首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
田虹  樊瑜波 《生物磁学》2011,(1):169-171
本文从分子量、孔径大小和孔径率、力学性能等方面介绍了研究聚丙交酯-乙交酯降解行为的方法,综述了聚丙交酯-乙交酯的化学水解机理和酶催化水解机理,影响聚丙交酯-乙交酯降解速率的内外因素,并比较了聚丙交酯-乙交酯体内外降解的异同,对未来聚丙交酯-乙交酯降解研究的方向提出了展望。  相似文献   

2.
聚丙交酯- 乙交酯降解研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
本文从分子量、孔径大小和孔径率、力学性能等方面介绍了研究聚丙交酯-乙交酯降解行为的方法,综述了聚丙交酯-乙交酯的化学水解机理和酶催化水解机理,影响聚丙交酯-乙交酯降解速率的内外因素,并比较了聚丙交酯-乙交酯体内外降解的异同,对未来聚丙交酯-乙交酯降解研究的方向提出了展望。  相似文献   

3.
目的:通过对聚对苯二甲酸乙二醇酯(Polyethylene terephthalate,PET)材料的编织和力学性能的分析,初步探讨使用该材料构建组织工程韧带支架的可行性。方法:将不同强度的PET单纤维通过经编法编织成支架材料;然后使用电子拉力机对编织好的支架材料以及消毒处理后的支架材料进行力学性能测试并进行分析。结果:PET编织构建的支架材料结构稳定,其极限抗张强度已达到了前交叉韧带的力学要求。辐照消毒对支架材料的力学性能无短期影响。结论:该支架材料编织结构设计合理,具有优良的力学性能,消毒后对其力学性能无短期影响,有望通过改进生物学性能后成为一种较理想的组织工程前交叉韧带支架材料。  相似文献   

4.
目的:研究植入血管束的血管化人工神经导管修复SD大鼠长段坐骨神经缺损对神经功能恢复的影响。方法:将18只成年雌性SD大鼠制成14mm的大鼠坐骨神经缺损模型后,随机分为3组(每组12条神经),分别采用不同的修复方法。A组:自体神经移植组(自体组);B组:普通PGLA神经导管移植组(导管组);C组:植入自体血管束的普通PGLA神经导管移植组(血管化导管组)。观察术后大鼠后肢皮肤溃疡面积;检测术后6周、12周时步态变化和肌电图。结果:术后各组SD大鼠均出现后肢溃疡,血管化导管组SD大鼠后肢溃疡愈合较导管组早2周。血管化导管组步态检测SFI明显优于导管组,与自体神经移植组无明显差异。肌电图检测表明血管化导管组无论是神经传导速度,还是动作电位振幅均明显大于导管组(P<0.05),与自体神经移植组无明显差异(P>0.05)。结论:植入血管束的血管化人工神经导管能有效地促进受损神经的功能恢复。  相似文献   

5.
目的:纳米双相磷酸钙陶瓷(Biphasic calcium phosphate nanocomposite,NanoBCP)支架是一种新型支架材料,具有三维立体多孔结构,孔隙率可达60%~80%。本研究观察了纳米双相磷酸钙陶瓷肌内降解情况。方法:将NanoBCP制备为5mm×5mm×1.5mm大小各8块的支架植入SD大鼠腿部肌袋内,相同孔径、孔隙率的羟基磷灰石(Hydroxyapatite,HA)及普通双相磷酸钙陶瓷(Biphasic calciam phosphate,BCP)作为对照,于4、12、24周取材,测定材料降解率(失重率),从大体、组织学观察以了解材料降解情况。结果:材料肌内植入后降解率测定结果:NanoBCP降解率为32%,BCP的降解率为13%,HA的降解率为3%。组织学观察发现,NanoBCP肌内植入24周后,大部分NanoBCP支架已经将解,并且将解的碎片已埋入纤维结缔组织里。结论:NanoBCP与BCP、HA相比有良好的降解性能。  相似文献   

6.
目的:通过大鼠皮下埋植实验,从组织学角度探讨蚕丝(生丝和熟丝)在体内的降解。方法:将生丝和熟丝在SD大鼠皮下进行埋植,在第7、14、56、84、129、145天取材进行冰冻切片,分别进行H.E染色和DAPI、β-actin和CollagenⅠ免疫荧光染色观察。结果:在大鼠皮下埋植一定时间后,蚕丝的外表均被结缔组织包裹而在皮下形成包块。包块的直径在生丝和熟丝手术组间的差异无统计学意义(P0.05)。在皮下埋植第7天观察到了蚕丝被降解的现象,在皮下埋植第145天仍然能够观察到大量未被降解的蚕丝。结论:蚕丝在体内的降解不是一个匀速的过程,其降解进程与细胞的动员有关,成纤维细胞参与此过程并分泌胶原蛋白。  相似文献   

