首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In immunocastrated (IC) pigs, revaccination (V2) increases lipid deposition (LD) because of increased voluntary feed intake; but little is known on associated effect of diet composition on partitioning of nutrients in IC pigs. Digestibility measurements, N and energy balances in respiration chambers were performed in two subsequent stages in four replicates of two male littermates to determine the changes between 85 (stage 1) and 135 (stage 2) kg live weight due to combined effect of IC, growth and increased feed intake (IC/growth). During stage 1, pigs received a standard low-fat diet (LF diet; 2.5% dry matter (DM) of fat fed at 2.27 MJ metabolizable energy (ME)/kg BW0.60 per day), whereas during stage 2, feed intake was increased to 2.47 MJ ME/kg BW0.60 per day and one littermate was fed LF diet whereas the second received a fat-enriched diet (HF diet; 8.9% DM of fat) to determine the effect of increased dietary fat content on energy utilization in IC pigs. Results from N balance and measurements of gas exchanges were used to calculate respiratory quotient (RQ), heat production (HP), nutrient contribution to fat retention, components of HP, protein deposition (PD) and LD. Nutrients and energy apparent digestibility coefficients, methane losses and N retention (P<0.05) increased with IC/growth. Despite higher ME intake, total HP remained similar (1365 kJ/kg of BW0.60 per day; P=0.47) with IC/growth. Consequently, total retained energy (RE) increased with IC/growth (from 916 to 1078 kJ/kg of BW0.60 per day; P<0.01) with a higher fat retention (625 to 807 kJ/kg BW0.60 per day; P<0.01), originating mainly from carbohydrates associated with a higher lipogenesis (536 to 746 kJ/kg BW0.60 per day; P<0.01) and RQ (1.095 to 1.145; P<0.01). Both PD (from 178 to 217 g/day; P=0.02) and LD (from 227 to 384 g/day; P<0.01) increased due to IC/growth. Feeding HF diet after IC was associated with increased crude fat digestibility (P<0.01) and increased RE as fat (807 to 914 kJ/kg BW0.60 per day; P=0.03), originating mainly from dietary fat (P<0.01) and resulting in increased LD (384 to 435 g/day; P<0.01) and lower RQ (from 1.145 to 1.073; P<0.01). Altogether, present results indicate that increased fatness of IC pigs is a result of increased daily LD caused by higher energy intake and lower basal metabolic rate. In addition, LD is further enhanced by dietary energy enrichment with fat after V2.  相似文献   

2.
In two experiments with growing-finishing pigs six different dietary fats were added to a conventional diet (control - C) to study the effects of dietary monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA) on the fatty acid composition of backfat and kidney fat at similar amounts of double bonds in feed (Exp. 1:7% pork fat - PF, 4.95% olive oil - OO, 3.17% soybean oil - SO) or a constant amount of 5% of processed fats (Exp. 2: partially hydrogenated fat - SAT, fractionated pork fats: olein - OLE, stearin - STE). Compared with the control, PUFA were only slightly increased in backfat of pigs fed PF, OLE, STE or OO, although dietary PUFA intake was up to 70% higher. With SO PUFA were significantly increased in adipose tissues, predominantly at the expense of MUFA. Consequently, a non-linear relationship was found between PUFA intake and proportion in backfat. MUFA were incorporated at the expense of SFA, therefore, adipose tissues of OO fed animals were lowest in SFA. Despite comparable amounts of double bonds in feed (Exp. 1), the degree of unsaturation measured as fat score (sum of double bonds) was in the order SO > OO > PF > C. In contrast, the proportion of SFA was C > PF = SO > OO. Regarding the decisive role of SFA for fat consistency it may be concluded that MUFA should also be considered in feeding recommendations for pigs. Furthermore, in case of a high dietary supply of MUFA, a simple index of double bonds might not be sufficiently conclusive to judge pig fat quality.  相似文献   

