首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Russian wheat aphid is a significant pest problem in wheat and barley in North America. Genetic resistance in wheat is the most effective and economical means to control the damage caused by the aphid. Dn7 is a rye gene located on chromosome 1RS that confers resistance to the Russian wheat aphid. The gene was previously transferred from rye into a wheat background via a 1RS/1BL translocation. This study was conducted to genetically map Dn7 and to characterize the type of resistance the gene confers. The resistant line '94M370' was crossed with a susceptible wheat cultivar that also contains a pair of 1RS/1BL translocation chromosomes. The F2 progeny from this cross segregated for resistance in a ratio of 3 resistant: 1 susceptible, indicating a single dominant gene. One-hundred and eleven RFLP markers previously mapped on wheat chromosomes 1A, 1B and 1D, barley chromosome 1H and rye chromosome 1R, were used to screen the parents for polymorphism. A genetic map containing six markers linked to Dn7, encompassing 28.2 cM, was constructed. The markers flanking Dn7 were Xbcd1434 and XksuD14, which mapped 1.4 cM and 7.4 cM from Dn7, respectively. Dn7 confers antixenosis, and provides a higher level of resistance than that provided by Dn4. The applications of Dn7 and the linked markers in wheat breeding are discussed.Communicated by J. Dvorak  相似文献   

2.
Peng JH  Bai Y  Haley SD  Lapitan NL 《Genetica》2009,135(1):95-122
Genetic diversity of a set of 71 wheat accessions, including 53 biotype 2 Russian wheat aphid (RWA2)-resistant landraces and 18 RWA2 susceptible accessions, was assessed by examining molecular variation at multiple microsatellite (SSR) loci. Fifty-one wheat SSR primer pairs were used, 81 SSR loci were determined, and 545 SSR alleles were detected. These SSR loci covered all the three genomes, 21 chromosomes, and at least 41 of the 42 chromosome arms. Diversity values averaged over SSR loci were high with mean number of SSR alleles/locus = 6.7, mean Shannon’s index (H) = 1.291, and mean Nei’s gene diversity (He) = 0.609. The three wheat genomes ranked as A > D > B and the homoeologous groups ranked as 7 > 3  > 1 > 2 > 6 > 5 > 4 based on the number of alleles per locus. Xgwm136 on chromosome arm 1AS is the most polymorphic SSR locus with the largest number of observed and effective alleles and the highest H and He. Among all 2485 pairs of wheat accessions, genetic distance (GD) ranged from 0.054 to 1.933 and averaged 0.9832. A dendrogram based on GD matrix showed that all the wheat accessions could be grouped into distinct clusters. Most of the susceptible cultivars (13/18) were clustered into groups that contains all or mostly susceptible accessions. Most of the U.S. cultivars belong to a group that is distinguishable from all the different RWA2 resistant groups. Diversity analysis was also conducted separately for subgroups containing 53 RWA2-resistant accessions and 18 RWA2-susceptible accessions. Association mapping revealed 28 SSR loci significantly associated with leaf chlorosis, and 8 with leaf rolling. New chromosome regions associated with RWA2 resistance were detected, and indicated existence of new RWA resistance genes located on chromosomes of all other homoeologous groups in addition to the groups 1 and 7 in bread wheat. This information is helpful for development of mapping populations for RWA2 resistance genes from different phylogenetic groups, and for wise utilization of the RWA-resistant germplasm in wheat breeding programs.  相似文献   