7.
动脉粥样硬化作为一种主要的心血管疾病,威胁着全世界人类的健康. 全降解聚合物血管内支架是由生物可降解的高分子聚合物材料制作的用于治疗动脉粥样硬化病变变窄管腔的血管支架. 它克服了金属药物洗脱支架引起的慢性局部炎症反应、血管生理舒缩功能缺失和晚期支架内血栓形成以及未来可能在同一位置再次植入支架的缺陷. 但全降解聚合物支架由于各级降解产物的刺激引起炎症反应以及支架植入部位力学微环境的变化,从而引起支架内再狭窄和血栓形成,结合力生长因子(mechano growth factor, MGF)对力学刺激敏感的特性,MGF可能对心血管支架植入引起的局部力学变化作出响应. 因此本文对全降解聚合物支架植入后支架的降解特性与力学微环境变化引起的再狭窄、血栓形成等不良反应,以及MGF在其中的作用和研究进展进行了综述,以期为临床冠脉介入支架治疗提供参考.  相似文献   

8.
目的:可降解锌合金材料有适中的降解速率,良好的机械性能。目前对于锌合金的体内生物安全性研究多集中于生物体内植入适量的锌合金材料。对于体内植入大量的可降解锌合金材料是否有不良影响,还未见文献报道。本实验从局部和全身反应来研究埋植过量可降解锌合金的早期生物安全性。方法:选取18只新西兰大白兔分为三组,于皮下植入锌合金内固定板及钉各4、6、8块,于术后3月、6月行大体观察,血常规、血生化、血液微量元素检查,内脏和材料周围组织的组织学检查和ICP-OES定量检测内脏锌含量观察锌的脏器蓄积情况,材料称重计算每日释放锌含量。结果:可吸收锌合金材料表面附着的白色粉末状物质随时间增加而增多,去掉表面白色物质后,材料表面愈加粗糙,术后3月、6月的白细胞计数(WBC),红细胞计数(RBC),谷丙转氨酶(ALT),谷草转氨酶(AST),总蛋白(TP),白蛋白(ALB),尿素氮(BUN),肌酐(Cr),血锌,血镁,血钙、血铜与术前相比无统计学差异。术后6月实验动物材料周围组织,心脏、肝脏、脾脏、肺脏、肾脏、性腺未检出异常。术后3月、6月肝脏、肾脏、脾脏的锌离子含量与术前相比无统计学差异。综合计算得到术后3月可降解锌合金内固定板的降解率为9.77±1.64%,术后6月为11.82±1.91%,螺钉的降解率术后3月为0.79±0.66%,术后6月为2.09±1.00%。结论:大量可降解锌合金植入体内的早期生物相容性良好。  相似文献   

9.
目的:研究新型聚羟丁酸酯作为组织工程软骨支架材料的可行性.方法:取幼兔软骨组织中软骨细胞体外培养扩增.实验组接种软骨细胞于支架材料上,体外培养两周后埋植于新西兰大白兔背部皮下;对照组埋入未接种细胞的支架材料.扫描电镜观察材料表面形态及细胞生长情况.分别于第4、8、12周取出标本,大体观察后进行HE和Masson染色,观察组织工程软骨形成情况.结果:扫描电镜观察可见裸材料孔隙分布均匀,形状不规则;细胞材料复合体体外培养两周后材料表面爬满细胞且生长状态良好.埋植材料取出后可见不同时间点实验组标本大小无明显变化,对照组标本逐渐变小.HE和Masson染色显示各组支架材料至12周时已被完全吸收;实验组12周时可见较成熟软骨组织;对照组支架材料被吸收后最终被纤维结缔组织取代.结论:此新型聚羟丁酸酯材料可作为组织工程软骨支架材料.  相似文献   

10.
聚羟基脂肪酸酯(PHA)是代表性的生物基可降解高分子,其种类超过150种,性能多样、可调。文中综述了PHA的研究概况及潜在应用,介绍了四代商业化PHA的性质及其与其他生物基可降解材料形成共混纤维的研究进展。  相似文献   