3.
Breeding leaner pigs during the last decades may have changed pig’s empty body (EB) composition, a key trait for elaborating feeding recommendations. This research aimed to provide new experimental data on changes in the chemical composition of the EB of pigs from 20 to 140 kg BW. In addition, the impact of a reduction in the dietary CP associated with lower lysine, methionine+cystine, threonine and tryptophan levels was determined. In total, 48 males, castrates and females weighing 20 kg BW were allocated either to a control grower–finisher diet formulated according to current Swiss feeding recommendations, or a low CP grower–finisher diet (80% of control). Feed intake was monitored and pigs were weighed weekly. The chemical composition of EB (blood, hairs and hoofs, offals, bile, carcass) was determined at 20, 40, 60, 80, 100, 120 and 140 kg BW on four pigs per gender and diet (eight pigs per gender at 20 kg). The five fractions were weighed and samples were analysed for dry matter, protein, fat and energy. Nutrient deposition rates and N efficiency were calculated by using the 20 kg BW category as reference. Analysis revealed an accurate feed optimisation for the aforementioned essential amino acids (EAA), whereas digestible isoleucine content in the low CP diet was at 70% of the control diet. Despite similar feed intake, daily gain and feed efficiency were impaired (P<0.01) from 20 to 100 kg BW in the low CP compared with the control pigs. In the same growth period, castrates had the greatest feed intake but, together with females, displayed the lowest (P<0.01) feed efficiency. Protein deposition was reduced (P<0.01) by up to 31% with low CP diet and was lower (P<0.01) in castrates and females than males at 100 kg BW. The greatest fat deposition rates were found with low CP diet and castrates. N efficiency improved (P<0.05) by 10% with the low CP diet from 100 to 140 kg. The males displayed the greatest (P<0.05) N efficiency. These findings suggest that the CP content of finisher II diets could be reduced to 102, 102 and 104 g/kg for females, castrates and males, respectively, without a negative impact on protein deposition or growth. It remains unclear whether the negative effects found in the BW range from 20 to 100 kg on the EB deposition were due to the 20% reduction of the dietary CP and the five limiting EAA or to other EAA via an unbalanced EAA profile.  相似文献   

4.
The production of pork with moderate amounts of intramuscular fat (IMF) without an increase in subcutaneous fat is highly desirable for the meat industry. Several studies indicate that dietary protein reduction during the growing–finishing period of pigs enhances IMF content, but its consequence on carcass fat deposition is still contradictory. In this study, we hypothesized that the effects of reduced protein diets (RPD), corrected or not with the limiting amino acid lysine, on subcutaneous fat deposition from pigs with distinct genotypes are mediated by adipose membranes biophysical properties. In total, 36 crossbred (Large White×Landrace×Pietrain – a lean genotype) and purebred (Alentejana breed – a fatty genotype) male pigs were randomly assigned to the control group, the RPD group or the reduced protein diet equilibrated for lysine (RPDL) group, allowing a 2×3 factorial arrangement (n=6). Backfat thickness and total fatty acid content were higher in Alentejana relative to crossbred pigs. Although dietary treatments did not change backfat thickness, RPD and RPDL increased total fatty acids content of subcutaneous fat. In order to understand this effect, adipose tissue membranes isolated from pig’s subcutaneous fat were assayed for glycerol permeability and fluidity, using 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-(4-(trimethylamino)-phenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) probes. The glycerol transport across adipose membranes was not mediated by aquaglyceroporins and remained unchanged across dietary groups. Regardless of lysine correction, RPD increased membrane fluidity at the hydrocarbon region (lower DPH fluorescence anisotropy) in both genotypes of pigs. This result was associated with a lower ratio between oleic acid and linoleic acid on membrane’s fatty acid composition. Adipose membrane’s cholesterol content was independent from genotype and diet. Taken together, the present study shows that dietary protein reduction is successful in maintaining backfat thickness, although a negative side effect was observed on total fatty acids in subcutaneous fat, which may be due to changes in the fluidity of adipose membranes.  相似文献   

5.
This experiment investigates the effect of increasing the dietary content of bacterial protein meal (BPM) on the protein and energy metabolism, and carcass chemical composition of growing chickens. Seventy-two Ross male chickens were allocated to four diets, each in three replicates with 0% (D0), 2% (D2), 4% (D4), and 6% BPM (D6), BPM providing up to 20% of total dietary N. Five balance experiments were conducted when the chickens were 3-7, 10-14, 17-21, 23-27, and 30-34 days old. During the same periods, 22-h respiration experiments (indirect calorimetry) were performed with groups of 6 chickens (period 1), 5 chickens (period 2), and one chicken (periods 3-5). After each balance period, one chicken in each cage was killed and the carcass weight was recorded. Chemical analyses were performed on the carcasses from periods 1, 3, and 5. Weight gain, feed intake, and feed conversion rate were found to be similar for all diets. Chickens on D0 retained 1.59 g N x kg(-0.75) x d(-1), significantly more than chickens on D2, D4, and D6, which retained 1.44 g, 1.52 g, and 1.50 g N x kg(-0.75) x d(-1), respectively. This was probably caused by the higher nitrogen content of DO. Neither the HE (p = 0.92) nor the retention of energy (p = 0.88) were affected by diet. Carcass composition was similar between diets, in line with the values for protein and energy retention found in the balance and respiration experiments. It was concluded that the overall protein and energy metabolism as well as carcass composition were not influenced by a dietary content of up to 6% BPM corresponding to 20% of dietary N.  相似文献   

