首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The multidrug exporter AcrB is the inner membrane component of the AcrAB-TolC drug efflux system in Escherichia coli and is responsible for the resistance of this organism to a wide range of drugs. Here we describe the crystal structure of the trimeric AcrB in complex with a designed ankyrin-repeat protein (DARPin) inhibitor at 2.5-Å resolution. The three subunits of AcrB are locked in different conformations revealing distinct channels in each subunit. There seems to be remote conformational coupling between the channel access, exit, and the putative proton-translocation site, explaining how the proton motive force is used for drug export. Thus our structure suggests a transport pathway not through the central pore but through the identified channels in the individual subunits, which greatly advances our understanding of the multidrug export mechanism.  相似文献   

2.
Escherichia coli AcrB is a multidrug efflux transporter that recognizes multiple toxic chemicals having diverse structures. Recent crystallographic studies of the asymmetric trimer of AcrB suggest that each protomer in the trimeric assembly goes through a cycle of conformational changes during drug export. However, biochemical evidence for these conformational changes has not been provided previously. In this study, we took advantage of the observation that the external large cleft in the periplasmic domain of AcrB appears to become closed in the crystal structure of one of the three protomers, and we carried out in vivo cross-linking between cysteine residues introduced by site-directed mutagenesis on both sides of the cleft, as well as at the interface between the periplasmic domains of the AcrB trimer. Double-cysteine mutants with mutations in the cleft or the interface were inactive. The possibility that this was due to the formation of disulfide bonds was suggested by the restoration of transport activity of the cleft mutants in a dsbA strain, which had diminished activity to form disulfide bonds in the periplasm. Furthermore, rapidly reacting, sulfhydryl-specific chemical cross-linkers, methanethiosulfonates, inactivated the AcrB transporter with double-cysteine residues in the cleft expressed in dsbA cells, and this inactivation could be observed within a few seconds after the addition of a cross-linker in real time by increased ethidium influx into the cells. These observations indicate that conformational changes, including the closure of the external cleft in the periplasmic domain, are required for drug transport by AcrB.  相似文献   

3.
Many transporters of Gram-negative bacteria involved in the extracellular secretion of proteins and the efflux of toxic molecules operate by forming intermembrane complexes. These complexes are proposed to span both inner and outer membranes and create a bridge across the periplasm. In this study, we analyzed interactions between the inner and outer membrane components of the tri-partite multidrug efflux pump AcrAB-TolC from Escherichia coli. We found that, once assembled, the intermembrane AcrAB-TolC complex is stable during the separation of the inner and outer membranes and subsequent purification. All three components of the complex co-purify when the affinity tag is attached to either of the proteins suggesting bi-partite interactions between AcrA, AcrB, and TolC. We show that antibiotics, the substrates of AcrAB-TolC, stabilize interactions within the complex. However, the formation of the AcrAB-TolC complex does not require an input of energy.  相似文献   

4.
In gram-negative bacteria, transporters belonging to the resistance-nodulation-cell division (RND) superfamily of proteins are responsible for intrinsic multidrug resistance. Haemophilus influenzae, a gram-negative pathogen causing respiratory diseases in humans and animals, constitutively produces the multidrug efflux transporter AcrB (AcrB(HI)). Similar to other RND transporters AcrB(HI) associates with AcrA(HI), the periplasmic membrane fusion protein, and the outer membrane channel TolC(HI). Here, we report that AcrAB(HI) confers multidrug resistance when expressed in Escherichia coli and requires for its activity the E. coli TolC (TolC(EC)) protein. To investigate the intracellular dynamics of AcrAB(HI), single cysteine mutations were constructed in AcrB(HI) in positions previously identified as important for substrate recognition. The accessibility of these strategically positioned cysteines to the hydrophilic thiol-reactive fluorophore fluorescein-5-maleimide (FM) was studied in vivo in the presence of various substrates of AcrAB(HI) and in the presence or absence of AcrA(HI) and TolC(EC). We report that the reactivity of specific cysteines with FM is affected by the presence of some but not all substrates. Our results suggest that substrates induce conformational changes in AcrB(HI).  相似文献   