11.
Polymeric stents can be considered as an alternative to metallic stents thanks to their lessened incidence of restenosis and controlled deployment. The purpose of this study was to investigate the feasibility of developing a temperature-responsive braided stent using shape memory polyurethane (SMPU) through finite element analysis. It was assumed that braided stents were manufactured using SMPU fibers. The mechanical behavior of SMPU fibers was modeled using a constitutive equation describing their one-dimensional thermal-induced shape memory behavior. Then, the braided stents were analyzed to investigate their mechanical behavior using finite element analysis software, in which the constitutive equation was implemented through a user material subroutine. The diameter of the SMPU fibers and braiding angle were chosen as the design parameters and their values were adjusted to ensure that the mechanical properties of the braided polymer stents match those of metallic stents. Finally, the deployment process of the braided stents inside narrowed vessels was simulated, showing that the SMPU stents can be comfortably implanted while minimizing the overpressure onto the vessel walls, due to their thermo-responsive shape memory behavior.  相似文献   

12.
Abstract

Braided stents are associated with a number of complications in vivo. Accurate computational modelling of these devices is essential for the design and development of the next generation of these stents. In this study, two commonly utilised methods of computationally modelling filament interaction in braided stents are investigated: the join method and the weave method. Three different braided stent designs are experimentally tested and computationally modelled in both radial and v-block configurations. The results of the study indicate that while both methods are capable of capturing braided stent performance to some degree, the weave method is much more robust.  相似文献   

13.
This paper discusses various issues relating to the mechanical properties of a braided non-vascular stent made of a Ni–Ti alloy. The design of the stent is a major factor which determines its reliability after implantation into a stenosed non-vascular cavity. This paper presents the effect of the main structural parameters on the mechanical properties of braided stents. A parametric analysis of a commercial stent model is developed using the commercial finite element code ANSYS. As a consequence of the analytical results that the pitch of wire has a greater effect than other structural parameters, a new design of a variable pitch stent is presented to improve mechanical properties of these braided stents. The effect of structural parameters on mechanical properties is compared for both stent models: constant and variable pitches. When the pitches of the left and right quarters of the stent are 50% larger and 100% larger than that of the central portion, respectively, the radial stiffness in the central portion increases by 10% and 38.8%, while the radial stiffness at the end portions decreases by 128% and 164.7%, the axial elongation by 25.6% and 56.6% and the bending deflection by 3.96% and 10.15%. It has been demonstrated by finite element analysis that the variable pitch stent can better meet the clinical requirements.  相似文献   

14.
In this project concerning the development of new endovascular stents, which controlled the release of pharmacological molecules, we prepared biodegradable and biocompatible macromonomers of poly (lactic acid), with controlled molar mass (600 g/mol), having a double bond allowing afterward the electrografting on metallic stent. This biodegradable layer has for role to improve the interface between the metal and the degradable polymer matrix which will be later deposited on the stent to assure a good liberation of the active principle (DES). We tested the feasibility of the electrografting of this layer with PLA, its in vitro then in vivo degradation as well as the recolonisation of the stent by cells. The positive results obtained in this study are completely encouraging for the development of new DES.  相似文献   

15.
This study established a numerical model to investigate the degradation mechanism and behavior of bioabsorbable cardiovascular stents. In order to generate the constitutive degradation material model, the degradation characteristics were characterized with user-defined field variables. The radial strength bench test and analysis were used to verify the material model. In order to validate the numerical degradation model, in vitro bench test and in vivo implantation studies were conducted under physiological and normal conditions. The results showed that six months of degradation had not influenced the thermodynamic properties and mechanical integrity of the stent while the molecular weight of the stents implanted in the in vivo and in vitro models had decreased to 61.8% and 68.5% respectively after six month''s implantation. It was also found that the degradation rate, critical locations and changes in diameter of the stents in the numerical model were in good consistency in both in vivo and in vitro studies. It implies that the numerical degradation model could provide useful physical insights and prediction of the stent degradation behavior and evaluate, to some extent, the in-vivo performance of the stent. This model could eventually be used for design and optimization of bioabsorbable stent.  相似文献   