6.
Muscle lipid concentration is known to influence pork eating quality. This study aimed at evaluating the effect of a restriction-re-alimentation feeding strategy on intramuscular fat deposition in pigs. A total of 70 Duroc × (Large White × Landrace) pigs (castrated males and females) were used. Ten pigs were first slaughtered at 30 kg live weight (LW) to determine initial body and muscle composition. From 30 to 80 kg LW (growing period), pigs were either fed ad libitum (AL) or restricted to 70% of the ad libitum intake of AL pigs (RA). From 80 to 110 kg LW (finishing period), both AL and RA pigs were fed ad libitum. In each group, pigs were slaughtered at 80 kg (n = 10) and at 110 kg (n = 20) LW. During the growing period, the growth rate of RA pigs was reduced by 30% (P < 0.001) compared with AL pigs. During the finishing period, RA pigs had a 7% (P = 0.09) higher growth rate than AL pigs due to compensatory feed intake (+14%). Plasma insulin-like growth factor-1 concentration was lower in RA pigs at 80 kg LW, but markedly increased after re-alimentation up to the level observed in AL pigs (P < 0.001). At 80 kg, the leaner carcasses of RA pigs resulted from a more pronounced reduction in fat than in lean tissue deposition rates. Re-alimentation of RA pigs increased fat tissue deposition (+160% for females, P < 0.01) but not lean deposition in the carcass, leading to limited differences in carcass composition between RA and AL pigs at 110 kg LW. Regarding tissue deposition rates, the response to feeding strategy differs between muscles. In the m. biceps femoris (BF), restriction affected lipid (-50%, P < 0.001) and protein (-25%, P < 0.001) deposition, whereas re-alimentation increased lipid (+62%, P < 0.05) but not protein deposition rates. At market weight, the extent of the difference in BF lipid concentration between RA and AL pigs was strongly reduced, but still significant. By contrast, in the m. longissimus, restriction decreased protein but not lipid deposition, whereas neither of them was modified during re-alimentation. Therefore, an increased muscle lipid concentration at 110 kg LW could not be reached in RA pigs. Modifications of onset and/or duration of restriction and re-alimentation periods should be tested to optimise effects on muscle lipid deposition and thereby achieve improved pork quality.  相似文献   

7.
Two experiments were conducted to examine the effect of porcine growth hormone (pGH) on performance, carcase composition, muscle and fat deposition rates, muscle fibre characteristics, and fat cell volume in pigs. In the first experiment, ten pairs of littermates were treated with vehicle (saline buffer) or 80 μg pGH per kg live weight per day for 42 days starting at 50 kg live weight. In the second experiment, twelve pairs of littermates were untreated or treated with 3 mg pGH per day from approximately 56 kg live weight to slaughter at approximately 103 kg live weight. All pigs were fed ad libitum. In Experiments 1 and 2, respectively, feed intake decreased (10 and 11%) and the feed/gain ratio improved (8 and 13%), while daily gain was unaltered. There was an increase in deposition rates of muscle (11 and 22%), skin (27 and 23%), and bone (15% in both), and a decrease in deposition rates of intermuscular (48 and 24%) and subcutaneous (82 and 50%) fat. This resulted in a change in carcase composition towards more muscle (5 and 9%), bone (6 and 4%), and skin (18 and 12%), and less intermuscular (30 and 16%) and subcutaneous fat (51 and 32%). The increased muscle mass was due to enhanced hypertrophy of all muscle fibre types, while pGH did not affect the frequency of the different muscle fibre types. The reduction in subcutaneous fat was reflected in a similar reduction in fat cell volume. In contrast to the majority of pigs used in pGH experiments, the genotype used in the present experiments did not respond with respect to daily gain following pGH treatment. Furthermore, the increase in muscle deposition was rather low compared to results reported in pigs of other genotypes. These data together with published data on the cross-sectional area of muscle fibres indicate that genotypes with relatively large muscle fibres are less responsive to pGH treatment than genotypes with relatively small muscle fibres.  相似文献   

