首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aspergillus flavus often invade many important corps and produce harmful aflatoxins both in preharvest and during storage stages. The regulation mechanism of aflatoxin biosynthesis in this fungus has not been well explored mainly due to the lack of an efficient transformation method for constructing a genome-wide gene mutant library. This challenge was resolved in this study, where a reliable and efficient Agrobacterium tumefaciens-mediated transformation (ATMT) protocol for A. flavus NRRL 3357 was established. The results showed that removal of multinucleate conidia, to collect a homogenous sample of uninucleate conidia for use as the transformation material, is the key step in this procedure. A. tumefaciens strain AGL-1 harboring the ble gene for zeocin resistance under the control of the gpdA promoter from A. nidulans is suitable for genetic transformation of this fungus. We successfully generated A. flavus transformants with an efficiency of ~ 60 positive transformants per 106 conidia using our protocol. A small-scale insertional mutant library (~ 1,000 mutants) was constructed using this method and the resulting several mutants lacked both production of conidia and aflatoxin biosynthesis capacity. Southern blotting analysis demonstrated that the majority of the transformants contained a single T-DNA insert on the genome. To the best of our knowledge, this is the first report of genetic transformation of A. flavus via ATMT and our protocol provides an effective tool for construction of genome-wide gene mutant libraries for functional analysis of important genes in A. flavus.  相似文献   

2.
Aflatoxins are carcinogenic mycotoxins formed by a number of fungi in the genus Aspergillus. The major fungi responsible for aflatoxin formation in crop seeds in the field and in storage are Aspergillus flavus and A. parasiticus. This review emphasizes developmental, environmental, biological, and chemical factors that influence aflatoxin formation by A. flavus and A. parasiticus.  相似文献   

3.
Fungal development and secondary metabolism are closely associated via the activities of the fungal NK-kB-type velvet regulators that are highly conserved in filamentous fungi. Here, we investigated the roles of the velvet genes in the aflatoxigenic fungus Aspergillus flavus. Distinct from other Aspergillus species, the A. flavus genome contains five velvet genes, veA, velB, velC, velD, and vosA. The deletion of velD blocks the production of aflatoxin B1, but does not affect the formation of sclerotia. Expression analyses revealed that vosA and velB mRNAs accumulated at high levels during the late phase of asexual development and in conidia. The absence of vosA or velB decreased the content of conidial trehalose and the tolerance of conidia to the thermal and UV stresses. In addition, double mutant analyses demonstrated that VosA and VelB play an inter-dependent role in trehalose biosynthesis and conidial stress tolerance. Together with the findings of previous studies, the results of the present study suggest that the velvet regulators play the conserved and vital role in sporogenesis, conidial trehalose biogenesis, stress tolerance, and aflatoxin biosynthesis in A. flavus.  相似文献   

4.
Aspergillus flavus and Aspergillus parasiticus cause perennial infection of agriculturally important crops in tropical and subtropical areas. Invasion of crops by these fungi may result in contamination of food and feed by potent carcinogenic aflatoxins. Consumption of aflatoxin contaminated foods is a recognised risk factor for human hepatocellular carcinoma (HCC) and may contribute to the high incidence of HCC in Southeast Asia. This study conducted a survey of Vietnamese crops (peanuts and corn) and soil for the presence of aflatoxigenic fungi and used microsatellite markers to investigate the genetic diversity of Vietnamese Aspergillus strains. From a total of 85 samples comprising peanut (25), corn (45) and soil (15), 106 strains were isolated. Identification of strains by colony morphology and aflatoxin production found all Vietnamese strains to be A. flavus with no A. parasiticus isolated. A. flavus was present in 36.0% of peanut samples, 31.1% of corn samples, 27.3% of farmed soil samples and was not found in virgin soil samples. Twenty-five per cent of the strains produced aflatoxins. Microsatellite analysis revealed a high level of genetic diversity in the Vietnamese A. flavus population. Clustering, based on microsatellite genotype, was unrelated to aflatoxin production, geographic origin or substrate origin.  相似文献   

5.
The aflatoxin-producing fungi, Aspergillus flavus and A. parasiticus, form structures called sclerotia that allow for survival under adverse conditions. Deletion of the veA gene in A. flavus and A. parasiticus blocks production of aflatoxin as well as sclerotial formation. We used microarray technology to identify genes differentially expressed in wild-type veA and veA mutant strains that could be involved in aflatoxin production and sclerotial development in A. flavus. The DNA microarray analysis revealed 684 genes whose expression changed significantly over time; 136 of these were differentially expressed between the two strains including 27 genes that demonstrated a significant difference in expression both between strains and over time. A group of 115 genes showed greater expression in the wild-type than in the veA mutant strain. We identified a subgroup of veA-dependent genes that exhibited time-dependent expression profiles similar to those of known aflatoxin biosynthetic genes or that were candidates for involvement in sclerotial production in the wild type.  相似文献   