3.
The Russian wheat aphid (RWA), Diuraphis noxia Mordvilko, is a serious economic pest of wheat and barley in North America, South America, and South Africa. Using aphid-resistant cultivars has proven to be a viable tactic for RWA management. Several dominant resistance genes have been identified in wheat, Triticum aestivum, including Dn1 in PI 137739, Dn2 in PI 262660, and at least three resistance genes (Dn5+) in PI 294994. The identification of RWA-resistant genes and the development of resistant cultivars may be accelerated through the use of molecular markers. DNA of wheat from near-isogenic lines and segregating F2 populations was amplified with microsatellite primers via PCR. Results revealed that the locus for wheat microsatellite GWM111 (Xgwm111), located on wheat chromosome 7DS (short arm), is tightly linked to Dn1, Dn2 and Dn5, as well as Dnx in PI 220127. Segregation data indicate RWA resistance in wheat PI 220127 is also conferred by a single dominant resistance gene (Dnx). These results confirm that Dn1, Dn2 and Dn5 are tightly linked to each other, and provide new information about their location, being 7DS, near the centromere, instead of as previously reported on 7DL. Xgwm635 (near the distal end of 7DS) clearly marked the location of the previously suggested resistance gene in PI 294994, here designated as Dn8. Xgwm642 (located on 1DL) marked and identified another new gene Dn9, which is located in a defense gene-rich region of wheat chromosome 1DL. The locations of markers and the linked genes were confirmed by di-telosomic and nulli-tetrasomic analyses. Genetic linkage maps of the above RWA resistance genes and markers have been constructed for wheat chromosomes 1D and 7D. These markers will be useful in marker-assisted breeding for RWA-resistant wheat. Received: 17 May 2000 / Accepted: 13 June 2000  相似文献   

4.
 RAPD (random amplified polymorphic DNA) analysis was used to identify molecular markers linked to the Dn2 gene conferring resistance to the Russian wheat aphid (Diuraphis noxia Mordvilko). A set of near-isogenic lines (NILs) was screened with 300 RAPD primers for polymorphisms linked to the Dn2 gene. A total of 2700 RAPD loci were screened for linkage to the resistance locus. Four polymorphic RAPD fragments, two in coupling phase and two in repulsion phase, were identified as putative RAPD markers for the Dn2 gene. Segregation analysis of these markers in an F2 population segregating for the resistance gene revealed that all four markers were closely linked to the Dn2 locus. Linkage distances ranged from 3.3 cM to 4.4 cM. Southern analysis of the RAPD products using the cloned RAPD markers as probes confirmed the homology of the RAPD amplification products. The coupling-phase marker OPB10880c and the repulsion-phase marker OPN1400r were converted to sequence characterized amplified region (SCAR) markers. SCAR analysis of the F2 population and other resistant and susceptible South African wheat cultivars corroborated the observed linkage of the RAPD markers to the Dn2 resistance locus. These markers will be useful for marker-assisted selection of the Dn2 gene for resistance breeding and gene pyramiding. Received: 1 July 1997 / Accepted: 20 October 1997  相似文献   

5.
The winter wheat cultivar Red Chief has been identified as the wheat cultivar most resistant toPyrenophora tritici-repentis (Ptr). This study was undertaken to determine the inheritance, chromosomal location and molecular mapping of a tan spot resistance gene in Red Chief. χ2 analysis of the F2 segregation data of the hybrids between 21 monosomic lines of the susceptible wheat cultivar Chinese Spring and the resistant cultivar Red Chief revealed that tan spot resistance in cv. Red Chief is controlled by a single recessive gene located on chromosome 3A. Linkage analysis using SSR markers in the Red Chief/Chinese Spring F2 population showed that thetsr4 gene is clustered in the region aroundXgwm2a, on the short arm of chromosome 3A. This marker has also been identified as the closest marker to thetsr3 locus on chromosome 3D in synthetic wheat lines. Validation analysis of this marker for thetsr3 andtsr4 genes using 28 resistant and 6 susceptible genotypes indicated that the 120 bp allele (thetsr3 gene) specific fragment was observed in 11 resistant genotypes, including the three synthetic lines XX41, XX45 and XX110, while the 130 bp allele was amplified only in cv. Red Chief and Dashen.Xgwm2a can be used to trace the presence of the target gene in successive backcross generations and pyramiding of thetsr3 &tsr4 genes into a commonly grown and adaptable cultivar.  相似文献   

6.
The effect of Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), infestation on the hydrogen peroxide (H(2)O(2)) content and NADPH oxidase (EC 1.6.3.1) activity was studied in the resistant (cv. Tugela DN) and near-isogenic susceptible (cv. Tugela) wheat (Triticum aestivum L.). The objective of this study was to investigate the involvement of the reactive oxygen species (ROS) during the resistance responses against the RWA. Infestation significantly induced an early accumulation of the H(2)O(2) and increase of NADPH oxidase activity to higher levels in the resistant than susceptible plants. Results of inhibitory studies using diphenylene iodonium (DPI), a suicide inhibitor of NADPH oxidase, strongly suggested a possible signalling role for H(2)O(2) during RWA resistance response by activation of downstream defence enzymes [intercellular peroxidase (EC 1.11.1.7) and beta-1,3-glucanase (EC 3.2.1.39)].  相似文献   