8.
Male, female and ovariectomized (to mimic menopause) guinea pigs were fed a saturated (SFA) or a polyunsaturated (PUFA) fat diet for 4 weeks to determine the effects of dietary fat saturation on lipoprotein levels and composition and to assess whether gender and hormonal status modulate the cholesterolemic response. Both diets contained 15g/100 g fat and 0.04 g/100 g cholesterol and were identical in composition except for the type of fat. The SFA diet contained 50% saturated fat (25% lauric + myristic fatty acids), 25% PUFA and 25% monounsaturated fatty acids while the PUFA diet had 50% PUFA (linoleic acid), 25% monounsaturated and 25% SFA fatty acids. Plasma LDL cholesterol (LDL-C) was an average 21% lower in guinea pigs fed PUFA compared to those fed SFA (P < 0.05). In addition, ovariectomized guinea pigs, both in the SFA and PUFA groups, had 20–33% higher LDL-C than either males or females (P < 0.01). VLDL cholesterol was 70% higher in the PUFA-fed animals (P < 0.0001). A gender effect was observed in plasma HDL cholesterol (HDL-C) with females and ovariectomized guinea pigs having 30–42% higher HDL-C than males (P < 0.01). LDL susceptibility to oxidation was not affected by dietary fat saturation or gender. In contrast, VLDL and LDL composition were significantly influenced by diet and gender. VLDL particles were larger in size in guinea pigs fed the SFA diets (P < 0.01) while LDL particles were larger in female guinea pigs (P < 0.001). Hepatic lipids were influenced by the interaction between diet and group. Hepatic cholesterol (P < 0.01) and TAG concentrations (P < 0.0001) were highest in female guinea pigs fed the PUFA diet. Since the liver is the major site of lipoprotein synthesis and catabolism, these results suggest that not only diet but also gender may play a major role in determining the composition and size of lipoproteins.  相似文献   

9.
Excessive lipid deposition in layer chickens due to inappropriate feeding adversely affects egg production; however, nutritional manipulation methods to deal with this issue are still limited. β-hydroxy-β-methylbutyrate (HMB), a metabolite of L-leucine, was recently reported as a lipid-lowering nutrient in mice and pigs, although its role in layers had not been investigated. Here, we employed high-fat and high-cholesterol diet (HFHCD)−challenged growing layers as an obese model to explore HMB function in the regulation of lipid metabolism and the potential mechanisms involved. We found that dietary supplementation with (0.05% or 0.10%) HMB significantly reduced HFHCD−induced bodyweight growth in layers, mainly due to reduction in abdominal fat deposition. Mechanistically, HMB supplementation enhanced hepatic bile acid synthesis from cholesterol through elevating expression of Cyp7a1, a gene coding a key enzyme in bile acid synthesis. Furthermore, 16S rRNA gene sequencing revealed that HMB supplementation remodeled the diversity and composition of the layers’ cecal microbiota, and the abundance of Bacteroidetes at the phylum level were especially affected. Correlation analysis further indicated a strong negative association between Bacteroidetes abundance and lipid metabolism−related parameters. Taken together, these data suggest that dietary HMB supplementation could improve abdominal fat deposition in layers, probably through modulating hepatic bile acid synthesis and gut microbiota function.  相似文献   