5.
In Escherichia coli, the intrinsic levels of resistance to multiple antimicrobial agents are produced through expression of the three-component multidrug efflux system AcrAB-TolC. AcrB is a proton-motive-force-dependent transporter located in the inner membrane, and AcrA and TolC are accessory proteins located in the periplasm and the outer membrane, respectively. In this study, these three proteins were expressed separately, and the interactions between them were analyzed by chemical cross-linking in intact cells. We show that AcrA protein forms oligomers, most probably trimers. In this oligomeric form, AcrA interacts specifically with AcrB transporter independently of substrate and TolC.  相似文献   

6.
Wang B  Weng J  Fan K  Wang W 《Proteins》2011,79(10):2936-2945
The AcrAB-TolC drug efflux system, energized by proton movement down the transmembrane electrochemical gradient, is responsible for the resistance of the organism to a wide range of drugs. Experimental data suggest functional roles of each part of the assembly, but the detailed working mechanism of this machinery remains elusive. We used elastic network-based normal mode analysis (NMA) to explore the conformational dynamics of the AcrAB-TolC complex. The intrinsic flexibilities of the pore domain in AcrB monomer conform to the previously proposed three-step functionally rotating mechanism for asymmetric AcrB trimer. Conformational couplings across monomers in the AcrB trimer were observed, and the coupling between the transmembrane domain and the other parts of AcrB are strengthened through trimeric assembly. In the tripartite AcrAB-TolC assembly obtained through molecular docking, concerted motions were observed not only at the direct contact interfaces between various components but also between distant parts of the whole complex. The presence of AcrA was shown to significantly strengthen the motional couplings between AcrB and TolC. Overall, NMA revealed an allosteric network in the AcAB-TolC efflux system, which provides hints to our understanding of its detailed working mechanism.  相似文献   

7.
A dark state tertiary structure in the cytoplasmic domain of rhodopsin is presumed to be the key to the restriction of binding of transducin and rhodopsin kinase to rhodopsin. Upon light-activation, this tertiary structure undergoes a conformational change to form a new structure, which is recognized by the above proteins and signal transduction is initiated. In this and the following paper in this issue [Cai, K., Klein-Seetharaman, J., Altenbach, C., Hubbell, W. L., and Khorana, H. G. (2001) Biochemistry 40, 12479-12485], we probe the dark state cytoplasmic domain structure in rhodopsin by investigating proximity between amino acids in different regions of the cytoplasmic face. The approach uses engineered pairs of cysteines at predetermined positions, which are tested for spontaneous formation of disulfide bonds between them, indicative of proximity between the original amino acids. Focusing here on proximity between the native cysteine at position 316 and engineered cysteines at amino acid positions 55-75 in the cytoplasmic sequence connecting helices I-II, disulfide bond formation was studied under strictly defined conditions and plotted as a function of the position of the variable cysteines. An absolute maximum was observed for position 65 with two additional relative maxima for cysteines at positions 61 and 68. The observed disulfide bond formation rates correlate well with proximity of these residues found in the crystal structure of rhodopsin in the dark. Modeling of the engineered cysteines in the crystal structure indicates that small but significant motions are required for productive disulfide bond formation. During these motions, secondary structure elements are retained as indicated by the lack of disulfide bond formation in cysteines that do not face toward Cys316 in the crystal structure model. Such motions may be important in light-induced conformational changes.  相似文献   