7.
The Russian wheat aphid, Diuraphis noxia (Mordvilko), is a serious worldwide pest of wheat and barley. Russian wheat aphid populations from Hungary, Russia, and Syria have previously been identified as virulent to D. noxia (Dn) 4, the gene in all Russian wheat aphid-resistant cultivars produced in Colorado. However, the virulence of Russian wheat aphid populations from central Europe, North Africa, and South America to existing Dn genes has not been assessed. Experiments with plants containing several different Dn genes demonstrated that populations from Chile, the Czech Republic, and Ethiopia are also virulent to Dn4. The Czech population was also virulent to plants containing the Dnx gene in wheat plant introduction PI220127. The Ethiopian population was also virulent to plants containing the Dny gene in the Russian wheat aphid-resistant 'Stanton' produced in Kansas. The Chilean and Ethiopian populations were unaffected by the antibiosis resistance in Dn4 plants. There were significantly more nymphs of the Chilean population on plants of Dn4 than on Dn6 plants at both 18 and 23 d postinfestation, and the Ethiopian population attained a significantly greater weight on Dn4 plants than on plants containing Dn5 or Dn6. These newly characterized virulent Russian wheat aphid populations pose a distinct threat to existing or proposed wheat cultivars possessing Dn4.  相似文献   

8.
Elicitors are molecules which can induce the activation of plant defence responses. Elicitor activity of intercellular wash fluid from Russian wheat aphid, Diuraphis noxia (Mordvilko) infested resistant (cv Tugela DN), and susceptible (cv Tugela), wheat (Triticum aestivum L.), was investigated. Known Russian wheat aphid resistance related responses such as peroxidase and beta-1,3-glucanase activities were used as parameters of elicitor activity. The intercellular wash fluid from infested resistant plants contains high elicitor activity while that from infested susceptible plants contains no or very little elicitor activity. After applying C-18 reverse phase and concanavalin A Sepharose chromatography, elicitor active glycoproteins were isolated from the intercellular wash fluid of Russian wheat aphid infested resistant wheat. The elicitor-active glycoproteins separated into three polypeptides during sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isolated glycoproteins elicited peroxidase activity to higher levels in resistant than in susceptible cultivars. It was evident that the glycoproteins were probably a general elicitor of plant origin. Information gained from these studies is valuable for the development of plant activators to enhance the defence responses of plants.  相似文献   

9.
Melanaphis sacchari causes serious damage to sorghum (Sorghum bicolor (L.) Moench) growth, development and productivity in many countries. A dominant gene (RMES1) conferring resistance to M. sacchari has been found in the grain sorghum variety Henong 16 (HN16), but fine mapping of the RMES1 locus remains to be reported. In this study, genetic populations segregating for RMES1 were prepared with HN16 and BTx623 as parental lines. The latter had been used for sorghum genome sequencing but was found to be susceptible to M. sacchari in this work. A total of 11 molecular markers were mapped to the short arm of chromosome 6 harboring RMES1. The closest markers flanking the RMES1 locus were Sb6m2650 and Sb6rj2776, which delimited a chromosomal region of about 126 kb containing five predicted genes. The utility of the newly identified DNA markers for tagging RMES1 in molecular breeding of M. sacchari resistance, and further efforts in cloning RMES1, are discussed.  相似文献   

