首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Powdery mildew (PM), caused by Blumeria graminis f. sp. tritici, is one of the important wheat diseases, worldwide. Two PM resistance genes, designated as PmTb7A.1 and PmTb7A.2, were identified in T. boeoticum acc. pau5088 and mapped on chromosome 7AL approximately 48cM apart. Two resistance gene analogue (RGA)-STS markers Ta7AL-4556232 and 7AL-4426363 were identified to be linked to the PmTb7A.1 and PmTb7A.2, at a distance of 0.6cM and 6.0cM, respectively. In the present study, following marker assisted selection (MAS), the two genes were transferred to T. aestivum using T. durum as bridging species. As many as 12,317 florets of F1 of the cross T. durum /T. boeoticum were pollinated with T. aestivum lines PBW343-IL and PBW621 to produce 61 and 65 seeds, respectively, of three-way F1. The resulting F1s of the cross T. durum/T. boeoticum//T. aestivum were screened with marker flanking both the PM resistance genes PmTb7A.1 and PmTb7A.2 (foreground selection) and the selected plants were backcrossed to generate BC1F1. Marker assisted selection was carried both in BC1F1 and the BC2F1 generations. Introgression of alien chromatin in BC2F1 plants varied from 15.4 - 62.9 percent. Out of more than 110 BC2F1 plants showing introgression for markers linked to the two PM resistance genes, 40 agronomically desirable plants were selected for background selection for the carrier chromosome to identify the plants with minimum of the alien introgression. Cytological analysis showed that most plants have chromosome number ranging from 40-42. The BC2F2 plants homozygous for the two genes have been identified. These will be crossed to generate lines combining both the PM resistance genes but with minimal of the alien introgression. The PM resistance gene PmTb7A.1 maps in a region very close to Sr22, a stem rust resistance gene effective against the race Ug99. Analysis of selected plants with markers linked to Sr22 showed introgression of Sr22 from T. boeoticum in several BC2F1 plants. Thus, in addition to PM resistance, these progeny might also carry resistance to stem rust race Ug99.  相似文献   

2.
Powdery mildew is a severe foliar disease for wheat and could cause great yield loss in epidemic years. To explore new powdery mildew resistance genes, two einkorn accessions including TA2033 and M80, both resistant to this disease, were studied for the inheritance of resistance. Each accession possessed a single but different dominant resistance gene that was designated as Mlm2033 and Mlm80, respectively. Marker mapping indicated that they are both linked to Xgwm344 on the long arm of chromosome 7A. To establish their genetic relationship with Pm1 on 7AL, five RFLP markers previously reported to co-segregate with Pm1a were converted to STS markers. Three of them detected polymorphism between the mapping parents and were mapped close to Mlm2033 or Mlm80 or both. Xmag2185, the locus determined by the STS marker derived from PSR680, one of the RFLP markers, was placed less than 2 cM away from them. The allelism test indicated that Mlm2033 and Mlm80 are likely allelic to each other. In addition, through comparative and EST mapping, more markers linked to these two genes were identified. The high density mapping of Mlm2033 and Mlm80 will contribute to map-based cloning of the Pm1 locus. The markers for both genes will also facilitate their transfer to wheat.  相似文献   

3.
RFLP markers for the wheat powdery mildew resistance genes Pm1 and Pm2 were tagged by means of near-isogenic lines. The probe Whs178 is located 3 cM from the Pm1 gene. For the powdery mildew resistance gene Pm2, two markers were identified. The linkage between the Pm2 resistance locus and one of these two probes was estimated to be 3 cM with a F2 population. Both markers can be used to detect the presence of the corresponding resistance gene in commercial cultivars. Bulked segregant analysis was applied to identify linkage disequillibrium between the resistance gene Pm18 and the abovementioned marker, which was linked to this locus at a distance of 4 cM. Furthermore, the RAPD marker OPH-111900 (5-CTTCCGCAGT-3) was selected with pools created from a population segregating for the resistance of Trigo BR 34. The RAPD marker was mapped about 13 cM from this resistance locus.  相似文献   

