首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Our immunocytochemical investigation of the magnocellular neuroendocrine cells in the cat hypothalamus reveals a mixture of vasopressin (VP)- and oxytocin (OT)-containing neurons in the supraoptic (NSO), the paraventricular (NPV) and in five accessory nuclei (NAC). We describe the lateral hypothalamic nucleus (NLH), a new accessory nucleus, lying at the junction of the internal capsule and pallidum, and possibly involved in drinking behavior. Previously characterized incompletely in mammals, the four other accessory nuclei consist of the circularis (NC), anterior fornical (NAF), posterior fornical (NPF) and retrochiasmatic (NRC). The two peptidergic cell types, VP and OT, are equally mixed in the NPV and the NAC, but in the NSO VP neurons predominate. The perikarya of these VP and OT neurons do not show distinct morphological differences at the level of light microscopy. The organization of magnocellular neuroscretory neurons in the cat hypothalamus closely resembles that described in other mammals with the exception of the unique presence of the lateral hypothalamic accessory nucleus.  相似文献   

2.
The role of the noradrenergic nucleus Locus Coeruleus (LC) on hemorrhage-induced vasopressin (AVP) and oxytocin (OT) secretion was examined. Rats with LC lesion were submitted to three 1-min hemorrhage sessions at 5-min intervals; 15% of the total blood volume was withdrawn in each session. OT and AVP were measured in plasma, paraventricular (PVN) and supraoptic (SON) nuclei and in posterior pituitary (PP). LC Lesion did not affect basal plasma AVP or OT levels, but partly blocked the increase in plasma AVP and OT induced by hemorrhage. Hemorrhage produced decreases in content of AVP and OT in the PVN and SON and increased levels in the PP. These responses were attenuated in the lesioned group, but only in the PVN and PP. Data suggest a stimulatory role of the inputs from LC to PVN neurons on hemorrhage-induced OT and AVP secretion and that, this pathway is critical in the hypo-volemic neuroendocrine reflex.Special Issue Dedicated to Miklós Palkovits.  相似文献   

3.
应用PAP-PAAP双重免疫组化染色程序在同一切片上进行两种肽能物质的定位,观察了中国树鼩下丘脑视上核和室旁核内VP能和OT能神经元的比较解剖学分布,发现:视上核被视束分成主部和交叉后部。在视上核主部,其头侧部几乎仅含OT能神经元胞体,中间部VP能胞体出现并逐渐增多,尾侧部VP能胞体数目明显超过OT能胞体。在明显含有两种胞体的中间部和尾侧部,OT能胞体多位于背内侧,VP能胞体多位于腹外侧;在视上核交叉后部,其头侧部以VP能胞体为主,且多位于背外侧,OT能胞体多位于腹内侧。中间部OT能胞体多位于内侧,VP能胞体多位于外侧。尾侧部OT能胞体多位于背、腹两侧,VP能胞体则多位于中间;在室旁核,其头侧部几乎全由OT能胞体构成。中间部,VP能胞体出现并逐渐增多,OT和VP能胞体分别主要位于内、外侧。尾侧部两种神经元胞体较明显地分为内、外两群,内侧群主要为OT能胞体,外侧群几乎全为VP能胞体,该群的头侧半又可分为背腹两个亚群,至尾侧半,此二亚群渐合并。本文讨论了OT和VP能神经元在中国树鼩和大鼠视上核和室旁核内的比较分布。  相似文献   

