首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Zinc is essential but toxic in excess. Bacterial metallothionein, SmtA from Synechococcus PCC 7942, sequesters and detoxifies four zinc ions per molecule and contains a zinc finger structurally similar to eukaryotic GATA. The dearth of other reported bacterial metallothioneins has been surprising. Here we describe related bacterial metallothioneins (BmtA) from Anabaena PCC 7120, Pseudomonas aeruginosa and Pseudomonas putida that bind multiple zinc ions with high stability towards protons. Thiol modification demonstrates that cysteine coordinates zinc in all of these proteins. Additionally, (111)Cd-NMR, and (111)Cd-edited (1)H-NMR, identified histidine ligands in Anabaena PCC 7120 BmtA, analogous to SmtA. A related Escherichia coli protein bound only a single zinc ion, via four cysteine residues, with low stability towards protons; (111)Cd-NMR and (111)Cd-edited (1)H-NMR confirmed exclusive cysteine-coordination, and these cysteine residues reacted rapidly with 5,5'-dithiobis-(2-nitrobenzoic acid). (1)H-NMR of proteins from P. aeruginosa, Anabaena PCC 7120 and E. coli generated fingerprints diagnostic for the GATA-like zinc finger fold of SmtA. These studies reveal first the existence of multiple bacterial metallothioneins, and second proteins with SmtA-like lone zinc fingers, devoid of a cluster,and designated GatA. We have identified 12 smtA-like genes in sequence databases including four of the gatA type.  相似文献   

2.
Bacterial metallothioneins (MTs) have been known since the mid-1980s. The only family known until recently was the BmtA family, exemplified by the zinc- and cadmium-binding SmtA from the cyanobacterium Synechococcus PCC 7942, for which a structure was determined in 2001. Only in 2008 was a second type of bacterial MT identified in mycobacteria, and the copper-binding gene product was called MymT. Many of the features of SmtA either have been unexpected or are otherwise “unusual”, for example the presence of a zinc finger fold and the kinetic inertness of one of the four zinc ions bound to the protein. The unpredictability of molecular properties of this protein exemplified the need for continued biophysical studies of novel proteins. Homologues for SmtA have been identified in a limited number of bacterial genomes from cyanobacteria, pseudomonads, alphaproteobacteria, gammaproteobacteria, and firmicutes. Except for the residues defining the zinc finger fold, these homologous protein sequences display an intriguing variety, especially in terms of metal ligand position and identity. The increased number of homologues has allowed use of hidden Markov models to look for more remote relatives of SmtA, leading to the identification of a novel family of putative hybrid LIM domain MTs. However, database searches based on sequence similarity are of limited use for mining for further “overlooked” bacterial MTs, as so far undiscovered bacterial MTs may be too diverse from any other known MTs, and other approaches are required.  相似文献   

3.
The improved Cd2+ surface affinity characteristics of a mutated cyanobacterial metallothionein SmtA (K45C) were investigated via experimental and theoretical methods. Molecular dynamics simulations were carried out using a model of Cd2+ and other ions enclosed in a fully hydrated simulation box with the wild-type or mutated SmtA protein. The theoretical results suggested that mutated SmtA was more powerful in absorption of Cd2+ than the wild-type protein. Then, the mutated smtA gene (from Synechococcus PCC 7942) was synthesized by simplified gene synthesis method and expressed on isopropyl-beta-d-thiogalactopyranoside induction. The protein expression was investigated by SDS-PAGE and verified by Western blotting. Finally, cadmium uptake ratio of mutant protein toward wild type was analyzed by atomic absorption. This study is the first example of cytoplasmic expression of a mutant protein. Experimental results also verified that the mutation intensifies uptake of Cd2+ ions.  相似文献   

4.
Metals bound to proteins play key roles in structure stabilization, catalysis, and metal transport in cells, but metals may also be toxic. As a consequence, cells have developed mechanisms to control metal concentrations through binding to proteins. We have used a hyphenated strategy linking gel electrophoresis with laser ablation-inductively coupled plasma-mass spectrometry in order to detect, map, and quantify metal-binding proteins synthesized in Escherichia coli under zinc- and cadmium-stress conditions. We report the development of a powerful analytical method suitable for detection and characterization of metalloproteins in complex, unfractionated bacterial cell extracts. The approach was validated by using an E. coli strain overexpressing the cyanobacterial metallothionein protein SmtA. We observed induction of SmtA synthesis by zinc and binding of both zinc and cadmium cations by this protein. A profile of zinc- and cadmium-binding proteins was obtained from E. coli cytoplasmic fractions. Analysis of induction patterns and metal contents demonstrated the presence of proteins with high metal content which, on further study, should lead to the identification of novel metal-binding proteins.  相似文献   