4.
Cultivated rye (Secale cereale L., 2n = 2x = 14, RR) is an important source of genes for insect and disease resistance in wheat (Triticum aestivum L., 2n = 6x = 42). Rye chromosome arm 1RS of S. cereale 'Kavkaz' originally found as a 1BL.1RS translocation, carries genes for disease resistance (e.g., Lr26, Sr31, Yr9, and Pm8), while 1RS of the S. cereale 'Amigo' translocation (1RSA) carries a single resistance gene for greenbug (Schizaphis graminum Rondani) biotypes B and C and also carries additional disease-resistance genes. The purpose of this research was to identify individual plants that were recombinant in the homologous region of.1AL.1RSV and 1AL.1RSA using both molecular and phenotypic markers. Secale cereale 'Nekota' (1AL.1RSA) and S. cereale 'Pavon 76' (1AL.1RSV) were mated and the F1 was backcrossed to 'Nekota' (1AL.1AS) to generate eighty BC1F2:3 families (i.e., ('Nekota' 1AL.1RSA x 'Pavon 76' 1AL.1RSV) x 'Nekota' 1AL.1AS). These families were genotyped using the secalin-gliadin grain storage protein banding pattern generated with polyacrylamide gel electrophoresis to discriminate 1AL.1AS/1AL.1RS heterozygotes from the 1AL.1RSA+V and 1AL.1AS homozygotes. Segregation of the secalin locus and PCR markers based on the R173 family of rye specific repeated DNA sequences demonstrated the presence of recombinant 1AL.1RSA+V families. Powdery mildew (Blumeria graminis) and greenbug resistance genes on the recombinant 1RSA+V arm were mapped in relation to the Sec-1 locus, 2 additional protein bands, 3 SSRs, and 13 RFLP markers. The resultant linkage map of 1RS spanned 82.4 cM with marker order and spacing showing reasonable agreement with previous maps of 1RS. Fifteen markers lie within a region of 29.7 cM next to the centromere, yet corresponded to just 36% of the overall map length. The map position of the RFLP marker probe mwg68 was 10.9 cM distal to the Sec-1 locus and 7.8 cM proximal to the powdery mildew resistance locus. The greenbug resistance gene was located 2.7 cM proximal to the Sec-1 locus.  相似文献   

5.
6.
A powdery mildew resistance gene from Triticum urartu Tum. accession UR206 was successfully transferred into hexaploid wheat (Triticum aestivum L.) through crossing and backcrossing. The F1 plants, which had 28 chromosomes and an average of 5.32 bivalents and 17.36 univalents in meiotic pollen mother cells (PMC), were obtained through embryos rescued owing to shriveling of endosperm in hybrid seed of cross Chinese Spring (CS) × UR206. Hybrid seeds were produced through backcrossing F1 with common wheat parents. The derivative lines had normal chromosome numbers and powdery mildew resistance similar to the donor UR206, indicating that the powdery mildew resistance gene originating from T. urartu accession UR206 was successfully transferred and expressed in a hexaploid wheat background. Genetic analysis indicated that a single dominant gene controlled the powdery mildew resistance at the seedling stage. To map and tag the powdery mildew resistance gene, 143 F2 individuals derived from a cross UR206 × UR203 were used to construct a linkage map. The resistant gene was mapped on the chromosome 7AL based on the mapped microsatellite makers. The map spanned 52.1 cM and the order of these microsatellite loci agreed well with the established microsatellite map of chromosome arm 7AL. The resistance gene was flanked by the microsatellite loci Xwmc273 and Xpsp3003, with the genetic distances of 2.2 cM and 3.8 cM, respectively. On the basis of the origin and chromosomal location of the gene, it was temporarily designated PmU.  相似文献   

7.
Powdery mildew (PM) is a serious disease in many legume species, including the common bean (Phaseolus vulgaris L.). This study investigated the genetic control behind resistance reaction to PM in the bean genotype, Cornell 49242. The results revealed evidence supporting a qualitative mode of inheritance for resistance and the involvement of two independent genes in the resistance reaction. The location of these resistance genes was investigated in a linkage genetic map developed for the XC RIL population. Contingency tests revealed significant associations for 28 loci out of a total of 329 mapped loci. Fifteen were isolated or formed groups with less than two loci. The thirteen remaining loci were located at three regions in linkage groups Pv04, Pv09, and Pv11. The involvement of Pv09 was discarded due to the observed segregation in the subpopulation obtained from the Xana genotype for the loci located in this region. In contrast, the two subpopulations obtained from the Xana genotype for the BM161 locus, linked to the Co-3/9 anthracnose resistance gene (Pv04), and from the Xana genotype for the SCAReoli locus, linked to the Co-2 anthracnose resistance gene (Pv11), exhibited monogenic segregations, suggesting that both regions were involved in the genetic control of resistance. A genetic dissection was carried out to verify the involvement of both regions in the reaction to PM. Two resistant recombinant lines were selected, according to their genotypes, for the block of loci included in the Co-2 and Co-3/9 regions, and they were crossed with the susceptible parent, Xana. Linkage analysis in the respective F2 populations supported the hypothesis that a dominant gene (Pm1) was located in the linkage group Pv11 and another gene (Pm2) was located in the linkage group Pv04. This is the first report showing the localization of resistance genes against powdery mildew in Phaseolus vulgaris and the results offer the opportunity to increase the efficiency of breeding programs by means of marker-assisted selection.  相似文献   