4.
The distribution of oxytocin (OXT) and vasopressin (VP) neurons in the diencephalon of the hibernating Japanese horseshoe bat, Rhinolophus ferrumequinum, was immunohistochemically investigated by the avidin-biotin complex method. Magnocellular OXT and VP neurons were localized mainly in the paraventricular nucleus and the supraoptic nucleus. In addition to these main nuclei, both kinds of magnocellular neurons were also found in the periventricular nucleus, perifornical area and lateral hypothalamic area. Extensively distributed parvocellular neurons containing only VP were observed in the rostral and middle portions of the suprachiasmatic nucleus. The size of OXT and VP magnocellular neurons was almost equal in the paraventricular and ventromedial supraoptic nuclei, whereas VP neurons were significantly larger than OXT neurons in the dorsolateral supraoptic nucleus. The OXT and VP cells in the ventral supraoptic nucleus showed a distinctive elliptical shape. Both OXT and VP fibers were distributed in the lateral habenular nucleus, stria medullaris thalami, lateral preoptic area, stria terminalis, and medial and supracapsular part of the bed nucleus of the stria terminalis. Moreover, OXT fibers were found in the substantia nigra, and VP fibers were noted in the nucleus reunions and the paraventricular nucleus of the thalamus.  相似文献   

5.
The epithelial Na? channels (ENaCs) are present in kidney and contribute to Na? and water homeostasis. All three ENaC subunits (α, β, and γ) were demonstrated in the cardiovascular regulatory centers of the rat brain, including the magnocellular neurons (MNCs) in the supraoptic nucleus (SON) and the paraventricular nucleus (PVN). However, the functional significance of ENaCs in vasopressin (VP) and oxytocin (OT) synthesizing MNCs is completely unknown. In this study, we show with immunocytochemical double-labeling that the α-ENaC is colocalized with either VP or OT in MNCs in the SON and PVN. In addition, parvocellular neurons in the dorsal, ventrolateral, and posterior subregions of the PVN (not immunoreactive to VP or OT) are also immunoreactive for α-ENaC. In contrast, immunoreactivity to β- and γ-ENaC is colocalized with VP alone within the MNCs. Furthermore, immunoreactivity for a known target for ENaC expression, the mineralcorticoid receptor (MR), is colocalized with both VP and OT in MNCs. Using single-cell RT-PCR, we detected mRNA for all three ENaC subunits and MR in cDNA libraries derived from single MNCs. In whole cell voltage clamp recordings, application of the ENaC blocker benzamil reversibly reduced a steady-state inward current and decreased cell membrane conductance approximately twofold. Finally, benzamil caused membrane hyperpolarization in a majority of VP and about one-half of OT neurons in both spontaneously firing and quiet cells. These results strongly suggest the presence of functional ENaCs that may affect the firing patterns of MNCs, which ultimately control the secretion of VP and OT.  相似文献   

6.
Oxytocin (OT) and arginine-8-vasopressin (AVP) were measured by radioimmunoassay in micropunched hypothalamic neurosecretory nuclei of estrous cycling female Sprague-Dawley rats. In the paraventricular nucleus (PVN): the concentration (pg/microgram protein) of OT was significantly higher in rats in diestrus than during proestrus, estrus, or metestrus, while the concentration during metestrus was significantly greater than in proestrus and estrus; the concentration of AVP was significantly lower in animals in estrus than during the other three stages; because the paraventricular OT levels dropped before proestrus, the AVP/OT ratio was significantly greater in animals in proestrus than in diestrus, metestrus, and estrus. In the supraoptic nucleus (SON) a similar trend was noted: the concentration of OT was highest during diestrus, and AVP was lowest during estrus, though neither was significantly different from other stages. Because the OT and AVP cycles in the SON were asynchronous, the ratio of AVP to OT was significantly higher in proestrus than in metestrus or diestrus and significantly greater in estrus than during diestrus. In contrast to these two areas, peptide concentrations did not vary significantly across the estrous cycle in other sites of nonapeptide synthesis, i.e. the anterior commissural nucleus (ACN) and the suprachiasmatic nuclei (SCN).  相似文献   

7.
Zhao DQ  Ai HB 《PloS one》2011,6(8):e23362

Aims

Vasopressin (AVP) and oxytocin (OT) are considered to be related to gastric functions and the regulation of stress response. The present study was to study the role of vasopressinergic and oxytocinergic neurons during the restraint water-immersion stress.