5.
6.
To understand the induction of the adaptive response under various stress conditions, it is important to determine the partnership between histidine kinase and response regulators in the bacterial two-component system (TCS). The genes encoding TCS partners are usually comprised of an operon in the genome, but many of them are orphans in the cyanobacterial genome. There is little information on their partnerships in Synechococcus elongatus PCC 7942. Our comprehensive analysis of protein-protein interactions among all 37 full-length proteins and the truncated domains of 24 orphans revealed a number of specific interactions. They involved evolutionarily well-conserved orphan proteins among cyanobacterial species such as Synpcc7942_0453/Ycf29, NblS/RpaB, NblS/SrrA, SasA/RpaA, and SasA/Synpcc7942_2466. Our investigation of the transphosphorylation of interaction partners indicates that orphan TCSs comprise a complex signaling network.  相似文献   

7.
The protist Tetrahymena pigmentosa accumulates large amounts of metal ions, particularly cadmium and copper. This capability is linked to the induction of metallothioneins (MTs), cysteine-rich metal-binding proteins found in protists, plants and animals. The present study focuses on a novel inducible MT-isoform isolated from Tetrahymena after exposure to a non-toxic dose of copper. The cDNA sequence was determined utilising the partial peptide sequence of purified protein. The Cu-MT cDNA encodes 96 amino acids containing 28 cysteine residues (29%) arranged in motifs characteristic of the metal-binding regions of vertebrate and invertebrate MTs. Both the amino acid and nucleotide sequences differ, not only from other animal MTs, but also from the previously characterised Tetrahymena Cd-MT. Both MTs contain the structural pattern GTXXXCKCXXCKC, which may be proposed as a conservative sequence of Tetrahymena MTs. Cu-dependent regulation of MT expression was also investigated by measuring MT-mRNA and MT levels. MT synthesis occurs very quickly and MT contents increase with Cu accumulation. The induction of Cu-MT mRNA is very rapid, with no observable lag period, and is characterised by transient fluctuation, similar to that described for Cd-MT mRNA. The data reported here indicate that, also in the unicellular organism Tetrahymena, two very different MT isoforms, which perform different biological functions, are expressed according to the inducing metal, Cu or Cd.  相似文献   

8.
单细胞蓝藻(Synechococussp.PCC7942)以50μmol/LZn2+诱导8d后收集,破碎取上清液经凝胶过滤、离子交换层析及反相HPLC纯化得到类金属硫蛋白,产率为每升培养液收集1.5g鲜藻,得2.5mg纯品.其单体分子量为8750,N未端测定为缬氨酸,氨基酸组成分析得每分子(56个氨基酸)含10个半胱氨酸,疏水氨酸较多,且含有芳香族氨基酸,原子吸收光谱测得每分子蛋白结合4个二价金属.以上表明,该种类金属硫蛋白与哺乳动物金属硫蛋白结构差异很大,可能只是一种进化上的趋同.  相似文献   

9.
10.
The first protein map was developed of Synechococcus sp. strain PCC 7942, a model organism for studies of photosynthesis, prokaryotic circadian rhythms, cell division, carbon-concentrating mechanisms, and adaptive responses to a variety of stresses. The proteome was analyzed by two-dimensional gel electrophoresis with subsequent MALDI-TOF mass spectroscopy and database analysis. Of the 140 analyzed protein spots, 110 were successfully identified as 62 different proteins, many of which occurred as multiple spots on the gel. The identified proteins participate in the major metabolic and cellular processes in cyanobacterial cells during the exponential growth phase. In addition, 14 proteins which were previously either unknown or considered to be hypothetical were shown to be true gene products in Synechococcus sp. strain PCC 7942. These results may be helpful for the annotation of the recently sequenced genome of this cyanobacterium, as well as for biochemical and physiological studies of Synechococcus.  相似文献   

11.
We developed a versatile, efficient genetic transfer method for Synechococcus sp. strains PCC 7942 and PCC 6301 that exceeds natural transformation efficiencies by orders of magnitude. As a test case, we complemented a histidine auxotroph and identified a hisS homolog of PCC 7942 as the complementing gene.  相似文献   