10.
Re-esterified oils are new fat sources obtained from the chemical esterification of acid oils with glycerol (both economically interesting by-products from oil refining and biodiesel industries, respectively). The different fatty acid (FA) positional distribution and acylglycerol composition of re-esterified oils may enhance the apparent absorption of saturated fatty acids (SFA) and, therefore, their overall nutritive value, which might lead to an increased deposition of SFA. The aim of the present study was to investigate the potential use of re-esterified palm oils, in comparison with their corresponding acid and native oils in fattening pig diets, studying their effects on fatty acid apparent absorption, acylglycerol and free fatty acid (FFA) composition of feces, growth performance, carcass-fat depots and fatty acid composition of backfat. Seventy-two crossbred boars and gilts (average weight of 24.7±2.55 kg) were blocked by initial BW (nine blocks of BW for each gender), housed in adjacent individual boxes, and fed one of the four dietary treatments, which were the result of a basal diet supplemented with 4% (as-fed basis) of native palm oil (PN), acid palm oil (PA), re-esterified palm oil low in mono- and diacylglycerols (PEL), or re-esterified palm oil high in mono- and diacylglycerols (PEH). Regarding results from the digestibility balance, PA and PN showed similar apparent absorption coefficients (P>0.05), despite the high, FFA content of the former. However, re-esterified palm oils (both PEL and PEH) showed a higher apparent absorption of total FA than did their corresponding native and acid oils (P<0.001), mainly due to the increased apparent absorption of SFA (P<0.001). This resulted in a greater feed efficiency and an increased deposition of SFA in backfat of pigs fed PEH, when compared with those fed PA (P<0.05), although no differences were found for carcass-fat depots (P>0.05). We conclude that re-esterified oils are interesting fat sources to be considered in fattening pigs.  相似文献   

11.
It has been shown previously that lipid metabolism is regulated by fatty acids (FA) and that thyroid hormones are important regulators of energy metabolism. The effects of weight, dietary fat level and dietary FA profile on thyroid hormone levels and expression of lipogenic genes and tissue FA composition were studied. Sixty-one crossbred gilts weighing 62 ± 5.2 kg BW average were either slaughtered at the beginning of the trial (n = 5) or fed one of seven diets (n = 8 pigs per diet): a semi-synthetic diet formulated to contain a very low level of fat (NF) and six diets based on barley-soybean meal supplemented with approximately 10% fat of different origin and slaughtered at 100 kg BW. The supplemental fats were tallow, high-oleic sunflower oil, sunflower oil (SFO), linseed oil, fat blend (55% tallow, 35% sunflower oil, 10% linseed oil) and fish oil blend (40% fish oil, 60% linseed oil). In general, the dietary FA profiles altered the FA composition of liver, semimembranosus muscle and adipose tissues. Pigs fed the NF diet had the highest free and total triiodothyronine (T3) values followed by pigs fed SFO. Total T3 levels were higher in pigs at 60 kg than in pigs at 100 kg. Correlations between thyroid hormones and genes encoding enzymes of fat synthesis in adipose tissue (acetyl CoA carboxylase (ACACA), fatty acid synthase and stearoyl CoA desaturase (SCD)) and the large differences in expression of lipogenic genes at different weights (60 and 100 kg BW), suggest a role for thyroid hormones and for T3, in particular, in regulating whole animal fat metabolism, with effects brought about by altered expression of lipogenic genes. Liver sterol receptor element binding protein-1 (SREBP1) mRNA content was affected by dietary treatment (P < 0.001) and was correlated with ACACA and SCD, whereas adipose tissue SREBP1 was not correlated with the mRNA abundance of any lipogenic enzyme. Weight and tissue factors showed greater influence on mRNA abundance of genes related with lipid metabolism than diet and tissue FA composition. In the pig, FA synthesis appear to be of greater magnitude in adipose tissue than in the liver as suggested by the higher expression of lipogenic genes in adipose tissue.  相似文献   

12.
The present study was conducted to assess whether the partial replacement of feed energy by vegetable oils containing high medium-chain saturated fatty acids (MCFA) and n-6 polyunsaturated fatty acids (PUFA) would modify lipogenic gene expression and other parameter of fat metabolism in pigs. Eighteen pigs (17-19 kg body weight) received one of three experimental diets for 60 days (six animals per group): (i) Control diet; (ii) a diet with sunflower oil (SO) or (iii) a diet with coconut oil (CO). In diets SO and CO, 10% of the feed energy was replaced by the respective oils. The experimental treatment did not influence the performance of the pigs. In blood serum, an increased content of total cholesterol was observed for SO and CO fed animals, whereas no significant changes for total triglycerides and different lipoprotein fractions were detected. The fatty acid composition of adipose tissue was significantly modified, with an increased content of MCFA and n-6 PUFA in CO and SO fed pigs, respectively. The gene expression for fatty acid synthase was decreased for SO and CO fed pigs; for stearoyl CoA desaturase and sterol regulatory element binding protein, a depression was observed in SO but not in CO fed pigs. The results of present study suggest that the type of dietary fat can modulate the adipose tissue gene expression and fatty acid composition differentially, with minimal effect on serum lipid profile.  相似文献   