8.
栽培一粒小麦是普通小麦的近缘种,遗传多样性丰富,蕴含丰富的抗病基因,是小麦抗病性改良的重要资源。本文对栽培一粒小麦抗白粉病材料3AA30的抗白粉病基因进行了遗传分析和分子标记定位。结果表明,3AA30中含有一个隐性抗白粉病基因,暂命名为ml3AA30,找到了5个与该基因连锁的SSR分子标记Xgwm6、Xcfd39、Xcfa2185、Xcfa2141、Xcfa2155及2个STS标记Xmag2170、Xmag1491,并构建了ml3AA30的遗传连锁图,将该基因定位在小麦5A染色体长臂上。本研究为小麦抗病育种提供了新的抗源材料。  相似文献   

9.
Powdery mildew caused by Podosphaera xanthii is an important foliar disease in melon. To find molecular markers for marker-assisted selection, we constructed a genetic linkage map of melon based on a population of 93 recombinant inbred lines derived from crosses between highly resistant AR 5 and susceptible ‘Earl’s Favourite (Harukei 3)’. The map spans 877 cM and consists of 167 markers, comprising 157 simple sequence repeats (SSRs), 7 sequence characterized amplified region/cleavage amplified polymorphic sequence markers and 3 phenotypic markers segregating into 20 linkage groups. Among them, 37 SSRs and 6 other markers were common to previous maps. Quantitative trait locus (QTL) analysis identified two loci for resistance to powdery mildew. The effects of these QTLs varied depending on strain and plant stage. The percentage of phenotypic variance explained for resistance to the pxA strain was similar between QTLs (R 2 = 22–28%). For resistance to pxB strain, the QTL on linkage group (LG) XII was responsible for much more of the variance (41–46%) than that on LG IIA (12–13%). The QTL on LG IIA was located between two SSR markers. Using an independent population, we demonstrated the effectiveness of these markers. This is the first report of universal and effective markers linked to a gene for powdery mildew resistance in melon.  相似文献   

10.
Triticum monococcum accession TA2026 showed resistance to wheat powdery mildew. To identify the resistance gene and transfer it to common wheat, genetic analysis and molecular mapping were conducted using an F2 population and derived F3 families from the cross of TA2026 × M389. The results indicated that TA2026 possessed a recessive powdery mildew resistance gene. This gene was mapped to the terminal portion of chromosome 5AmL and flanked by SSR marker loci Xcfd39 and Xgwm126. Eight RFLP markers previously mapped to the terminal chromosome 5AmL were converted into STS markers. Three loci, detected by MAG1491, MAG1493 and MAG1494, the STS markers derived from RFLP probes CDO1312, PSR164 and PSR1201, respectively, were linked to this resistance gene with Xmag1493 only 0.9 cM apart from it. In addition, the STS marker MAG2170 developed from the tentative consensus wheat cDNA encoding the Mlo-like protein identified a locus co-segregating with Xmag1493. This is the first recessive powdery mildew resistance gene identified on chromosome 5Am, and is temporarily designated pm2026. We have successfully transferred it to a tetraploid background, and this resistance stock will now be used as the bridge parent for its transfer to common wheat.  相似文献   

11.
Resistance to grapevine powdery mildew is controlled by Run1, a single dominant gene present in the wild grapevine species, Muscadinia rotundifolia, but absent from the cultivated species, Vitis vinifera. Run1 has been introgressed into V. vinifera using a pseudo-backcross strategy, and genetic markers have previously been identified that are linked to the resistance locus. Here we describe the construction of comprehensive genetic and physical maps spanning the resistance locus that will enable future positional cloning of the resistance gene. Physical mapping was performed using a bacterial artificial chromosome (BAC) library constructed using genomic DNA extracted from a resistant V. vinifera individual carrying Run1 within an introgression. BAC contig assembly has enabled 20 new genetic markers to be identified that are closely linked to Run1, and the position of the resistance locus has been refined, locating the gene between the simple sequence repeat (SSR) marker, VMC4f3.1, and the BAC end sequence-derived marker, CB292.294. This region contains two multigene families of resistance gene analogues (RGA). A comparison of physical and genetic mapping data indicates that recombination is severely repressed in the vicinity of Run1, possibly due to divergent sequence contained within the introgressed fragment from M. rotundifolia that carries the Run1 gene.  相似文献   