12.
A gene (designated ecaA) encoding a vertebrate-like (alpha-type) carbonic anhydrase (CA) has been isolated from two disparate cyanobacteria, Anabaena sp. strain PCC 7120 and Synechococcus sp. strain PCC 7942. The deduced amino acid sequences correspond to proteins of 29 and 26 kDa, respectively, and revealed significant sequence similarity to human CAI and CAII, as well as Chlamydomonas CAHI, including conservation of most active-site residues identified in the animal enzymes. Structural similarities between the animal and cyanobacterial enzymes extend to the levels of antigenicity, as the Anabaena protein cross-reacts with antisera derived against chicken CAII. Expression of the cyanobacterial ecaA is regulated by CO2 concentration and is highest in cells grown at elevated levels of CO2. Immunogold localization using an antibody derived against the ecaA protein indicated an extracellular location. Preliminary analysis of Synechococcus mutants in which ecaA has been inactivated by insertion of a drug resistance cassette suggests that extracellular carbonic anhydrase plays a role in inorganic-carbon accumulation by maintaining equilibrium levels of CO2 and HCO3- in the periplasm.  相似文献   

13.
A novel cyanobacterial vector, pTT201, containing the bar gene encoding resistance to herbicides, bialaphos and phosphinothricin, was constructed. In Synechococcus sp. strain PCC7942-SPc, the bar gene was successfully expressed. Plasmid pTT201 increased a minimum inhibitory concentration for bialaphos 16-fold over Synechococcus sp. strain PCC7942-SPc without pTT201. The combination of the bialaphos as a selective agent and the transformation by bar gene serves as a photostable selection system for Synechococcus.  相似文献   

14.
Zinc is essential but toxic in excess. A bacterial metallothionein, SmtA from Synechococcus PCC 7942, has high affinity for Zn2+ and the intracellular exclusively handling of Zn2+. In this study, we report a functional analysis of SmtA in Arabidopsis thaliana and its response to zinc stress. After high zinc stress, the transgenic plants over-expressing SmtA showed higher survival rate than the wild type. We also found that over-expression of SmtA in Arabidopsis increased the activities of SOD and POD, and enhanced the tolerance to zinc stress. Together, our results indicate that SmtA may play an important role in the response to zinc stress in Arabidopsis.  相似文献   

15.
Multiple rpoD-related genes of cyanobacteria.   总被引:3,自引:0,他引:3  
Genomes of many eubacterial strains have been shown to encode for multiple rpoD-related genes. In this report, we describe the identification of the multiple rpoD-related genes of cyanobacterial strains. DNAs of three cyanobacterial strains, Anabaena sp. PCC7120, Synechococcus sp. PCC7942, and Synechocystis sp. PCC6803, were examined by Southern hybridization, using a synthetic probe designed for detecting rpoD or rpoD-related genes. Four or five hybridization signals were found in each DNA. Four DNA regions of Synechococcus sp. PCC7942 corresponding to the hybridization signals were cloned and partially sequenced. The sequence data indicate the presence of genes, named rpoD1, rpoD2, rpoD3, and rpoD4, whose products are highly similar to the basic structure of the principal sigma factors of eubacterial strains. The rpoD1 gene showed the greatest similarity to the sigA gene of Anabaena sp. PCC7120.  相似文献   

16.
The putative glgX gene encoding isoamylase-type debranching enzyme was isolated from the cyanobacterium, Synechococcus elongatus PCC 7942. The deduced amino acid sequence indicated that the residues essential to the catalytic activity and substrate binding in bacterial and plant isoamylases and GlgX proteins were all conserved in the GlgX protein of S. elongatus PCC 7942. The role of GlgX in the cyanobacterium was examined by insertional inactivation of the gene. Disruption of the glgX gene resulted in the enhanced fluctuation of glycogen content in the cells during light-dark cycles of the culture, although the effect was marginal. The glycogen of the glgX mutant was enriched with very short chains with degree of polymerization 2 to 4. When the mutant was transformed with putative glgX genes of Synechocystis sp. PCC 6803, the short chains were decreased as compared to the parental mutant strain. The result indicated that GlgX protein contributes to form the branching pattern of polysaccharide in S. elongatus PCC 7942.  相似文献   