Methods

Ten male Wistar rats were divided into two groups, control and RWIS for 1h. The brain sections were treated with a dual immunohistochemistry of Fos and oxytocin (OT) or vasopressin (AVP) or OT receptor or AVP 1b receptor (V1bR).

Results

(1) Fos-immunoreactive (Fos-IR) neurons dramatically increased in the hypothalamic paraventricular nucleus (PVN), the supraoptic nucleus (SON), the neucleus of solitary tract (NTS) and motor nucleus of the vagus (DMV) in the RWIS rats; (2) OT-immunoreactive (OT-IR) neurons were mainly observed in the medial magnocellular part of the PVN and the dorsal portion of the SON, while AVP-immunoreactive (AVP-IR) neurons mainly distributed in the magnocellular part of the PVN and the ventral portion of the SON. In the RWIS rats, Fos-IR neurons were indentified in 31% of OT-IR neurons and 40% of AVP-IR neurons in the PVN, while in the SON it represented 28%, 53% respectively; (3) V1bR-IR and OTR-IR neurons occupied all portions of the NTS and DMV. In the RWIS rats, more than 10% of OTR-IR and V1bR-IR neurons were activated in the DMV, while lower ratio in the NTS.

Conclusion

RWIS activates both oxytocinergic and vasopressinergic neurons in the PVN and SON, which may project to the NTS or DMV mediating the activity of the neurons by OTR and V1bR.  相似文献   

8.
Summary In the hypothalamus of the adult domestic mallard, small to medium-sized perikarya are stained specifically with rabbit antiserum against cyclic somatostatin (PAP technique of Sternberger). The somatostatin-immunoreactive material is located in neurons different from those containing immunoreactive LHRH, vasotocin or mesotocin. Somatostatin-containing perikarya are observed 1) in a chain-like arrangement extending from the area of the median division of the supraoptic nucleus to the caudal end of the paraventricular nucleus; 2) as single cells in the preoptic region; and 3) as a conspicuous formation in the optic tract division of the supraoptic nucleus. In the rostral portion of the median eminence, somatostatin-immunoreactive axons penetrate into the external zone. Fine accessory fiber bundles project to the neural lobe.  相似文献   

9.
Summary CP-14, a tetradecapeptide from the predicted mutant vasopressin precursor in the homozygous Brattleboro rat was detected immunocytochemically in the supraoptic nucleus of homozygous Brattleboro but not normal rats. The staining was localized to the periphery of the perikarya. CP-14 immunoreactivity was not found in the neural lobes, paraventricular nuclei, accessory nuclei or suprachiasmatic nuclei of either homozygous Brattleboro or normal rats. Vasopressin immunoreactivity was found in the neural lobe and in the perinuclear region of neurons of the supraoptic, paraventricular, suprachiasmatic and accessory nuclei of normal rats. Vasopressin immunoreactivity was also found in homozygous Brattleboro rats, mainly in the ventral part of the supraoptic nucleus: densely stained solitary cells were found amongst other faintly stained perikarya. In both cell-types the staining was mainly in the periphery of the perikarya. No vasopressin immunoreactivity was detected in the paraventricular nuclei, suprachiasmatic nuclei, accessory nuclei or neural lobe of homozygous Brattleboro rats.CP-14 and vasopressin immunoreactivities were found to be co-localized; both were present in the periphery of the same perikarya of the supraoptic nuclei of homozygous Brattleboro rats. Differential staining was found with antioxytocin serum in both normal rats and homozygous Brattleboro rats: separate neurons were stained for either oxytocin or vasopressin and CP-14. Immunoreactive oxytocin was found mainly in the perinuclear region of the neurons from the supraoptic, paraventricular and accessory nuclei.  相似文献   