13.
A number of recent investigations in man have demonstrated that a low ratio of fat to carbohydrate oxidation (i.e., a high respiratory quotient or RQ) was associated with actual and/or subsequent body weight gain in obese non-diabetic Pima Indians, in American men of various ages and in post-obese European women investigated shortly after the cessation of a hypocaloric diet. It is well known that numerous exogenous and endogenous factors influence the RQ at rest such as: the level of feeding (positive vs. negative energy balance), the composition of food eaten (high vs. low carbohydrate), the size of the glycogen stores, the amount of adipose tissue as well as genetic factors. It should be stressed that some nutritional situations can coexist during which a low ratio of fat to carbohydrate is observed (i.e., a high RQ) despite weight loss. Furthermore, in most studies mentioned above, the low fat to carbohydrate oxidation ratio explains less then 10% of the variance in weight gain, suggesting that numerous additional factors also play a substantial role in the onset of weight gain. It is concluded that: 1) A low fat to carbohydrate oxidation ratio or an abnormal fat oxidation is difficult to define quantitatively since it is largely influenced by the energy level and the composition of the diet. 2) Following a dynamic adaptation phase to positive energy balance, a low fat oxidation is progressively compensated: increased body fat is the price to pay for normalizing fat oxidation since, at least in resting conditions, there is an increase in fat oxidation of approximately 20 g/day for each 10 kg additional fat gain. The subject with a low fat to carbohydrate oxidation ratio will equilibrate at a body fat level allowing to reach a new fat balance.  相似文献   

14.
Whole body sterol balance, hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity, hepatic low-density lipoprotein (LDL) receptor levels and net tissue cholesterol concentrations were determined in guinea pigs fed either a corn oil- or lard-based purified diet for 6-7 weeks. In comparison to the saturated lard diet, the polyunsaturated corn oil diet resulted in a 34% reduction in plasma total cholesterol levels (P less than 0.02) and a 40% lower triacylglycerol level (P less than 0.02). Feeding the corn oil diet altered very-low-density lipoprotein (VLDL) and LDL composition; the percent cholesterol ester in both particles was decreased and the relative percentages of VLDL triacylglycerol and LDL phospholipid increased. The ratio of surface to core components of LDL from corn oil-fed guinea pigs was significantly higher compared to LDL from animals fed lard. Dietary fat quality had no effect on fecal neutral or acidic steroid excretion, net tissue accumulation of cholesterol, whole body cholesterol synthesis or gallbladder bile composition. Consistent with these results was the finding that fat quality did not alter either expressed (non-phosphorylated) or total hepatic HMG-CoA reductase activities. The hepatic concentrations of free and esterified cholesterol were significantly increased in corn oil-fed animals, as were cholesterol concentrations in intestine, adipose tissue, muscle and total carcass. Analysis of receptor-mediated LDL binding to isolated hepatic membranes demonstrated that the polyunsaturated corn-oil based diet caused a 1.9-fold increase in receptor levels (P less than 0.02). The data indicate that the hypocholesterolemic effects of dietary polyunsaturated fat in the guinea pig are not attributable to changes in endogenous cholesterol synthesis or catabolism but rather may result from a redistribution of plasma cholesterol to body tissue due to an increase in tissue LDL receptors.  相似文献   

