首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lgl1 was initially identified as a tumour suppressor in flies and is characterised as a key regulator of epithelial polarity and asymmetric cell division. A previous study indicated that More-Cre-mediated Lgl1 knockout mice exhibited significant brain dysplasia and died within 24 h after birth. To overcome early neonatal lethality, we generated Lgl1 conditional knockout mice mediated by Pax2-Cre, which is expressed in almost all cells in the cerebellum, and we examined the functions of Lgl1 in the cerebellum. Impaired motor coordination was detected in the mutant mice. Consistent with this abnormal behaviour, homozygous mice possessed a smaller cerebellum with fewer lobes, reduced granule precursor cell (GPC) proliferation, decreased Purkinje cell (PC) quantity and dendritic dysplasia. Loss of Lgl1 in the cerebellum led to hyperproliferation and impaired differentiation of neural progenitors in ventricular zone. Based on the TUNEL assay, we observed increased apoptosis in the cerebellum of mutant mice. We proposed that impaired differentiation and increased apoptosis may contribute to decreased PC quantity. To clarify the effect of Lgl1 on cerebellar granule cells, we used Math1-Cre to specifically delete Lgl1 in granule cells. Interestingly, the Lgl1-Math1 conditional knockout mice exhibited normal proliferation of GPCs and cerebellar development. Thus, we speculated that the reduction in the proliferation of GPCs in Lgl1-Pax2 conditional knockout mice may be secondary to the decreased number of PCs, which secrete the mitogenic factor Sonic hedgehog to regulate GPC proliferation. Taken together, these findings suggest that Lgl1 plays a key role in cerebellar development and folia formation by regulating the development of PCs.  相似文献   

2.
Inner ear development requires coordinated transformation of a uniform sheet of cells into a labyrinth with multiple cell types. While numerous regulatory proteins have been shown to play critical roles in this process, the regulatory functions of microRNAs (miRNAs) have not been explored. To demonstrate the importance of miRNAs in inner ear development, we generated conditional Dicer knockout mice by the expression of Cre recombinase in the otic placode at E8.5. Otocyst-derived ganglia exhibit rapid neuron-specific miR-124 depletion by E11.5, degeneration by E12.5, and profound defects in subsequent sensory epithelial innervations by E17.5. However, the small and malformed inner ear at E17.5 exhibits residual and graded hair cell-specific miR-183 expression in the three remaining sensory epithelia (posterior crista, utricle, and cochlea) that closely corresponds to the degree of hair cell and sensory epithelium differentiation, and Fgf10 expression required for morphohistogenesis. The highest miR-183 expression is observed in near-normal hair cells of the posterior crista, whereas the reduced utricular macula demonstrates weak miR-183 expression and develops presumptive hair cells with numerous disorganized microvilli instead of ordered stereocilia. The correlation of differential and delayed depletion of mature miRNAs with the derailment of inner ear development demonstrates that miRNAs are crucial for inner ear neurosensory development and neurosensory-dependent morphogenesis.  相似文献   

3.
4.
Extensive efforts have been devoted to study A-type lamins because mutations in their gene, LMNA in humans, are associated with a number of diseases. The mouse germline mutations in the A-type lamins (encoded by Lmna) exhibit postnatal lethality at either 4–8 postnatal (P) weeks or P16–18 days, depending on the deletion alleles. These mice exhibit defects in several tissues including hearts and skeletal muscles. Despite numerous studies, how the germline mutation of Lmna, which is expressed in many postnatal tissues, affects only selected tissues remains poorly understood. Addressing the tissue specific functions of Lmna requires the generation and careful characterization of conditional Lmna null alleles. Here we report the creation of a conditional Lmna knockout allele in mice by introducing loxP sites flanking the second exon of Lmna. The Lmnaflox/flox mice are phenotypically normal and fertile. We show that Lmna homozygous mutants (LmnaΔ/Δ) generated by germline Cre expression display postnatal lethality at P16–18 days with defects similar to a recently reported germline Lmna knockout mouse that exhibits the earliest lethality compared to other germline knockout alleles. This conditional knockout mouse strain should serve as an important genetic tool to study the tissue specific roles of Lmna, which would contribute toward the understanding of various human diseases associated with A-type lamins.  相似文献   