10.
Posterior pituitary hormone secretion and central neural expression of the immediate-early gene product c-Fos was examined in adult ferrets after intravenous administration of CCK octapeptide. Pharmacological doses of CCK (1, 5, 10, or 50 microg/kg) did not induce emesis, but elicited behavioral signs of nausea and dose-related increases in plasma vasopressin (AVP) levels without significant increases in plasma oxytocin (OT) levels. CCK activated neuronal c-Fos expression in several brain stem viscerosensory regions, including a dose-related activation of neurons in the dorsal vagal complex (DVC). Activated brain stem neurons included catecholaminergic and glucagon-like peptide-1-positive cells in the DVC and ventrolateral medulla. In the forebrain, activated neurons were prevalent in the paraventricular and supraoptic nuclei of the hypothalamus and also were observed in the central nucleus of the amygdala and bed nucleus of the stria terminalis. Activated hypothalamic neurons included cells that were immunoreactive for AVP, OT, and corticotropin-releasing factor. Comparable patterns of brain stem and forebrain c-Fos activation were observed in ferrets after intraperitoneal injection of lithium chloride (LiCl; 86 mg/kg), a classic emetic agent. However, LiCl activated more neurons in the area postrema and fewer neurons in the nucleus of the solitary tract compared with CCK. Together with results from previous studies in rodents, our findings support the view that nauseogenic treatments activate similar central neural circuits in emetic and nonemetic species, despite differences in treatment-induced emesis and pituitary hormone secretion.  相似文献   

11.
Estrogen receptors are located in important brain areas that integrate cardiovascular and hydroelectrolytic responses, including the subfornical organ (SFO) and supraoptic (SON) and paraventricular (PVN) nuclei. The aim of this study was to evaluate the influence of estradiol on cardiovascular and neuroendocrine changes induced by hemorrhagic shock in ovariectomized rats. Female Wistar rats (220-280 g) were ovariectomized and treated for 7 days with vehicle or estradiol cypionate (EC, 10 or 40 μg/kg, sc). On the 8th day, animals were subjected to hemorrhage (1.5 ml/100 g for 1 min). Hemorrhage induced acute hypotension and bradycardia in the ovariectomized-oil group, but EC treatment inhibited these responses. We observed increases in plasma angiotensin II concentrations and decreases in plasma atrial natriuretic peptide levels after hemorrhage; EC treatment produced no effects on these responses. There were also increases in plasma vasopressin (AVP), oxytocin (OT), and prolactin levels after the induction of hemorrhage in all groups, and these responses were potentiated by EC administration. SFO neurons and parvocellular and magnocellular AVP and OT neurons in the PVN and SON were activated by hemorrhagic shock. EC treatment enhanced the activation of SFO neurons and AVP and OT magnocellular neurons in the PVN and SON and AVP neurons in the medial parvocellular region of the PVN. These results suggest that estradiol modulates the cardiovascular responses induced by hemorrhage, and this effect is likely mediated by an enhancement of AVP and OT neuron activity in the SON and PVN.  相似文献   

12.
The hypothalamic suprachiasmatic nucleus is centrally involved in generation of several circadian rhythms. Neurons of the mammalian suprachiasmatic nucleus express a number of neuropeptides including vasopressin. The suprachiasmatic nucleus of the mink (Mustela vison) is easily distinguished from neighbouring hypothalamic areas and the underlying optic chiasm as a small nucleus containing densely packed parvocellular neurons. A dorsal and ventral subdivision were clearly recognized within the midportion and caudal part of the nuclcus. Using immunohistochemistry, we have identified vasopressin-, neurophysin-, and vasoactive intestinal peptide-immunoreactive neuronal elements in the hypothalamus of the mink. Vasoactive intestinal peptide-immunoreactive neurons can be observed in the ventral aspect of the suprachiasmatic nucleus, but to our surprise, no vasopressin immunoreactive perikarya are found within the suprachiasmatic nucleus, this absence being independent of the experienced annual cycle. The hypothalamic paraventricular and supraoptic nuclei contain large numbers of vasopressin-, neurophysin-and vasoactive intestinal peptide-immunoreactive magnocellular neurons with extensive projections towards the infundibulum and neurohypophysis. A comparative analysis of the distribution of vasopressin-immunoreactive elements in a number of conventional laboratory animals has demonstrated that, in contrast to the rat, golden hamster and Mongolian gerbil, neither vasopressin-containing perikarya in the suprachiasmatic nucleus nor fine calibered immunoreactive fibres entering the adjacent subparaventricular zone are present in the mink. The mink is a photodependent seasonal breeder, and thus vasopressin-immunoreactive neurons in the suprachiasmatic nuclei may not be essential for the photoperiodic regulation of reproduction and seasonal events experienced by this species.  相似文献   

