. To date, both NCAAI methods-residue- and site-specific incorporation-have been primarily used to improve the catalytic turnover number and substrate binding affinity of enzymes. Numerous strategies used to minimize structural perturbation and stability loss of a target enzyme upon NCAAI are also explored. Considering the generality of NCAAI incorporation, we expect its application could be expanded to improve other enzyme properties, such as substrate specificity and solvent resistance in the near future.  相似文献   

16.
Catalase from the facultatively psychrophilic bacterium Vibrio rumoiensis S-1(T), which was isolated from an environment exposed to H(2)O(2) and exhibited high catalase activity, was purified and characterized, and its localization in the cell was determined. Its molecular mass was 230 kDa, and the molecule consisted of four identical subunits. The enzyme, which was not apparently reduced by dithionite, showed a Soret peak at 406 nm in a resting state. The catalytic activity was 527,500 U. mg of protein(-1) under standard reaction conditions at 40 degrees C, 1.5 and 4.3 times faster, respectively, than those of the Micrococcus luteus and bovine catalases examined under the same reaction conditions, and showed a broad optimum pH range (pH 6 to 10). The catalase from strain S-1(T) is located not only in the cytoplasmic space but also in the periplasmic space. There is little difference in the activation energy for the activity between strain S-1(T) catalase and M. luteus and bovine liver catalases. The thermoinstability of the activity of the former catalase were significantly higher than those of the latter catalases. The thermoinstability suggests that the catalase from strain S-1(T) should be categorized as a psychrophilic enzyme. Although the catalase from strain S-1(T) is classified as a mammal type catalase, it exhibits the unique enzymatic properties of high intensity of enzymatic activity and thermoinstability. The results obtained suggest that these unique properties of the enzyme are in accordance with the environmental conditions under which the microorganism lives.  相似文献   

17.
From in vitro selection studies, DNA structures have been found that cleave target RNA sequence specifically and show a certain similarity to the well-investigated hammerhead ribozymes. Such DNA enzymes are more resistant to nuclease-mediated degradation than RNA enzymes. On the other hand, their cleavage activity is lower than the activity of hammerhead ribozymes. In the present study, we improved the activity of DNA enzymes by adding oligonucleotide facilitators complementary to the 5' and the 3' ends of the substrate to the cleavage reaction. DNA enzyme activity in vitro was monitored under multiple turnover conditions using short RNA model substrates. We have shown that oligonucleotide facilitators strongly enhance the multiple turnover activity of the DNA enzyme reaction. In one of our model systems with a suitable facilitator combination, we were able to observe a more than 200-fold enhancement of the k(cat)/Km value. The comparison of two DNA enzyme-substrate systems showed that the principal effects of the facilitators were independent of the substrate sequence. However, the degree of facilitator effect was noticeably dependent on the basic catalytic efficiency of DNA enzymes. Furthermore, the efficiency of the DNA enzyme reaction with facilitator was compared with the reaction of a DNA enzyme with a stem sequence extended by the sequence of the facilitator. The multiple turnover activity of such a "long DNA enzyme" is higher than the activity of the short DNA enzyme without facilitators. However, when compared with the multiple turnover reactions of the short DNA enzyme with facilitator, the reaction with the long DNA enzyme is considerably slower. The results obtained with our model systems demonstrate that oligonucleotide facilitators enable DNA enzymes to act as effective multiple turnover catalysts by cleavage of RNA substrates.  相似文献   