12.
Using hybrid analysis and test-clone method, 102 accessions of Triticum monococcum L. from the collection of the Vavilov All-Russia Institute of Plant Industry have been studied. This species of wheat has been found to by considerably polymorphic with respect to the resistance to the fungus Erysiphe graminis DC. f. sp. tritici Marchal. causing powdery mildew. The resistance of most accessions to the fungus population and clones is determined by dominant genes. In rare cases, the resistance was determined by recessive genes or one, two, or three oligogenes. A group of einkorn wheat accessions has been found in which the resistance to powdery mildew was determined by the same dominant factor or different but closely linked ones. Recessive resistance genes of T. monococcum differ from the recessive gene pm5 determining the resistance of T. aestivum plants. The genome of T. monococcum contains various genes of resistance to powdery mildew and is a potential source of effective genes to be used when selecting cultivated species of wheat for immunity.  相似文献   

13.
Lebedeva TV  Peusha HO 《Genetika》2006,42(1):71-77
Using hybrid analysis and test-clone method, 102 accessions of Triticum monococcum L. from the collection of the Vavilov All-Russia Institute of Plant Industry have been studied. This species of wheat has been found to by considerably polymorphic with respect to the resistance to the fungus Erysiphe graminis DC. f. sp. tritici Marchal. causing powdery mildew. The resistance of most accessions to the fungus population and clones is determined by dominant genes. In rare cases, the resistance was determined by recessive genes or one, two, or three oligogenes. A group of einkorn wheat accessions has been found in which the resistance to powdery mildew was determined by the same dominant factor or different but closely linked ones. Recessive resistance genes of T. monococcum differ from the recessive gene pm5 determining the resistance of T. aestivum plants. The genome of T. monococcum contains various genes of resistance to powdery mildew and is a potential source of effective genes to be used when selecting cultivated species of wheat for immunity.  相似文献   

14.
Summary C-banding patterns of T. ovatum (Ae. ovata) and four T. aestivum cv Poros-T. ovatum chromosome addition lines are presented, and the added chromosomes of T. ovatum have been identified. Furthermore, nucleolar activity and powdery mildew resistance were analyzed in the Poros-ovatum addition lines and compared to that of T. ovatum and T. aestivum cv Poros. The addition lines II, III and IV and Poros were highly susceptible to powdery mildew isolates nos. 8 and 9, whereas the addition lines VI1 and VI2 showed high resistance. Even for an Ml-k virulent isolate, these two lines were highly resistant. By combining the cytological results and those of the powdery mildew analysis, the added chromosomes of T. ovatum can be excluded from responsibility for the high powdery mildew resistance of the addition lines VI1 and VI2. The same is true for a modified chromosome 6B, which is present in the Poros-ovataum addition lines II, III and VI. The high variation in C-banding pattern observed in the A-, B- and D-genome complement of the addition lines is believed to be the result of crossing different lines of T. aestivum instead of Poros alone. Thus, we cannot trace the powdery mildew resistance back to a specific chromosome.  相似文献   

15.
Genetic characterization of powdery mildew resistance genes were conducted in common wheat cultivars Hope and Selpek possessing resistance gene Pm5, cvs. Ibis and Kormoran expressing resistance gene Mli, a backcross-derived line IGV 1–455 and a Triticum sphaerococcum var. rotundatum Perc. line Kolandi. Monosomic analyses revealed that one major recessive gene is located on chromosome 7B in the lines IGV 1–455 and Kolandi. Allelism tests of the F2 and F3 populations involving the tested resistant lines crossed with either cv. Hope or Selpek indicated that their resistance genes are alleles at the Pm5 locus. The alleles are now designated Pm5a in Hope and Selpek, Pm5b in Ibis and Kormoran, Pm5c in T. sphaerococcum var. rotundatum line Kolandi, and Pm5d in backcross-derived line IGV 1–455, respectively. Received: 5 November 1999 / Accepted: 14 April 2000  相似文献   