13.
It has been well known that oxytocin (OT)-ergic and arginine vasopressin (AVP)-ergic neurons located in the hypothalamic paraventricular nucleus (PVN) and super optic nucleus (SON) are two kinds of neuroendocrine cells with diverse functions. It has also been demonstrated that immune stimuli can activate these neurons to secret OT and AVP. However, the intracellular signal transduction molecules responsible for the activation of these OT-ergic and AVP-ergic neurons in PVN by immune stimuli are still unclear. In this experiment, the roles of Fos, a protein product of immediate early gene c-fos, and extracellular signal-regulated protein kinase (ERK) 1/2, a signal transduction molecule of mitogen-activated protein kinase (MAPK) family, in these processes were studied in the PVN of the rat following IL-1beta stimulation. The Sprague-Dawley rats were received either 750 ng/kg IL-1beta or equal volume normal saline (NS) injection intravenously (i.v.), and perfused transcardially by 4% paraformaldehyde 3h later. Fos and phosphorylated ERK1/2 (pERK1/2)-immunoreactivity (-ir) was observed in PVN by ABC immunohistochemical staining. Meanwhile, the double staining for OT/Fos, AVP/Fos, OT/pERK1/2 and AVP/pERK1/2 were also processed. The ABC immunohistochemical staining results showed that after an i.v. injection of IL-1beta, the expressions of Fos and pERK1/2 increased evidently in the PVN. Double-staining results showed that a large number of OT-ir cells contained strong Fos-ir products in their nuclei, while only a few of OT cells were double labeled with pERK1/2. As to AVP neurons, great quantities of AVP cells were strongly double labeled with pERK1/2 while there were nearly no Fos-ir nuclei in AVP-ir cells. We conclude from these results that the intracellular IL-1beta-induced events in OT and AVP neurons in PVN are quite different. The OT neurons are mainly activated via Fos without involvement of ERK1/2 pathway, while the latter, but not Fos, involves the intracellular event in AVP neurons activated by IL-1beta.  相似文献   

14.
Using an antiserum generated in rabbits against synthetic galanin (GA) and the indirect immunofluorescence method, the distribution of GA-like immunoreactive cell bodies and nerve fibers was studied in the rat central nervous system (CNS) and a detailed stereotaxic atlas of GA-like neurons was prepared. GA-like immunoreactivity was widely distributed in the rat CNS. Appreciable numbers of GA-positive cell bodies were observed in the rostral cingulate and medial prefrontal cortex, the nucleus interstitialis striae terminalis, the caudate, medial preoptic, preoptic periventricular, and preoptic suprachiasmatic nuclei, the medial forebrain bundle, the supraoptic, the hypothalamic periventricular, the paraventricular, the arcuate, dorsomedial, perifornical, thalamic periventricular, anterior dorsal and lateral thalamic nuclei, medial and central amygdaloid nuclei, dorsal and ventral premamillary nuclei, at the base of the hypothalamus, in the central gray matter, the hippocampus, the dorsal and caudoventral raphe nuclei, the interpeduncular nucleus, the locus coeruleus, ventral parabrachial, solitarii and commissuralis nuclei, in the A1, C1 and A4 catechaolamine areas, the posterior area postrema and the trigeminal and dorsal root ganglia. Fibers were generally seen where cell bodies were observed. Very dense fiber bundles were noted in the septohypothalamic tract, the preoptic area, in the hypothalamus, the habenula and the thalamic periventricular nucleus, in the ventral hippocampus, parts of the reticular formation, in the locus coeruleus, the dorsal parabrachial area, the nucleus and tract of the spinal trigeminal area and the substantia gelatinosa, the superficial layers of the spinal cord and the posterior lobe of the pituitary. The localization of the GA-like immunoreactivity in the locus coeruleus suggests a partial coexistence with catecholaminergic neurons as well as a possible involvement of the GA-like peptide in a neuroregulatory role.  相似文献   