8.
Yu L  Lu W  Wei Y 《PloS one》2011,6(12):e28390
The multidrug transporter AcrB in Escherichia coli exists and functions as a homo-trimer. The assembly process of obligate membrane protein oligomers, including AcrB, remains poorly understood. In a previous study, we have shown that individual AcrB subunit is capable of folding independently, suggesting that trimerization of AcrB follows a three-stage pathway in which monomers first fold, and then assemble. Here we destabilized the AcrB trimer through mutating a single Pro (P223) in the protruding loop of AcrB, which drastically reduced the protein activity. We replaced P223 separately with five residues, including Ala, Val, Tyr, Asn, and Gly, and found that AcrB(P223G) was the least active. Detailed characterization of AcrB(P223G) revealed that the protein existed as a well-folded monomer after purification, but formed a trimer in vivo. The function of the mutant could be partly restored through strengthening the stability of the trimer using an inter-subunit disulfide bond. Our results also suggested that the protruding loop is well structured during AcrB assembly with P223 served as a "wedge" close to the tip to stabilize the AcrB trimer structure. When this wedge is disrupted, the stability of the trimer is reduced, accompanied by a decrease of drug efflux activity.  相似文献   

9.
The major Escherichia coli multidrug efflux pump AcrAB-TolC expels a wide range of antibacterial agents. Using in vivo cross-linking, we show for the first time that the antiporter AcrB and the adaptor AcrA, which form a translocase in the inner membrane, interact with the outer membrane TolC exit duct to form a contiguous proteinaceous complex spanning the bacterial cell envelope. Assembly of the pump appeared to be constitutive, occurring in the presence and absence of drug efflux substrate. This contrasts with substrate-induced assembly of the closely related TolC-dependent protein export machinery, possibly reflecting different assembly dynamics and degrees of substrate responsiveness in the two systems. TolC could be cross-linked independently to AcrB, showing that their large periplasmic domains are in close proximity. However, isothermal titration calorimetry detected no interaction between the purified AcrB and TolC proteins, suggesting that the adaptor protein is required for their stable association in vivo. Confirming this view, AcrA could be cross-linked independently to AcrB and TolC in vivo, and calorimetry demonstrated energetically favourable interactions of AcrA with both AcrB and TolC proteins. AcrB was bound by a polypeptide spanning the C-terminal half of AcrA, but binding to TolC required interaction of N- and C-terminal polypeptides spanning the lipoyl-like domains predicted to present the intervening coiled-coil to the periplasmic coils of TolC. These in vivo and in vitro analyses establish the central role of the AcrA adaptor in drug-independent assembly of the tripartite drug efflux pump, specifically in coupling the inner membrane transporter and the outer membrane exit duct.  相似文献   

10.
The AcrAB-TolC system exports a wide variety of drugs and toxic compounds, and confers intrinsic drug tolerance on Escherichia coli. The crystal structures suggested that AcrB and TolC directly dock with each other. However, biochemical and biophysical evidence of their interaction has been contradictory until recently. In this study, we examine the interaction sites by means of in vivo disulfide cross-linking between cysteine residues introduced by site-directed mutagenesis at the tops of the vertical hairpins of AcrB and the bottoms of the coiled coils of polyhistidine-tagged TolC molecules, which are structurally predicted docking sites. The AcrB-TolC complex formed through disulfide cross-linking was detected when a specific pair of mutants was coexpressed in E. coli. Our observations suggested that the AcrB-TolC complex may be formed through a two-step mechanism via transient tip-to-tip interaction of AcrB and TolC. The cross-linking was not affected by AcrA, the substrate, or a putative proton coupling site mutation.  相似文献   

11.
Gastrointestinal bacteria, like Escherichia coli, must remove bile acid to survive in the gut. Bile acid removal in E. coli is thought to be mediated primarily by the multidrug efflux pump, AcrB. Here, we present the structure of E. coli AcrB in complex with deoxycholate at 3.85 Å resolution. All evidence suggests that bile acid is transported out of the cell via the periplasmic vestibule of the AcrAB-TolC complex.  相似文献   

12.
革兰氏阴性菌的多重耐药性已成为全球广泛聚焦的问题。近年研究发现,耐药结节细胞分化(resistance-nodulation-cell division,RND)家族外排泵的过表达,与革兰氏阴性菌的多重耐药性密切相关。在RND家族中,广泛存在于革兰氏阴性菌中的AcrAB-TolC外排泵被认为是导致多重耐药性的主要原因之一。为了开发有效的抑制剂,需要对AcrAB-TolC外排泵的结构有一个清晰的认识。以往对该外排泵结构的研究主要局限于体外采用X射线晶体学技术或冷冻电镜单颗粒分析技术来解析其单个组分或全泵的结构。细胞冷冻电子断层扫描技术为揭示AcrAB-TolC外排泵在天然细胞膜环境中的组装和运行机制提供了新的见解,本文综述了AcrAB-TolC不同层级的结构数据在研发外排泵抑制剂方面的贡献。  相似文献   