15.
Leptin, the product of the obese gene, and peroxisome proliferator activated receptor gamma (PPARgamma) are important regulators of energy metabolism, adipogenesis, and immune function. In rodent models, both genes seem to respond at the mRNA and/or protein levels to dietary fat consumption. To determine the effect(s) of dietary saturated and polyunsaturated fatty acids on the expression (mRNA abundance) of these genes, adipose tissue was obtained from pigs fed three different dietary fat sources. Corn-soybean meal diets containing no added fat (NO, control) or 10% beef tallow (BT), safflower oil (SO), or fish oil (FO) were fed ad libitum (n = 12) for 12 weeks. The abundance of obese, PPARgamma1, and PPARgamma2 mRNA was quantified relative to 18S rRNA using ribonuclease protection assays. The gain:feed ratio was improved (P < 0.05) 21% by all fats with a corresponding reduction (P < 0.05) in feed intake. Relative to pigs fed NO, serum total cholesterol was increased (P < 0.01) in pigs fed BT and triglyceride and nonesterified fatty acid concentrations were increased (P < 0.01) by all supplemental fats. Serum insulin was increased (P < 0.10) only by SO. Neither obese nor PPARgamma1 mRNA abundance were responsive to added fat (P > 0.15). However, the abundance of PPARgamma2 mRNA was increased fourfold by SO compared with the NO diet. These data indicate that the abundance of obese mRNA is independent of dietary fat consumption per se, whether saturated or unsaturated, when feed consumption is reduced due to greater dietary caloric density. Furthermore, we provide evidence that expression of the PPARgamma2 gene in porcine adipose tissue is selectively responsive to SO (presumably linoleic acid, 18:2n-6).  相似文献   

16.
The objective of this study was to compare growth performance and carcass and meat quality characteristics of growing-finishing pigs fed diets containing Roundup Ready wheat (MON 71800), compared with the non-transgenic genetically similar parental control wheat (MON 71900), and four commercial varieties of non-transgenic wheat (HANK, Westbred 926, Express and Zeke). The study was carried out as a split-plot design with a 2 × 6 factorial arrangement of treatments (two genders and six wheat varieties). A three-phase dietary program was used; all diets were formulated with a fixed level of wheat inclusion (70%, 80% and 85% for the Grower, Finisher I and Finisher II phases, respectively). A total of 240 commercial hybrid pigs (equal numbers of barrows and gilts) were grown from 29.5 ± 0.29 to 114.5 ± 2.23 kg live weight in single-gender pens (barrows or gilts) of five pigs (eight pens per dietary treatment) with ad libitum access to feed and water throughout the study. At the end of each dietary phase and of the test period, ultrasound measurements were taken at the 10th rib. Animals from the transgenic (MON 71800) and non-transgenic (MON 71900) treatments were harvested at the end of the study and carcass and meat quality measurements were taken. Pigs fed the six wheat varieties had similar (P > 0.05) feed intake, live weight gain, gain : feed ratio and ultrasound measures of backfat thickness and longissimus muscle area. There was a wheat variety × gender interaction (P < 0.05) for longissimus fat content. Gilts fed the transgenic wheat had higher (P < 0.05) longissimus fat content than those fed the non-transgenic control wheat; however, for barrows there was no effect (P > 0.05) of wheat variety on longissimus fat content. However, there was no effect (P > 0.05) of wheat variety on other longissimus muscle quality or composition measures. Gilts had lower (P < 0.01) feed intake, growth rate and backfat thickness, and similar gain : feed ratio (P > 0.05) compared to barrows. This study, with growing-finishing swine, suggests that the Roundup Ready wheat (MON 71800) resulted in equivalent animal performance to conventional wheat.  相似文献   

17.
This study was carried out on 24 gilts (♀ Polish Large White × ♂ Danish Landrace) grown with body weight (BW) of 60 to 105 kg. The pigs were fed diets designed on the basis of a standard diet (appropriate for age and BW of pigs) where a part of the energy content was replaced by different fat supplements: linseed oil in Diet L, rapeseed oil in Diet R and fish oil in Diet F (6 gilts per dietary treatment). The fat supplements were sources of specific fatty acids (FA): in Diet L α-linolenic acid (C18:3 n?3, ALA); in Diet R linoleic acid (C18:2 n?6, LA) and in Diet F eicosapentaenoic acid (C20:5 n?3, EPA), docosapentaenoic acid (C22:5 n?3, DPA) and docosahexaenoic acid (C22:6 n?3, DHA). The protein, fat and total FA contents in the body did not differ among groups of pigs. The enhanced total intake of LA and ALA by pigs caused an increased deposition of these FA in the body (p < 0.01) and an increased potential body pool of these acids for further metabolism/conversions. The conversion efficiency of LA and ALA from the feed to the pig’s body differed among groups (p < 0.01) and ranged from 64.4% to 67.2% and from 69.4% to 81.7%, respectively. In Groups L and R, the level of de novo synthesis of long-chain polyunsaturated FA was higher than in Group F. From the results, it can be concluded that the efficiency of deposition is greater for omega-3 FA than for omega-6 FA and depends on their dietary amount. The level of LA and ALA intake influences not only their deposition in the body but also the end products of the omega-3 and omega-6 pathways.  相似文献   