10.
It is hypothesized that the interaction between aphids and plants follows a gene-for-gene model. The recent appearance of several new Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Homoptera: Aphididae), biotypes in the United States and the differential response of wheat, Triticum aestivum L., genotypes containing different resistance genes also suggest a gene-for-gene interaction. However, aphid elicitors remain unknown. This study was conducted to identify fractionated Russian wheat aphid extracts capable of eliciting differential responses between resistant and susceptible wheat genotypes. We extracted whole soluble compounds and separated proteins and metabolites from two Russian wheat aphid biotypes (1 and 2), injected these extracts into seedlings of susceptible wheat Gamtoos (dn7) and resistant 94M370 (Dn7), and determined phenotypic and biochemical plant responses. Injections of whole extract or protein extract from both biotypes induced the typical susceptible symptom, leaf rolling, in the susceptible cultivar, but not in the resistant cultivar. Furthermore, multiple injections with protein extract from biotype 2 induced the development of chlorosis, head trapping, and stunting in susceptible wheat. Injection with metabolite, buffer, or chitin, did not produce any susceptible symptoms in either genotype. The protein extract from the two biotypes also induced significantly higher activities of three defense-response enzymes (catalase, peroxidase, and beta-glucanase) in 94M370 than in Gamtoos. These results indicate that a protein elicitor from the Russian wheat aphid is recognized by a plant receptor, and the recognition is mediated by the Dn7-gene product. The increased activities of defense-response enzymes in resistant plants after injection with the protein fraction suggest that defense response genes are induced after recognition of aphid elicitors by the plant.  相似文献   

11.
The soybean aphid (Aphis glycines Matsumura) is an important soybean [Glycine max (L.) Merr.] pest in North America. The dominant aphid resistance gene Rag1 was previously mapped from the cultivar ‘Dowling’ to a 12 cM marker interval on soybean chromosome 7 (formerly linkage group M). The development of additional genetic markers mapping closer to Rag1 was needed to accurately position the gene to improve the effectiveness of marker-assisted selection (MAS) and to eventually clone it. The objectives of this study were to identify single nucleotide polymorphisms (SNPs) near Rag1 and to position these SNPs relative to Rag1. To generate a fine map of the Rag1 interval, 824 BC4F2 and 1,000 BC4F3 plants segregating for the gene were screened with markers flanking Rag1. Plants with recombination events close to the gene were tested with SNPs identified in previous studies along with new SNPs identified from the preliminary Williams 82 draft soybean genome shotgun sequence using direct re-sequencing and gene-scanning melt-curve analysis. Progeny of these recombinant plants were evaluated for aphid resistance. These efforts resulted in the mapping of Rag1 between the two SNP markers 46169.7 and 21A, which corresponds to a physical distance on the Williams 82 8× draft assembly (Glyma1.01) of 115 kilobase pair (kb). Several candidate genes for Rag1 are present within the 115-kb interval. The markers identified in this study that are closely linked to Rag1 will be a useful resource in MAS for this important aphid resistance gene.  相似文献   

12.
The Russian wheat aphid (Diuraphis noxia) is a pest on wheat (Triticum aestivum) in many regions of the world. The aphid injects a phytotoxin when it feeds. Identification of somaclonal variants with phytotoxin resistance may shorten development time for resistance. Wheat calli from the susceptible cultivar Stephens were exposed to an extract from the aphid. Five plants were regenerated from 100 treated calli. Resistance to the aphid was observed in both the R2 and R3 generations. One of the six R3 populations had improved resistance for leaf curling and leaf folding, while another had improved response for chlorosis damage. These results indicate that the use of aphid extract on wheat callus offers an alternate method for development of resistance to the Russian wheat aphid.  相似文献   

13.
Previous field experiments indicated that the presence of the bird cherry-oat aphid, Rhopalosiphum padi (L.), on perennial grasses can decrease the effectiveness of predatory lacewings, Chrysoperla plorabunda (Fitch), in reducing populations of the Russian wheat aphid, Diuraphis noxia (Mordvilko). We tested the hypothesis that R. padi deflects predation away from D. noxia because it feeds in sites that are more accessible to predators. We quantified the behavior of lacewing larvae on crested wheatgrass plants bearing either D. noxia alone or an equal mixture of D. noxia and R. padi. On non-flowering plants, R. padi typically occurred on leaf sheaths or open blades, and was encountered and captured more often than D. noxia, which usually fed within immature, rolled leaves. Overall time-budgets of lacewings did not differ between the pure-D. noxia and mixed-species treatments, but >75% of the time spent consuming aphids in the mixed-species treatment was devoted to R. padi. On flowering plants, D. noxia usually aggregated on the flag leaf below the inflorescence, whereas R. padi occurred mostly on leaf sheaths. Predators again captured R. padi more often than D. noxia, and spent more time consuming aphids in the mixed-species treatment than in the pure-D. noxia treatment. These behavioral observations support the hypothesis that non-target prey can hamper the short-term effectiveness of biological-control agents against D. noxia.  相似文献   