13.
The multidrug resistance (MDR) system effectively expels antibiotics out of bacteria causing serious issues during bacterial infection. In addition to drug, indole, a common metabolic waste of bacteria, is expelled by MDR system of gram-negative bacteria for their survival. Experimental results suggest that AcrB, one of the key components of MDR system, undergoes large scale conformation changes during the pumping due to proton-motive process. However, due to extremely short time scale, it is difficult to observe (experimentally) those changes in the AcrB, which might facilitate the pumping process. Molecular simulations can shed light to understand the conformational changes for transport of indole in AcrB. Examination of conformational changes using all-atom simulation is, however, impractical. Here, we develop a hybrid coarse-grained force field to study the conformational changes of AcrB in presence of indole in the porter domain of monomer II. Using the coarse-grained force field, we investigated the conformational changes of AcrB for a number of model systems considering the effect of protonation in aspartic acid (Asp) residues Asp407 and Asp408 in the transmembrane domain of monomer II. Our results show that in the presence of indole, protonation of Asp408 or Asp407 residue causes conformational changes from binding state to extrusion state in monomer II, while remaining two monomers (I and III) approach access state in AcrB protein. We also observed that all three AcrB monomers prefer to go back to access state in the absence of indole. Steered molecular dynamics simulations were performed to demonstrate the feasibility of indole transport mechanism for protonated systems. Identification of indole transport pathway through AcrB can be very helpful in understanding the drug efflux mechanism used by the MDR bacteria.  相似文献   

14.
Conversion of the normal soluble form of prion protein, PrP (PrPC), to proteinase K-resistant form (PrPSc) is a common molecular etiology of prion diseases. Proteinase K-resistance is attributed to a drastic conformational change from α-helix to β-sheet and subsequent fibril formation. Compelling evidence suggests that membranes play a role in the conformational conversion of PrP. However, biophysical mechanisms underlying the conformational changes of PrP and membrane binding are still elusive. Recently, we demonstrated that the putative transmembrane domain (TMD; residues 111–135) of Syrian hamster PrP penetrates into the membrane upon the reduction of the conserved disulfide bond of PrP. To understand the mechanism underlying the membrane insertion of the TMD, here we explored changes in conformation and membrane binding abilities of PrP using wild type and cysteine-free mutant. We show that the reduction of the disulfide bond of PrP removes motional restriction of the TMD, which might, in turn, expose the TMD into solvent. The released TMD then penetrates into the membrane. We suggest that the disulfide bond regulates the membrane binding mode of PrP by controlling the motional freedom of the TMD.  相似文献   

15.
Multidrug efflux protein complexes such as AcrAB-TolC from Escherichia coli are paramount in multidrug resistance in Gram-negative bacteria and are also implicated in other processes such as virulence and biofilm formation. Hence efflux pump inhibition, as a means to reverse antimicrobial resistance in clinically relevant pathogens, has gained increased momentum over the past two decades. Significant advances in the structural and functional analysis of AcrB have informed the selection of efflux pump inhibitors (EPIs). However, an accurate method to determine the kinetics of efflux pump inhibition was lacking. In this study we standardised and optimised surface plasmon resonance (SPR) to probe the binding kinetics of substrates and inhibitors to AcrB. The SPR method was also combined with a fluorescence drug binding method by which affinity of two fluorescent AcrB substrates were determined using the same conditions and controls as for SPR. Comparison of the results from the fluorescent assay to those of the SPR assay showed excellent correlation and provided validation for the methods and conditions used for SPR. The kinetic parameters of substrate (doxorubicin, novobiocin and minocycline) binding to AcrB were subsequently determined. Lastly, the kinetics of inhibition of AcrB were probed for two established inhibitors (phenylalanine arginyl β-naphthylamide and 1-1-naphthylmethyl-piperazine) and three novel EPIs: 4-isobutoxy-2-naphthamide (A2), 4-isopentyloxy-2-naphthamide (A3) and 4-benzyloxy-2-naphthamide (A9) have also been probed. The kinetic data obtained could be correlated with inhibitor efficacy and mechanism of action. This study is the first step in the quantitative analysis of the kinetics of inhibition of the clinically important RND-class of multidrug efflux pumps and will allow the design of improved and more potent inhibitors of drug efflux pumps. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain.  相似文献   