18.
The bacterial tRNA-guanine transglycosylase (TGT) is a tRNA modifying enzyme catalyzing the exchange of guanine 34 by the modified base preQ1. The enzyme is involved in the infection pathway of Shigella, causing bacterial dysentery. As no crystal structure of the Shigella enzyme is available the homologous Zymomonas mobilis TGT was used for structure-based drug design resulting in new, potent, lin-benzoguanine-based inhibitors. Thorough kinetic studies show size-dependent inhibition of these compounds resulting in either a competitive or non-competitive blocking of the base exchange reaction in the low micromolar range. Four crystal structures of TGT-inhibitor complexes were determined with a resolution of 1.58-2.1 A. These structures give insight into the structural flexibility of TGT necessary to perform catalysis. In three of the structures molecular rearrangements are observed that match with conformational changes also noticed upon tRNA substrate binding. Several water molecules are involved in these rearrangement processes. Two of them demonstrate the structural and catalytic importance of water molecules during TGT base exchange reaction. In the fourth crystal structure the inhibitor unexpectedly interferes with protein contact formation and crystal packing. In all presently known TGT crystal structures the enzyme forms tightly associated homodimers internally related by crystallographic symmetry. Upon binding of the fourth inhibitor the dimer interface, however, becomes partially disordered. This result prompted further analyses to investigate the relevance of dimer formation for the functional protein. Consultation of the available TGT structures and sequences from different species revealed structural and functional conservation across the contacting residues. This suggests that bacterial and eukaryotic TGT could possibly act as homodimers in catalysis. It is hypothesized that one unit of the dimer performs the catalytic reaction whereas the second is required to recognize and properly orient the bound tRNA for the catalytic reaction.  相似文献   

19.
Aging is characterized by progressive decline of major cell functions, associated with accumulation of altered macromolecules, particularly proteins. This deterioration parallels age-related dysfunction of mitochondria, thought to be a major determinant of this decline in cell function, since these organelles are both the main sources of reactive oxygen species and targets for their damaging effects. To investigate the link between glycation damages that accumulate with aging and the status of mitochondrial antioxidant enzymes, we identified, by mass spectrometry after two dimensional-gel electrophoresis and western blotting, advanced glycation end product-modified matrix proteins in rat liver mitochondria. Catalase appeared to be the only antioxidant enzyme markedly glycated in old rats. Immunogold labeling performed on isolated mitochondria confirmed the mitochondrial matrix location of this enzyme. The content of catalase protein in mitochondrial extract increased with aging whereas the catalase activity was not significantly modified, in spite of a significant increase rate of glycation. Treatment of catalase with the glycating agent fructose led to significant time-dependent inactivation of the enzyme, while methylglyoxal had no noticeable effect. Catalase was co-identified with unglycated glutathione peroxidase-1 in the mitochondrial extracts. Taken together, these results indicate that both anti-oxidant enzymes catalase and glutathione peroxidase-1 housed in liver mitochondria, exhibited a differential sensitivity to glycation; moreover, they lend support to the hypothesis that glycation damages targeting catalase with aging may severely affect its activity, suggesting a link between glycation stress and the age-related decline in antioxidant defense in the mitochondria.  相似文献   

20.
The pyridoxal 5'-phosphate-dependent enzymes tyrosine phenol-lyase and tryptophan indole-lyase were encapsulated in wet nanoporous silica gels, a powerful method to selectively stabilize tertiary and quaternary protein conformations and to develop bioreactors and biosensors. A comparison of the enzyme reactivity in silica gels and in solution was carried out by determining equilibrium and kinetic parameters, exploiting the distinct spectral properties of catalytic intermediates and reaction products. The encapsulated enzymes exhibit altered distributions of ketoenamine and enolimine tautomers, increased values of inhibitors dissociation constants, slow attaining of steady-state in the presence of substrate and substrate analogs, modified steady-state distribution of catalytic intermediates, and a sixfold-eightfold decrease of specific activities. This behavior can be rationalized by a reduced conformational flexibility for the encapsulated enzymes and a selective stabilization of either the open (inactive) or the closed (active) form of the enzymes. Despite very similar structures and catalytic mechanisms, the influence of encapsulation is more pronounced for tyrosine phenol-lyase than tryptophan indole-lyase. This finding indicates that subtle structural and dynamic differences can lead to distinct interactions of the protein with the gel matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号