14.
Genetic linkage mapping of the soybean aphid resistance gene in PI 243540   总被引:1,自引:0,他引:1  
The soybean aphid (Aphis glycines Matsumura) is a pest of soybean [Glycine max (L.) Merr.] in many soybean growing countries of the world, mainly in Asia and North America. A single dominant gene in PI 243540 confers resistance to the soybean aphid. The objectives of this study were to identify simple sequence repeat (SSR) markers closely linked to the gene in PI 243540 and to position the gene on the consensus soybean genetic map. One hundred eighty-four F(2) plants and their F(2:3) families from a cross between the susceptible cultivar Wyandot and PI 243540, and the two parental lines were screened with the Ohio biotype of soybean aphid using greenhouse choice tests. A SSR marker from each 10-cM section of the consensus soybean map was selected for bulked segregant analysis (BSA) to identify the tentative genomic location of the gene. The BSA technique was useful to localize the gene to a genomic region in soybean linkage group (LG) F. The entire F(2) population was then screened with polymorphic SSR markers from this genomic region and a linkage map with nine SSR markers flanking the gene was constructed. The aphid resistance gene was positioned in the interval between SSR markers Satt334 and Sct_033 on LG F. These SSR markers will be useful for marker assisted selection of this gene. The aphid resistance gene from PI 243540 mapped to a different linkage group than the only named soybean aphid resistance gene, Rag1, from 'Dowling'. Also, the responses of the two known biotypes of the soybean aphid to the gene from PI 243540 and Rag1 were different. Thus, the aphid resistance gene from PI 243540 was determined to be a new and independent gene that has been named Rag2.  相似文献   

15.
A field experiment was conducted to determine whether resistance to Russian wheat aphid, Diuraphis noxia (Mordvilko), conferred by the Dn4 gene is affected by genetic background. This was done by comparing the yield responses to Russian wheat aphid-resistant wheat containing Dn4, derived through the backcross method, to those of the corresponding recurrent parents. Infested resistant cultivars had fewer Russian wheat aphids per tiller than infested susceptible cultivars at the Lamar and Fort Collins, CO sites but not at the Akron, CO site. At the Lamar site, resistant cultivars yielded more than the susceptible cultivars. 'Prairie Red' and 'Yumar' were more resistant than 'Prowers', especially at the higher infestation level. Resistance in these cultivars was categorized in a laboratory experiment to confirm this differential expression of resistance. Resistance in Prairie Red, 'Halt', 'Prowers 99', and Yumar was categorized at three plant growth stages. Antibiosis was expressed as reductions in maximum number of nymphs produced per 24 h and intrinsic rate of increase. The maximum number of nymphs produced per 24 h was reduced in Halt and 'Lamar'. Averaged over cultivars, the intrinsic rate of increase was less at jointing than at the seedling or tillering growth stages. Tolerance was expressed in the resistant cultivars as reduced chlorosis and leaf rolling. Growth reductions in infested Prowers 99 plants was less than the other cultivars. This study confirms that some cultivars containing Dn4 may express antibiosis and tolerance, whereas others may not show the same categories. Thus, expression is affected by genetic background.  相似文献   

16.
Broadening the genetic base for resistance to Russian wheat aphid, Diuraphis noxia (Mordvilko) (Homoptera: Aphididae), in bread wheat, Triticum aestivum L., is desirable. To date, identified Russian wheat aphid resistance genes are either located to the D chromosomes or to rye translocation of wheat, and resistance derived from the A or B genomes of tetraploid Triticum spp. would therefore be highly beneficial. Fifty-eight synthetic hexaploid wheat, derived from interspecific crosses of Triticum dicoccum Schrank. and Aegilops tauschii (Coss.) Schmal. and their parents were evaluated for resistance to Russian wheat aphid under field conditions. Plots infested with aphids were compared with plots protected with insecticides. The T. dicoccum parents were highly resistant to Russian wheat aphids, whereas the Ae. tauschii parents were susceptible. Resistance levels observed in the synthetic hexaploids were slightly below the levels of their T. dicoccum parents when a visual damage scale was used. but no major resistance suppression was observed among the synthetics. Russian wheat aphid infestation on average reduced plant height and kernel weight at harvest in the synthetic hexaploids and the T. dicoccum parents by 3-4%, whereas the susceptible control 'Seri M82' suffered losses of above 20%. Because resistance in the synthetic hexaploid wheat is derived from their T. dicoccum parent, resistance gene(s) must be located on the A and/or B genomes. They must therefore be different from previously identified Russian wheat aphid resistance genes, which have all been located on the D genome of wheat or on translocated segments.  相似文献   