16.
There are many examples of bioactive, disulfide‐rich peptides and proteins whose biological activity relies on proper disulfide connectivity. Regioselective disulfide bond formation is a strategy for the synthesis of these bioactive peptides, but many of these methods suffer from a lack of orthogonality between pairs of protected cysteine (Cys) residues, efficiency, and high yields. Here, we show the utilization of 2,2′‐dipyridyl diselenide (PySeSePy) as a chemical tool for the removal of Cys‐protecting groups and regioselective formation of disulfide bonds in peptides. We found that peptides containing either Cys(Mob) or Cys(Acm) groups treated with PySeSePy in trifluoroacetic acid (TFA) (with or without triisopropylsilane (TIS) were converted to Cys‐S–SePy adducts at 37 °C and various incubation times. This novel Cys‐S–SePy adduct is able to be chemoselectively reduced by five‐fold excess ascorbate at pH 4.5, a condition that should spare already installed peptide disulfide bonds from reduction. This chemoselective reduction by ascorbate will undoubtedly find utility in numerous biotechnological applications. We applied our new chemistry to the iodine‐free synthesis of the human intestinal hormone guanylin, which contains two disulfide bonds. While we originally envisioned using ascorbate to chemoselectively reduce one of the formed Cys‐S–SePy adducts to catalyze disulfide bond formation, we found that when pairs of Cys(Acm) residues were treated with PySeSePy in TFA, the second disulfide bond formed spontaneously. Spontaneous formation of the second disulfide is most likely driven by the formation of the thermodynamically favored diselenide (PySeSePy) from the two Cys‐S–SePy adducts. Thus, we have developed a one‐pot method for concomitant deprotection and disulfide bond formation of Cys(Acm) pairs in the presence of an existing disulfide bond.  相似文献   

17.
Gram-negative bacteria expel diverse toxic chemicals through the tripartite efflux pumps spanning both the inner and outer membranes. The Escherichia coli AcrAB-TolC pump is the principal multidrug exporter that confers intrinsic drug tolerance to the bacteria. The inner membrane transporter AcrB requires the outer membrane factor TolC and the periplasmic adapter protein AcrA. However, it remains ambiguous how the three proteins are assembled. In this study, a hexameric model of the adapter protein was generated based on the propensity for trimerization of a dimeric unit, and this model was further validated by presenting its channel-forming property that determines the substrate specificity. Genetic, in vitro complementation, and electron microscopic studies provided evidence for the binding of the hexameric adapter protein to the outer membrane factor in an intermeshing cogwheel manner. Structural analyses suggested that the adapter covers the periplasmic region of the inner membrane transporter. Taken together, we propose an adapter bridging model for the assembly of the tripartite pump, where the adapter protein provides a bridging channel and induces the channel opening of the outer membrane factor in the intermeshing tip-to-tip manner.  相似文献   