17.
Multiple targeted gene replacements are often required for functional analyses of cyanobacterial genomes. For this purpose, we previously devised a simple genetic method, termed rps12-mediated gene replacement, in a cyanobacterium Synechococcus elongatus PCC 7942 for construction of mutants free from drug resistance markers. Here, we improved the method by employing a heterologous rps12 gene encoding a ribosomal protein S12 from Synechocystis sp. PCC 6803. Dominant streptomycin-sensitive phenotype of the Synechocystis rps12 gene was manifested only when it was expressed under the strong promoter of psbAI gene in S. elongatus PCC 7942 bearing a streptomycin-resistant rps12 allele. Transformation of the rps12 heteroallelic strains with non-replicating template plasmids permitted the selection of recombinants with gene replacement at frequencies up to 50% among streptomycin-resistant progeny.  相似文献   

18.
The Clostridium pasteurianum hydrogenase I has been expressed in the cyanobacterium Synechococcus PCC7942. The Shine-Dalgarno sequence of the structural gene encoding hydrogenase I from C. pasteurianum was changed to that of the cat (chloramphenicol acetyltransferase) gene. The hydrogenase gene was cloned downstream of a strong promoter, isolated from Synechococcus PCC7942, with the cat gene as a reporter gene. Expression of clostridial hydrogenase was confirmed by Western and Northern blot analyses in Synechococcus and Escherichia coli, whereas in vivo/in vitro measurements and activity staining of soluble proteins separated on non-denaturing polyacrylamide gels revealed functional expression of hydrogenase only in cyanobacterial cells. The changed Shine-Dalgarno sequence appeared to be essential for the functional expression of clostridial hydrogenase in Synechococcus, but had no influence on the expression and activity of clostridial hydrogenase expressed in E. coli.  相似文献   

19.
State transitions in cyanobacteria are a physiological adaptation mechanism that changes the interaction of the phycobilisomes with the Photosystem I and Photosystem II core complexes. A random mutagenesis study in the cyanobacterium Synechocystis sp. PCC6803 identified a gene named rpaC which appeared to be specifically required for state transitions. rpaC is a conserved cyanobacterial gene which was tentatively suggested to code for a novel signal transduction factor. The predicted gene product is a 9-kDa integral membrane protein. We have further examined the role of rpaC by overexpressing the gene in Synechocystis 6803 and by inactivating the ortholog in a second cyanobacterium, Synechococcus sp. PCC7942. Unlike the Synechocystis 6803 null mutant, the Synechococcus 7942 null mutant is unable to segregate, indicating that the gene is essential for cell viability in this cyanobacterium. The Synechocystis 6803 overexpressor is also unable to segregate, indicating that the cells can only tolerate a limited gene copy number. The non-segregated Synechococcus 7942 mutant can perform state transitions but shows a perturbed phycobilisome-Photosystem II interaction. Based on these results, we propose that the rpaC gene product controls the stability of the phycobilisome-Photosystem II supercomplex, and is probably a structural component of the complex.  相似文献   

20.
金属硫蛋白(metallothionein,MT)是一类低分子量、富含半胱氨酸的金属结合蛋白.MT几乎广泛分布于所有生物,包括哺乳动物、两栖动物、鱼、植物、真菌和蓝细菌.不同生物金属硫蛋白理化特性和其氨基酸序列及中心片段的比较研究,对研究MT的结构和生物功能及生物的分子进化提供重要依据.哺乳动物MT研究较多,爬行动物鳖MT的研究尚属空白,本文报道鳖肝的金属硫蛋白.中华鳖 (Pelodiscus sinensis) 分别经皮下注射ZnSO4、CuSO4和CdCl2 溶液诱导后,取乙醇沉淀的肝脏无细胞提取液再经Sephadex G-50、DEAE-SepharoseCL-6B 及SephadexG-25凝胶过滤和离子交换柱层析分离,自鳖肝脏中分别获得Zn-MT、Cu-MT和Cd-MT,未经诱导的鳖肝脏中无MT.质谱和HPLC分析其分子量约为6 300 dalton.根据氨基酸组成分析,鳖肝脏MT含61个氨基酸残基,其中MT的典型氨基酸Cys含量占17%.Lys、Glu和Asp含量较高,而芳香族氨基酸和组氨酸含量极低.从紫外光谱特性分析,Zn-MT、Cu-MT、Cd-MT紫外吸收肩分别在220 nm、270 nm和250 nm.表明确为鳖肝脏MT.从氨基酸残基数和分子量看,鳖肝脏MT与哺乳动物MT类似;而从氨基酸组成和结合金属离子的量看,又与低等生物蚯蚓及酵母菌的MT类似.鳖MT的特性介于哺乳动物MT与低等生物MT之间,体现了鳖这种生物进化的特点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号