5.
The M1/M4-preferring muscarinic agonist xanomeline was found to have some benefit in the treatment of the memory impairment of Alzheimer’s disease (AD), but side effects precluded further development. EUK1001, a fluorinated derivative of xanomeline, because of greater affinity for M1 muscarinic receptors, is likely to have a significantly better side effect profile than xanomeline. We have now studied the effects of 3-month chronic administration of EUK1001 and xanomeline (0.5 mg/kg/day) in AD-like presenilin 1/presenilin 2 conditional double knockout (PS cDKO) mice. Only EUK1001 was found to significantly ameliorate the deficit in recognition memory. Histological analysis demonstrated partial attenuation of the brain atrophy in EUK1001-treated PS cDKO mice and minimal effect in the xanomeline-treated mice. Both compounds effectively suppressed the elevation of brain tau phosphorylation in the PS cDKO mice, but neither inhibited the increased inflammatory responses. These results indicate that EUK1001 showed superiority to xanomeline with regard to attenuation of several AD-like neurodegenerative phenotypes in PS cDKO mice. These results suggest further investigation of the development of EUK1001 for the treatment of AD is indicated.  相似文献   

6.
7.
Ena/VASP proteins mediate the effects of guidance cues on the actin cytoskeleton. The single C. elegans homolog of the Ena/VASP family of proteins, UNC-34, is required for the migrations of cells and growth cones. Here we show that unc-34 mutant alleles also interact genetically with Wnt mutants to reveal a role for unc-34 in the establishment of neuronal polarity along the C. elegans anterior-posterior axis. Our mutant analysis shows that eliminating UNC-34 function results in neuronal migration and polarity phenotypes that are enhanced at higher temperatures, revealing a heat-sensitive process that is normally masked by the presence of UNC-34. Finally, we show that the UNC-34 protein is expressed broadly and accumulates in axons and at the apical junctions of epithelial cells. While most mutants lacked detectable UNC-34, three unc-34 mutants that contained missense mutations in the EVH1 domain produced full-length UNC-34 that failed to localize to apical junctions and axons, supporting the role for the EVH1 domain in localizing Ena/VASP family members.  相似文献   

8.
Dimerization among the EGFR family of tyrosine kinase receptors leads to allosteric activation of the kinase domains of the partners. Unlike other members in the family, the kinase domain of HER3 lacks key amino acid residues for catalytic activity. As a result, HER3 is suggested to serve as an allosteric activator of other EGFR family members which include EGFR, HER2 and HER4. To study the role of intracellular domains in HER3 dimerization and activation of downstream signaling pathways, we constructed HER3/HER2 chimeric receptors by replacing the HER3 kinase domain (HER3-2-3) or both the kinase domain and the C-terminal tail (HER3-2-2) with the HER2 counterparts and expressed the chimeric receptors in Chinese hamster ovary (CHO) cells. While over expression of the intact human HER3 transformed CHO cells with oncogenic properties such as AKT/ERK activation and increased proliferation and migration, CHO cells expressing the HER3-2-3 chimeric receptor showed significantly reduced HER3/HER2 dimerization and decreased phosphorylation of both AKT and ERK1/2 in the presence of neuregulin-1 (NRG-1). In contrast, CHO cells expressing the HER3-2-2 chimeric receptor resulted in a total loss of downstream AKT activation in response to NRG-1, but maintained partial activation of ERK1/2. The results demonstrate that the intracellular domains play a crucial role in HER3’s function as an allosteric activator and its role in downstream signaling.  相似文献   