6.
Aspergillus flavus is the second most important Aspergillus species causing human infections. The importance of this fungus increases in regions with a dry and hot climate. Small phylogenetic studies in Aspergillus flavus indicate that the morphological species contains several genetically isolated species. Different genotyping methods have been developed and employed in order to better understand the genetic and epidemiological relationships between environmental and clinical isolates. Understanding pathogen distribution and relatedness is essential for determining the epidemiology of nosocomial infections and aiding in the design of rational pathogen control methods. Typing techniques can also give us a deeper understanding of the colonization pattern in patients. Most of these studies focused on Aspergillus fumigatus because it is medically the most isolated species. To date, there has not been any publication exclusively reviewing the molecular typing techniques for Aspergillus flavus in the literature. This article reviews all these different available methods for this organism.  相似文献   

7.
Important staple foods (peanuts, maize and rice) are susceptible to contamination by aflatoxin (AF)-producing fungi such as Aspergillus flavus. The objective of this study was to explore non-aflatoxin-producing (atoxigenic) A. flavus strains as biocontrol agents for the control of AFs. In the current study, a total of 724 A. flavus strains were isolated from different regions of China. Polyphasic approaches were utilized for species identification. Non-aflatoxin and non-cyclopiazonic acid (CPA)-producing strains were further screened for aflatoxin B1 (AFB1) biosynthesis pathway gene clusters using a PCR assay. Strains lacking an amplicon for the regulatory gene aflR were then analyzed for the presence of the other 28 biosynthetic genes. Only 229 (32%) of the A. flavus strains were found to be atoxigenic. Smaller (S) sclerotial phenotypes were dominant (51%) compared to large (L, 34%) and non-sclerotial (NS, 15%) phenotypes. Among the atoxigenic strains, 24 strains were PCR-negative for the fas-1 and aflJ genes. Sixteen (67%) atoxigenic A. flavus strains were PCRnegative for 10 or more of the biosynthetic genes. Altogether, 18 new PCR product patterns were observed, indicating great diversity in the AFB1 biosynthesis pathway. The current study demonstrates that many atoxigenic A. flavus strains can be isolated from different regions of China. In the future laboratory as well as field based studies are recommended to test these atoxigenic strains as biocontrol agents for aflatoxin contamination.  相似文献   

8.
9.
Lichtheimia corymbifera and Aspergillus flavus pulmonary coinfection has been rarely reported in immune-competent patients. We report case of a young male who presented with clinical features of pulmonary-renal syndrome and was later diagnosed to have bilateral polymicrobial fungal lung infection.  相似文献   

10.
Two repeated DNA sequences isolated from a partial genomic DNA library of Helianthus annuus, p HaS13 and p HaS211, were shown to represent portions of the int gene of a Ty3 /gypsy retroelement and of the RNase-Hgene of a Ty1 /copia retroelement, respectively. Southern blotting patterns obtained by hybridizing the two probes to BglII- or DraI-digested genomic DNA from different Helianthus species showed p HaS13 and p HaS211 were parts of dispersed repeats at least 8 and 7 kb in length, respectively, that were conserved in all species studied. Comparable hybridization patterns were obtained in all species with p HaS13. By contrast, the patterns obtained by hybridizing p HaS211 clearly differentiated annual species from perennials. The frequencies of p HaS13- and p HaS211-related sequences in different species were 4.3x10(4)-1.3x10(5) copies and 9.9x10(2)-8.1x10(3) copies per picogram of DNA, respectively. The frequency of p HaS13-related sequences varied widely within annual species, while no significant difference was observed among perennial species. Conversely, the frequency variation of p HaS211-related sequences was as large within annual species as within perennials. Sequences of both families were found to be dispersed along the length of all chromosomes in all species studied. However, Ty3 /gypsy-like sequences were localized preferentially at the centromeric regions, whereas Ty1/ copia-like sequences were less represented or absent around the centromeres and plentiful at the chromosome ends. These findings suggest that the two sequence families played a role in Helianthusgenome evolution and species divergence, evolved independently in the same genomic backgrounds and in annual or perennial species, and acquired different possible functions in the host genomes.  相似文献   