15.
The distribution of corticotropin-releasing hormone in the brain of the snake Bothrops jararaca was studied immunohistochemically. Immunoreactive neurons were detected in telencephalic, diencephalic and mesencephalic areas such as dorsal cortex, subfornical organ, paraventricular nucleus, recessus infundibular nucleus, nucleus of the oculomotor nerve and nucleus of the trigeminal nerve. Immunoreactive fibres ran along the hypothalamo-hypophysial tract to end in the outer layer of the median eminence and the neural lobe of the hypophysis. In general, immunoreactive fibres occurred in the same places of immunoreactive neurons. In addition, immunoreactive fibres were observed in the septum, amygdala, lamina terminalis, supraoptic nucleus, nucleus of the paraventricular organ, ventromedial hypothalamic nucleus and interpeduncular nucleus. These results indicate that, as for other vertebrates, corticotropin-releasing hormone in B. jararaca brain, besides being a releasing hormone, may also act as a central neurotransmitter and/or neuromodulator.  相似文献   

16.
In monogamous mammals paternal care plays an important role in the neural and behavioral development of offspring. However, the neuroendocrine mechanisms underlying paternal behavior remain poorly understood. Here, we investigate the association between natural variation in paternal responsiveness and central levels of oxytocin (OT) and estrogen receptor alpha (ERα). We used the frequency of licking and grooming behavior to distinguish low paternal responsiveness and high paternal responsiveness in virgin mandarin voles (Microtus mandarinus). Males that engaged in high paternal behavior had elevated levels of OT immunoreactive neurons in the paraventricular nuclei of the hypothalamus and supraoptic nuclei of the hypothalamus compared with males that displayed low paternal behavior. Likewise, males of high paternal responsiveness had more ERα immunoreactive neurons in the medial preoptic area, bed nucleus of the stria terminalis, arcuate nucleus of the hypothalamus and medial amygdaloid nucleus compared to low responsive males. The level of ERα immunoreactive neurons in the ventromedial hypothalamic nucleus was lower in highly paternal males compared to less paternal males. These results suggest that natural variation in paternal responsiveness may be directly related to variation in central OT and ERα.  相似文献   

17.
The distribution of somatostatinlike immunoreactive (SLI) perikarya, axons, and terminals was mapped in subcortical areas of the brain of the little brown bat, Myotis lucifugus, using light microscopic immunocytochemistry. A preponderance of immunoreactivity was localized in reticular, limbic, and hypothalamic areas including: 1) in the forebrain: the bed nucleus of the stria terminalis; lateral preoptic, dorsal, anterior, lateral and posterior hypothalamic areas; amygdaloid, periventricular, arcuate, supraoptic, suprachiasmatic, ventromedial, dorsomedial, paraventricular, lateral and medial mammillary, and lateral septal nuclei; the nucleus of the diagonal band of Broca and nucleus accumbens septi; 2) in the midbrain: the periaqueductal gray, interpeduncular, dorsal and ventral tegmental, pretectal, and Edinger-Westphal nuclei; and 3) in the hindbrain: the superior central and parabrachial nuclei, nucleus incertus, locus coeruleus, and nucleus reticularis gigantocellularis. Other areas containing SLI included the striatum (caudate nucleus and putamen), zona incerta, infundibulum, supramammillary and premammillary nuclei, medial and dorsal lateral geniculate nuclei, entopeduncular nucleus, lateral habenular nucleus, central medial thalamic nucleus, central tegmental field, linear and dorsal raphe nuclei, nucleus of Darkschewitsch, superior and inferior colliculi, nucleus ruber, substantia nigra, mesencephalic nucleus of V, inferior olivary nucleus, inferior central nucleus, nucleus prepositus, and deep cerebellar nuclei. While these results were similar in some respects to those previously reported in rodents, they also provided interesting contrasts.  相似文献   