18.
He Q  Kong X  Wu G  Ren P  Tang H  Hao F  Huang R  Li T  Tan B  Li P  Tang Z  Yin Y  Wu Y 《Amino acids》2009,37(1):199-208
Arginine plays an important role regulating nutrient metabolism, but the underlying mechanisms are largely unknown. This study was conducted to determine the effect of dietary arginine supplementation on the metabolome in serum of growing pigs using (1)H nuclear magnetic resonance spectroscopy. Sixteen 120-day-old pigs (48 +/- 1 kg) were randomly assigned to one of two groups, representing supplementation with 0 or 1.0% L: -arginine to corn- and soybean meal-based diets. Serum was collected after a 46-day period of treatment. Dietary arginine supplementation decreased fat deposition and increased protein accretion in the body. Principal component analysis showed that serum concentrations of low density lipoprotein, very low density lipoprotein, and urea were lower, but concentrations of creatinine, tricarboxylic acid cycle metabolites, ornithine, lysine and tyrosine were greater in arginine-supplemented than in control pigs. Additionally, the arginine treatment affected serum concentrations of nitrogenous and lipid signaling molecules (glycerophosphorylcholine and myo-inositol) and intestinal bacterial metabolites (formate, ethanol, methylamine, dimethylamine, acetate, and propionate). These novel findings suggest that dietary arginine supplementation alters the catabolism of fat and amino acids in the whole body, enhances protein synthesis in skeletal muscle, and modulates intestinal microbial metabolism in growing pigs.  相似文献   

19.
High respiratory quotient (RQ) has been associated with fat mass (FM) gain in some, but not all studies. Variability among results may reflect differences in the RQ variable measured (fasting vs. 24‐h) or may be due to differences in control for factors that affect RQ, such as diet, energy balance, circulating insulin, and insulin sensitivity. The objective of this study was to determine whether different RQ values (fasting, sleeping, nonsleeping, and 24‐h) would predict change in FM over 2 years in obesity‐prone women, controlling for diet and adjusting for energy balance, circulating insulin, and insulin sensitivity. Participants were 33 previously overweight premenopausal women. Fasting, sleeping, nonsleeping, and 24‐h RQ values were measured during controlled‐diet conditions by respiratory chamber calorimetry. Intravenous glucose tolerance tests were also performed to adjust for fasting insulin, acute insulin response to glucose, and insulin sensitivity. Over the following 2 years, changes in FM were tracked annually by dual energy X‐ray absorptiometry. High nonsleeping RQ (NSRQ) predicted 2‐year change in FM independently of energy balance, circulating insulin, and insulin sensitivity. This observation suggests that low postprandial fat oxidation may uniquely predispose obesity‐prone individuals to accrual of adipose tissue.  相似文献   

20.
We investigated the effects of dietary whey protein on food intake, body fat, and body weight gain in rats. Adult (11-12 week) male Sprague-Dawley rats were divided into three dietary treatment groups for a 10-week study: control. Whey protein (HP-W), or high-protein content control (HP-S). Albumin was used as the basic protein source for all three diets. HP-W and HP-S diets contained an additional 24% (wt/wt) whey or isoflavone-free soy protein, respectively. Food intake, body weight, body fat, respiratory quotient (RQ), plasma cholecystokinin (CCK), glucagon like peptide-1 (GLP-1), peptide YY (PYY), and leptin were measured during and/or at the end of the study. The results showed that body fat and body weight gain were lower (P < 0.05) at the end of study in rats fed HP-W or HP-S vs. control diet. The cumulative food intake measured over the 10-week study period was lower in the HP-W vs. control and HP-S groups (P < 0.01). Further, HP-W fed rats exhibited lower N(2) free RQ values than did control and HP-S groups (P < 0.01). Plasma concentrations of total GLP-1 were higher in HP-W and HP-S vs. control group (P < 0.05), whereas plasma CCK, PYY, and leptin did not differ among the three groups. In conclusion, although dietary HP-W and HP-S each decrease body fat accumulation and body weight gain, the mechanism(s) involved appear to be different. HP-S fed rats exhibit increased fat oxidation, whereas HP-W fed rats show decreased food intake and increased fat oxidation, which may contribute to the effects of whey protein on body fat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号