11.
Aflatoxins are toxic and carcinogenic secondary metabolites produced by the fungi Aspergillus flavus and Aspergillus parasiticus. To better understand the molecular mechanisms that regulate aflatoxin production, the biosynthesis of the toxin in A. flavus and A. parasticus grown in yeast extract sucrose media supplemented with 50 mM tryptophan (Trp) were examined. Aspergillus flavus grown in the presence of 50 mM tryptophan was found to have significantly reduced aflatoxin B1 and B2 biosynthesis, while A. parasiticus cultures had significantly increased B1 and G1 biosynthesis. Microarray analysis of RNA extracted from fungi grown under these conditions revealed 77 genes that are expressed significantly different between A. flavus and A. parasiticus, including the aflatoxin biosynthetic genes aflD (nor-1), aflE (norA), and aflO (omtB). It is clear that the regulatory mechanisms of aflatoxin biosynthesis in response to Trp in A. flavus and A. parasiticus are different. These candidate genes may serve as regulatory factors of aflatoxin biosynthesis.  相似文献   

12.
A revision of Penstemon sect. Saccanthera subsect. Serrulati includes a new species (P. salmonensis), a new variety (P. triphyllus var. infernalis), and the elevation of a subspecies to species (P. curtiflorus), bringing the total number of species to eight, which are keyed and described, complete with nomenclature and type citations.  相似文献   

13.
SnRK2s are a large family of plant-specific protein kinases, which play important roles in multiple abiotic stress responses in various plant species. But the family in Gossypium has not been well studied. Here, we identified 13, 10, and 13 members of the SnRK2 family from Gossypium raimondii, Gossypium arboreum, and Gossypium hirsutum, respectively, and analyzed the locations of SnRK2 homologs in chromosomes based on genome data of cotton species. Phylogenetic tree analysis of SnRK2 proteins showed that these families were classified into three groups. All SnRK2 genes were comprised of nine exons and eight introns, and the exon distributions and the intron phase of homolog genes among different cotton species were analogous. Moreover, GhSnRK2.6 was overexpressed in Arabidopsis and upland cotton, respectively. Under salt treatment, overexpressed Arabidopsis could maintain higher biomass accumulation than wild-type plants, and GhSnRK2.6 overexpression in cotton exhibited higher germination rate than the control. So, the gene GhSnRK2.6 could be utilized in cotton breeding for salt tolerance.  相似文献   

14.

Main conclusion

Strigolactones (SLs) do not influence spore germination or hyphal growth of Fusarium oxysporum. Mutant studies revealed no role for SLs but a role for ethylene signalling in defence against this pathogen in pea. Strigolactones (SLs) play important roles both inside the plant as a hormone and outside the plant as a rhizosphere signal in interactions with mycorrhizal fungi and parasitic weeds. What is less well understood is any potential role SLs may play in interactions with disease causing microbes such as pathogenic fungi. In this paper we investigate the influence of SLs on the hemibiotrophic pathogen Fusarium oxysporum f.sp. pisi both directly via their effects on fungal growth and inside the plant through the use of a mutant deficient in SL. Given that various stereoisomers of synthetic and naturally occuring SLs can display different biological activities, we used (+)-GR24, (?)-GR24 and the naturally occurring SL, (+)-strigol, as well as a racemic mixture of 5-deoxystrigol. As a positive control, we examined the influence of a plant mutant with altered ethylene signalling, ein2, on disease development. We found no evidence that SLs influence spore germination or hyphal growth of Fusarium oxysporum and that, while ethylene signalling influences pea susceptibility to this pathogen, SLs do not.
  相似文献   

15.
Genome sequencing for many important fungi has begun during recent years; however, there is still some deficiency in proteome profiling of aspergilli. To obtain a comprehensive overview of proteins and their expression, a proteomic approach based on 2D gel electrophoresis and MALDI-TOF/TOF mass spectrometry was used to investigate A. ochraceus. The cell walls of fungi are exceptionally resistant to destruction, therefore two lysis protocols were tested: (1) lysis via manual grinding using liquid nitrogen, and (2) mechanical lysis via rapid agitation with glass beads using MagNalyser. Mechanical grinding with mortar and pestle using liquid nitrogen was found to be a more efficient extraction method for our purpose, resulting in extracts with higher protein content and a clear band pattern in SDS-PAGE. Two-dimensional electrophoresis gave a complex spot pattern comprising proteins of a broad range of isoelectric points and molecular masses. The most abundant spots were subjected to mass spectrometric analysis. We could identify 31 spots representing 26 proteins, most of them involved in metabolic processes and response to stress. Seventeen spots were identified by de novo sequencing due to a lack of DNA and protein database sequences of A. ochraceus. The proteins identified in our study have been reported for the first time in A. ochraceus and this represents the first proteomic approach with identification of major proteins, when the fungus was grown under submerged culture.  相似文献   

16.