16.
Chen MC  Tsai HW  Chang Y  Lai WY  Mi FL  Liu CT  Wong HS  Sung HW 《Biomacromolecules》2007,8(9):2774-2780
A novel biodegradable stent, made of chitosan films cross-linked with an epoxy compound, with a shape-memory property was developed. To reduce their crystallinity, glycerol and poly(ethylene oxide) were blended in the chitosan films. The mechanical properties of the prepared stent were studied using a commercially available metallic stent as a control. After blending, the ductility of the chitosan films was improved, and the compressive strength of the stent was significantly enhanced. The metallic stent could tolerate elastic deformations of 10% before becoming irreversibly deformed, while the polymeric stent was able to withstand deformations up to 30% and still regain its original configuration. The developed stent could rapidly expand ( approximately 150 s) from its crimped (temporary) to fully expanded (permanent) states stimulated by hydration, which is advantageous considering avoiding its migration during in vivo deployment. In the preliminary animal study, the implanted stent was found to be intact, and no thrombus formation was seen in the stent-implanted vessel. This degradable stent can be an attractive alternative to metallic stents and may serve as a useful vehicle for local drug delivery.  相似文献   

17.
We investigated the flow modifications induced by a large panel of commercial-off-the-shelf (COTS) intracranial stents in an idealized sidewall intracranial aneurysm (IA). Flow velocities in IA silicone model were assessed with and without stent implantation using particle imaging velocimetry (PIV). The use of the recently developed multi-time-lag method has allowed for uniform and precise measurements of both high and low velocities at IA neck and dome, respectively. Flow modification analysis of both regular (RSs) and flow diverter stents (FDSs) was subsequently correlated with relevant geometrical stent parameters. Flow reduction was found to be highly sensitive to stent porosity variations for regular stents RSs and moderately sensitive for FDSs. Consequently, two distinct IA flow change trends, with velocity reductions up to 50% and 90%, were identified for high-porosity RS and low-porosity FDS, respectively. The intermediate porosity (88%) regular braided stent provided the limit at which the transition in flow change trend occurred with a flow reduction of 84%. This transition occurred with decreasing stent porosity, as the driving force in IA neck changed from shear stress to differential pressure. Therefore, these results suggest that stents with intermediate porosities could possibly provide similar flow change patterns to FDS, favourable to curative thrombogenesis in IAs.  相似文献   

18.
目的:评价新型生物可降解支架治疗颈部食管吻合口瘘的效果,为治疗食管吻合口瘘提供理论依据。方法:将成年健康新西兰大白兔采用切开吻合置管造瘘法建立颈部食管吻合口瘘的动物模型,1周后,食管造影确定食管瘘口完成。完全随机分组,空白对照组(A组,n=5),对照组(B组,n=5)和实验组(C组,n=5)。实验组使用生物可降解支架封闭瘘口,而对照组应用同规格不可降解支架封堵食管瘘口。植入后每周行食管造影,观察支架及瘘口情况,植入后8周为实验终点。结果:本研究成功建立了兔颈部食管吻合口瘘的动物模型,至实验终点,普通支架组,支架覆盖瘘口,未发生支架移位及穿孔等现象。新型可分解支架组,3例支架分别在支架植入后5-8周分解,发生移位。实验组与对照组闭合率无统计学意义(4/5比3/5,P0.05)。结论:新型生物可降解支架支架是治疗食管吻合口瘘的一种有效方法。  相似文献   

19.
The mechanical function of a stent deployed in a damaged artery is to provide a metallic tubular mesh structure. The purpose of this study was to determine the exact mechanical characteristics of stents. In order to achieve this, we have used finite-element analysis to model two different type of stents: tubular stents (TS) and coil stents (CS). The two stents chosen for this modeling present the most extreme mechanical characteristics of the respective types. Seven mechanical properties were studied by mathematical modeling with determination of: (1) stent deployment pressure, (2) the intrinsic elastic recoil of the material used, (3) the resistance of the stent to external compressive forces, (4) the stent foreshortening, (5) the stent coverage area, (6) the stent flexibility, and (7) the stress maps. The pressure required for deployment of CS was significantly lower than that required for TS, over 2.8 times greater pressure was required for the tubular model. The elastic recoil of TS is higher than CS (5.4% and 2.6%, respectively). TS could be deformed by 10% at compressive pressures of between 0.7 and 1.3 atm whereas CS was only deformed at 0.2 and 0.7 atm. The degree of shortening observed increases with deployment diameter for TS. CS lengthen during deployment. The metal coverage area is two times greater for TS than for CS. The ratio between the stiffness of TS and that of CS varies from 2060 to 2858 depending on the direction in which the force is applied. TS are very rigid and CS are significantly more flexible. Stress mapping shows stress to be localized at link nodes. This series of finite-element analyses illustrates and quantifies the main mechanical characteristics of two different commonly used stents. In interventional cardiology, we need to understand their mechanisms of implantation and action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号