18.
Shioi S  Imoto T  Ueda T 《Biochemistry》2004,43(18):5488-5493
Twenty-eight hen lysozyme variants that contained a pair of cysteines were constructed to examine the formation of the individual native and nonnative disulfide bonds. We analyzed the extent of the formation of a disulfide bond in each lysozyme variant using a redox buffer (pH 8) containing 1.0 mM reduced and 0.1 mM oxidized glutathione in the absence or presence of 6 M guanidine hydrochloride. In the presence of 6 M guanidine hydrochloride, the extent of the formation of the disulfide bond in each lysozyme variant was proportional to the distance between cysteine residues, indicating that reduced hen lysozyme under a highly denaturing condition adopted a randomly coiled structure. In aqueous solution, the formations of all disulfide bonds occurred much more easily than under a denatured condition. This finding indicated that reduced lysozyme had a somewhat compact structure. Moreover, the scattering data for the extents of the formation of the disulfide bonds among all lysozyme variants were observed. These results suggested that the nonrandom folding occurred in the early stage of the folding of reduced lysozyme, which should provide new insight into the early-stage events in the folding process of reduced lysozyme.  相似文献   

19.
Circular dichroism spectra of the partially folded trapped intermediates were measured in order to aid in the elucidation of the conformational forces which determine a nonrandom, nonsequential pathway of disulfide bond formation upon refolding of bovine pancreatic trypsin inhibitor. Whatever conformation was responsible for the kinetic rates of the intermediates should be stabilized by the presence of their trapped disulfide bonds. The near-ultraviolet spectra provide considerable information about the environments of the aromatic and disulfide side chains. The predominant single-disulfide intermediate has significant nonrandom conformation not present in the fully reduced protein, with aromatic rings and the disulfide bond in stabilized asymmetric environments. Forming either of the two nonnative, but kinetically important, second disulfides in this intermediate does not produce unequivocably different conformations. Forming a second native, but kinetically unproductive, disulfide produces a substantial decrease in randomness, which may hinder formation of the third disulfide. The largest conformational changes occur upon disulfide rearrangement to the stable, correctly refolded, two- and three-disulfide species. Interpretation of the far-ultraviolet spectra in terms of the secondary structure of the intermediates is uncertain, due to the atypical spectra of the folded forms of the protein. Consequently, we are unable to determine unambiguously the secondary structure of the intermediates. However, all the spectra show that nonrandom conformations of the polypeptide chain gradually appear as disulfide bond formation progresses, as expected from the nonrandom pathway of the latter.  相似文献   

20.
蒋嘉峰  肖澜  谢浩  沈雷  陈自忍 《微生物学通报》2022,49(11):4617-4628
【背景】多药外排泵多以膜蛋白复合体形式存在,是导致细菌耐药性的重要原因。外排泵的转运功能和组装过程对于细菌耐药性和药物研发具有重要意义。【目的】以多药外排泵耐药结节细胞分化家族(resistance-nodulation-division family, RND)的重要成员AcrAB-TolC复合体为对象,研究其转运活性和体外组装特性。【方法】基于大肠杆菌AcrAB-TolC复合体基因序列,分别构建含有acrAacrBtolC基因的重组质粒,表达和纯化复合体各亚基,利用荧光光谱、等温滴定量热法(isothermal titration calorimetry,ITC)等技术分析复合体及亚基的转运功能、亚基与底物的相互作用,以及亚基间的相互作用和动态装配。【结果】实现了AcrAB-TolC复合体各组分的表达和纯化(纯度>98%),证实表达有各组分的活细胞提高了对于溴化乙锭(ethidium bromide,EB)的转运活性,并发现群体感应效应信号分子N-hexanoyl-L-homoserine lactone (C6-HSL)能够抑制AcrB、TolC对于EB的转运活性。ITC结果进一步证实了C6-HSL与AcrB、TolC的相互作用。ITC结果还显示AcrA分别与AcrB、TolC之间存在明显的相互作用,而AcrB与TolC之间无明显的相互作用。在体外装配实验中观测到AcrAB-TolC亚基的单分子荧光强度随时间增加,证实了复合体亚基在膜上的动态组装过程。【结论】实现了AcrAB-TolC外排泵及亚基的表达和纯化,证实了AcrAB-TolC对底物的转运活性及与底物的相互作用,观察到AcrAB-TolC的动态组装过程。以上结果为研究多药外排泵导致的细菌耐药性及抗菌策略具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号