Background  

Yersinia enterocolitica is an enteric pathogen that invades the intestinal mucosa and proliferates within the lymphoid follicles (Peyer's patches). The attachment invasion locus (ail) mediates invasion by Y. enterocolitica and confers an invasive phenotype upon non-invasive E. coli; ail is the primary virulence factor of Y. enterocolitica. The ferrioxamine receptor (foxA) located on the Y. enterocolitica chromosome, together with its transport protein, transports a siderophore specific for ferric ion. Currently, ail is the primary target gene for nucleic acid detection of pathogenic Y. enterocolitica.  相似文献   

17.
Tropilaelaps mercedesae is a serious ectoparasite of Apis mellifera in China. The aim of this study was to investigate the infestation rates and intensity of T. mercedesae in A. mellifera in China, and to explore the relative importance of climate, district, management practices and beekeeper characteristics that are assumed to be associated with the intensity of T. mercedesae. Of the 410 participating apiaries, 379 apiaries were included in analyses of seasonal infestation rates and 352 apiaries were included in multivariable regression analysis. The highest infestation rate (86.3%) of T. mercedesae was encountered in autumn, followed by summer (66.5%), spring (17.2%) and winter (14.8%). In autumn, 28.9% (93) of the infested apiaries were in the north (including the northeast and northwest of China), 71.1% (229) were in the central and south (including east, southeast and southwest China), and 306 apiaries (82.9%) were co-infested by both T. mercedesae and Varroa. Multivariable regression analysis showed that geographical location, season, royal jelly collection and Varroa infestation were the factors that influence the intensity of T. mercedesae. The influence of beekeeper’s education, time of beekeeping, operation size, and hive migration on the intensity of T. mercedesa was not statistically significant. This study provided information about the establishment of the linkage of the environment and the parasite and could lead to better timing and methods of control.  相似文献   

18.
Studying Pneumocystis has proven to be a challenge from the perspective of propagating a significant amount of the pathogen in a facile manner. The study of several fungal pathogens has been aided by the use of invertebrate model hosts. Our efforts to infect the invertebrate larvae Galleria mellonella with Pneumocystis proved futile since P. murina neither caused disease nor was able to proliferate within G. mellonella. It did, however, show that the pathogen could be rapidly cleared from the host.  相似文献   

19.
Aspergillus flavus is a fungus that principally obtains resources for growth in a saprophytic mode. Yet, it also possesses the characteristics of an opportunistic pathogen with a wide, non-specific host range (plants, animals, and insects). It has attained a high level of agricultural significance due to production of the carcinogen aflatoxin, which significantly reduces the value of contaminated crops. To access a large variety of nutrient substrates and penetrate host tissues, A. flavus possesses the capacity to produce numerous extracellular hydrolases. Most work on A. flavus hydrolases has focused on the serine and metalloproteinases, pectinase P2c, and amylase. Many hydrolases are presumed to function in polymer degradation and nutrient capture, but the regulation of hydrolase secretion is complex and substrate dependent. Proteinases are employed not only to help access protein substrates, such as elastin that is found in mammals and insects, but may also play roles in fungal defense and virulence. Secretion of the endopolygalacturonase P2c is strongly correlated with isolate virulence (against plants) and maceration of cotton boll tissues. In some hosts, secretion of α-amylase is critical for starch digestion and may play a critical role in induction of aflatoxin biosynthesis. Despite a significant body of work, much remains to be learned about hydrolase production and utilization by A. flavus. This information may be critical for the formulation of successful strategies to control aflatoxin contamination in affected commodities.  相似文献   

20.
Pistachio is a popular snack food. Aflatoxin contamination of pistachio nuts is a serious problem for many producing countries. The development of biological control methods based on ecological parameters is an environmentally friendly approach. Thirty-eight Aspergillus flavus isolates collected from a pistachio orchard in California (CA) were analyzed for production of aflatoxin (AF), cyclopiazonic acid (CPA), vegetative compatibility groups (VCGs), and mating types. All aflatoxigenic isolates produced both AFB1 and CPA. The most toxigenic one was CA28 which produced 164 μg AFB1 per 5 ml PDA fungal culture and small sclerotia (S strain, sclertoium size less than 400 μm). The other aflatoxigenic strains produce AFB1 ranging from 1.2 μg to 80 μg per 5 ml fungal culture. Twenty-one percent of the CA isolates produced AFB1, 84% produced CPA and half formed sclerotia on at least one of three tested media. The 38 CA isolates formed 26 VCGs, 6 of which had two or more isolates and 20 contained single isolates. The S strain isolates belong to 4 different VCGs. Genomic profiling by a retrotransposon DNA probe revealed fingerprint patterns that were highly polymorphic. The predicted VCGs (Pred-VCGs) based on a similarity coefficient >80% matched the VCGs of multiple isolates determined by complementation. All isolates within a VCG had the same mating-type gene of either MAT1-1 or MAT1-2. Uncorrected and VCG-corrected MAT1-1 and MAT1-2 among the isolates were equally distributed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号