18.
Summary An immunocytochemical study of the magnocellular neurosecretory nuclei was performed in the snake Natrix maura and the turtle Mauremys caspica by use of antisera against: (1) a mixture of both bovine neurophysins, (2) bovine oxytocin-neurophysin, (3) arginine vasotocin, and (4) mesotocin. Arginine vasotocin- and mesotocin-immunoreactivities were localized in individual neurons of the supraoptic and paraventricular nuclei, with a distinct pattern of distribution in both species. The same cells appeared to be stained by the anti-oxytocin-neurophysin and anti-mesotocin sera. The supraoptic nucleus can be subdivided into rostral medial and caudal portions. In N. maura, but not in M. caspica, neurophysin-immunoreactive neurons were found in the retrochiasmatic nucleus. No immunoreactive elements were seen in the suprachiasmatic nucleus of both species after the use of any of the antisera. A dorsolateral aggregation of neurophysin-containing cells, localized over the lateral forebrain bundle, was present in both species. Magnocellular and parvocellular neurophysin-immunoreactive neurons were present in the paraventricular nucleus of both species. In the turtle, the paraventricular neurons were arranged into four distinct layers parallel to the ependyma; these neurons were bipolar with the major axis perpendicular to the ventricle, and many of them projected processes toward the cerebrospinal-fluid compartment. In N. maura a group of large neurons of the paraventricular nucleus was found in a very lateral position. The posterior lobe of the hypophysis and the external zone of the median eminence contained arginine vasotocin- and mesotocin-immunoreactive nerve fibers. The lamina terminalis of both species was supplied with a dense bundle of fibers containing immunoreactive neurophysin. Neurophysin-immunore-active fibers were also present in the septum, some telencephalic regions, including the cortex and the olfactory tubercule, in the paraventricular organ, and the periventricular and periaqueductal gray of the brainstem.This work was partially supported by a Grant S-85-39 from the Direccion de Investigaciones, Universidad Austral de Chile to E.M. Rodriguez  相似文献   

19.
血管加压素(arginine vasopressin,AVP)是下丘脑视上核和室旁核神经元分泌的九肽激素。关于长爪沙鼠不同月龄加压素的分泌状况少见报道。作者采用光镜和电镜、免疫细胞化学和图像分析技术,对不同月龄长爪沙鼠视上核(SON)加压素能神经元加压素的分泌进行了比较研究。结果表明:在H.E染色切片中,各组均可见视上核团呈三角形。免疫细胞化学标记的各组长爪沙鼠中均可见AVP阳性细胞。图像分析数据经统计学处理表明:成龄长爪沙鼠血管加压素的分泌能力较强,幼龄及老龄组分泌能力减弱。  相似文献   

20.
The immunoglobulin heavy chain binding protein (BiP) is an endoplasmic reticulum (ER) chaperone that facilitates the proper folding of newly synthesized secretory and transmembrane proteins. Here we report that BiP mRNA was expressed in the supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus in wild-type mice under basal conditions. Dual in situ hybridization in the SON and PVN demonstrated that BiP mRNA was expressed in almost all the neurons of arginine vasopressin (AVP), an antidiuretic hormone. BiP mRNA expression levels were increased in proportion to AVP mRNA expression in the SON and PVN under dehydration. These data suggest that BiP is involved in the homeostasis of ER function in the AVP neurons in the SON and PVN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号