16.
Two dominant powdery mildew resistance genes introduced from Triticum carthlicum accession PS5 to common wheat were identified and tagged using microsatellite markers. The gene designated PmPS5A was placed on wheat chromosome 2AL and linked to the microsatellite marker Xgwm356 at a genetic distance of 10.2 cM. Based on the information of its origin, chromosome location, and reactions to 5 powdery mildew isolates, this gene could be a member of the complex Pm4 locus. The 2nd gene designated PmPS5B was located on wheat chromosome 2BL with 3 microsatellite markers mapping proximally to the gene: Xwmc317 at 1.1 cM; Xgwm111 at 2.2 cM; and Xgwm382 at 4.0 cM; and 1 marker, Xgwm526, mapping distally to the gene at a distance of 18.1 cM. Since this gene showed no linkage to the other 2 known powdery mildew resistance genes on wheat chromosome 2B, Pm6 and Pm26, we believe it is a novel powdery mildew resistance gene and propose to designate this gene as Pm33.  相似文献   

17.
The chromosomal location of a suppressor for the powdery mildew resistance genes Pm8 and Pm17 was determined by a monosomic set of the wheat cultivar Caribo. This cultivar carries a suppressor gene inhibiting the expression of Pm8 in cv Disponent and of Pm17 in line Helami-105. In disease resistance assessments, monosomic F1 hybrids (2n=41) of Caribo x Disponent and Caribo x Helami-105 lacking chromosome 7D were resistant, whereas monosomic F1 hybrids involving the other 20 chromosomes, as well as disomic F1 hybrids (2n=42) of all cross combinations, were susceptible revealing that the suppressor gene for Pm8 and Pm17 is localized on chromosome 7D. It is suggested that genotypes without the suppressor gene be used for the exploitation of genes Pm8 and Pm17 in enhancing powdery mildew resistance in common wheat.  相似文献   

18.
A set of differential isolates of Blumeria graminis f.sp. tritici was used to identify 10 alleles at the Pm3 locus on the short arm of chromosome 1A. Three F3 populations were used to map Pm3h in Abessi, Pm3i in line N324, and Pm3j alleles in GUS 122 relative to microsatellite markers. In total, 13 marker loci were mapped on chromosome 1AS and 1 marker on 1AL. The order of marker loci in the 3 mapping populations is consistent with previously published maps. All 3 alleles were mapped in the distal region of chromosome 1AS. The present study indicated that microsatellite markers are an ideal marker system for comparative mapping of alleles at the same gene locus in different mapping populations. The linkage distances of the closest microsatellite marker, Xgwm905-1A, to Pm3h, Pm3i, and Pm3j were 3.7 cM, 7.2 cM, and 1.2 cM, respectively. The microsatellite marker Xgwm905-1A cannot be used to distinguish between Pm3 alleles. The development of specific markers for individual Pm3 alleles is discussed on the basis of the recently cloned Pm3b allele.  相似文献   

19.
Hordeum bulbosum L. is a source of disease resistance genes that would be worthwhile transferring to barley (H. vulgare L.). To achieve this objective, selfed seed from a tetraploid H. vulgare x H. bulbosum hybrid was irradiated. Subsequently, a powdery mildew-resistant selection of barley phenotype (81882/83) was identified among field-grown progeny. Using molecular analyses, we have established that the H. bulbosum DNA containing the powdery mildew resistance gene had been introgressed into 81882/83 and is located on chromosome 2 (2I). Resistant plants have been backcrossed to barley to remove the adverse effects of a linked factor conditioning triploid seed formation, but there remains an association between powdery mildew resistance and non-pathogenic necrotic leaf blotching. The dominant resistance gene is allelic to a gene transferred from H. bulbosum by co-workers in Germany, but non-allelic to all other known powdery mildew resistance genes in barley. We propose Mlhb as a gene symbol for this resistance.  相似文献   

20.
QTL analysis of powdery mildew resistance in cucumber (Cucumis sativus L.)   总被引:5,自引:0,他引:5  
A population of F7 recombinant inbred lines (RILs) was made from a cross between susceptible (‘Santou’) and resistant (PI197088-1) lines of cucumber in order to study powdery mildew resistance loci. Susceptibility to powdery mildew in the F7 RIL individuals showed a continuous distribution from susceptible to resistant, suggesting that powdery mildew resistance is controlled by quantitative trait loci (QTLs). A QTL analysis identified two and three loci for powdery mildew resistance under 26 and 20°C conditions, respectively. One QTL was found in the same position under both temperature conditions. Therefore, it is more likely that one major QTL acts under both temperature conditions and that other QTLs are specific to the two temperature conditions. The above results suggest that the four QTLs are controlled in a different temperature manner, and that their combination played an important role in expressing a high level of resistance to powdery mildew in this cucumber population. Sequence-tagged site (STS) markers associated with each QTL were developed and would be useful for breeding a cucumber line with a high level of powdery mildew resistance. Y. Sakata and N. Kubo contributed equally to this work and are considered as first authors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号