17.
A study to determine yield response to the Russian wheat aphid, Diuraphis noxia (Mordvilko), was conducted during the 1997-1998 and 1998-1999 growing seasons at three eastern Colorado locations, Akron, Fort Collins, and Lamar, with three wheat lines containing either Russian wheat aphid-resistant Dn4 gene, Dn6 gene, or resistance derived from PI 222668, and TAM 107 as the susceptible control. Russian wheat aphids per tiller were greater on TAM 107 than the resistant wheat lines at the 10x infestation level at Fort Collins and Akron in 1999. Yield, seed weight, and number of seeds per spike for each wheat line were somewhat affected by Russian wheat aphid per tiller mainly at Fort Collins. The infested resistant wheat lines harbored fewer Russian wheat aphids and yielded more than the infested susceptible wheat lines. Wheat lines containing the Dn4, Dn6, and PI 222668 genes contain different levels of antibiosis or antixenosis and tolerance. Although differences existed among sites and resistance, there is a benefit to planting resistant wheat when there is a potential for Russian wheat aphid infestations.  相似文献   

18.
A crucial function of antioxidative enzymes is to remove excess reactive oxygen species (ROS), which can be toxic to plant cells. The effect of Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), infestation on the activities of antioxidative enzymes was investigated in the resistant (cv. Tugela DN) and the near-isogenic susceptible (cv. Tugela) wheat (Triticum aestivum L.). RWA infestation significantly induced the activity of superoxide dismutase, glutathione reductase and ascorbate peroxidase to higher levels in the resistant than in susceptible plants. These findings suggest the involvement of antioxidative enzymes in the RWA-wheat resistance response, which was accompanied by an early oxidative burst. The results are consistent with the role of ROS in the resistance response and the control of their levels to minimise toxic effects.  相似文献   

19.
The Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), is a serious economic pest of wheat worldwide. Host plant resistance is the preferred method to control RWA infestations. The identification and mapping of RWA-resistant genes and the development of resistant wheat cultivars can be facilitated through the use of molecular markers. In the present study, microsatellite (SSR) markers linked to the RWA-resistant genes Dn4 and Dn6 were identified using several F(2) mapping populations derived from crosses of susceptible wheat cultivars and resistant sources. Two flanking microsatellite markers Xgwm106 and Xgwm337 are linked in coupling phase with Dn4 on the short arm of wheat chromosome 1D at 7.4 cM and 12.9 cM, respectively. Two other microsatellite markers Xgwm44 and Xgwm111 are linked to Dn6 in coupling phase near the centromere on the short arm of chromosome 7D at 14.6 cM and 3.0 cM, respectively. This is the first report on the chromosomal location of Dn6, which proved to be either allelic or tightly linked to Dn1, Dn2 and Dn5. This result of Dn6 location contradicts previous reports that Dn6 was independent of Dn1, Dn2 and Dn5. The linked markers can be conveniently used for marker-assisted selection in wheat breeding programs for the identification and/or pyramiding of Dn4 and Dn6 genes.  相似文献   

20.
A dominant powdery mildew resistance gene introduced from Triticum timopheevii in line 146-155-T of common wheat, Triticum aestivum, was located on chromosome 6B by monosomic analysis. Restriction fragment length polymorphism (RFLP) and microsatellite analyses detected the presence of a T. timopheevii segment, translocated to chromosome 6B, with breakpoints between the loci Xpsr8/Xpsr964 on 6BS and Xpsr154/Xpsr546 on 6BL. The novel powdery mildew resistance gene, which has been designated Pm27, was shown to cosegregate with the microsatellite locus Xpsp3131, which is located on the introgressed T. timopheevii segment. The molecular data confirm the location of Pm27 on the translocated 6B chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号