9.
Neuronal migration and subsequent differentiation play critical roles for establishing functional neural circuitry in the developing brain. However, the molecular mechanisms that regulate these processes are poorly understood. Here, we show that microtubule actin crosslinking factor 1 (MACF1) determines neuronal positioning by regulating microtubule dynamics and mediating GSK-3 signaling during brain development. First, using MACF1 floxed allele mice and in utero gene manipulation, we find that MACF1 deletion suppresses migration of cortical pyramidal neurons and results in aberrant neuronal positioning in the developing brain. The cell autonomous deficit in migration is associated with abnormal dynamics of leading processes and centrosomes. Furthermore, microtubule stability is severely damaged in neurons lacking MACF1, resulting in abnormal microtubule dynamics. Finally, MACF1 interacts with and mediates GSK-3 signaling in developing neurons. Our findings establish a cellular mechanism underlying neuronal migration and provide insights into the regulation of cytoskeleton dynamics in developing neurons.  相似文献   

10.
11.
12.
Neurons in the developing brain form the cortical plate (CP) in an inside-out manner, in which the late-born neurons are located more superficially than the early-born neurons. Fyn, a member of the Src family kinases, plays an important role in neuronal migration by binding to many substrates. However, the role of the Src-homology 2 (SH2) domain in function of Fyn in neuronal migration remains poorly understood. Here, we demonstrate that the SH2 domain is essential for the action of Fyn in neuronal migration and cortical lamination. A point mutation in the Fyn SH2 domain (FynR176A) impaired neuronal migration and their final location in the cerebral cortex, by inducing neuronal aggregation and branching. Thus, we provide the first evidence of the Fyn SH2 domain contributing to neuronal migration and neuronal morphogenesis. [BMB Reports 2015; 48(2): 97-102]  相似文献   

13.
JNK is one of the key molecules regulating cell differentiation and migration in a variety of cell types, including cerebral cortical neurons. MUK/DLK/ZPK belongs to the MAP kinase-kinase-kinase class of protein kinases for the JNK pathway and is expressed predominantly in neural tissue. We have determined the expression pattern of MUK/DLK/ZPK and active JNK in the cerebellum at different stages of postnatal development. Quantitative analysis by Western blotting has showed that high expression levels of MUK/DLK/ZPK and active JNK are maintained during the postnatal development of the cerebellum, and that these levels decrease in the adult cerebellum. Immunohistochemical staining has revealed, however, that their distribution in the developing cerebellum is considerably different. Although active JNK is highly concentrated in the premigratory zone of the external germinal layer (EGL), high expression of MUK/DLK/ZPK has been observed in the molecular layer and in the premigratory zone. Neither the active JNK nor MUK protein has been detected in the proliferative zone of the EGL. These observations suggest that during the postnatal development of the cerebellum, the MUK-JNK signaling pathway contributes to the regulation of granule cell differentiation and migration; further, the activity of MUK/DLK/ZPK is tightly regulated by posttranslational mechanisms and by its expression level.This work was supported by a Ishizu Shun memorial scholarship and grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan.  相似文献   

14.
Loss of Hoxa1 function results in severe defects of the brainstem, inner ear, and cranial ganglia in humans and mice as well as cardiovascular abnormalities in humans. Because Hoxa1 is expressed very transiently during an early embryonic stage, it has been difficult to determine whether Hoxa1 plays a direct role in the precursors of the affected organs or if all defects result from indirect effects due to mispatterning of the hindbrain. In this study we use a Hoxa1-IRES-Cre mouse to genetically label the early Hoxa1-expressing cells and determine their contribution to each of the affected organs, allowing us to conclude in which precursor tissue Hoxa1 is expressed. We found Hoxa1 lineage-labeled cells in all tissues expected to be derived from the Hoxa1 domain, such as the facial and abducens nuclei and nerves as well as r4 neural crest cells. In addition, we detected the lineage in derivatives that were not thought to have expressed Hoxa1 during development. In the brainstem, the anterior border of the lineage was found to be in r3, which is more anterior than previously reported. We also observed an interesting pattern of the lineage in the inner ear, namely a strong contribution to the otic epithelium with the exception of sensory patches. Moreover, lineage-labeled cells were detected in the atria and outflow tract of the developing heart. In conclusion, Hoxa1 lineage tracing uncovered new domains of Hoxa1 expression in rhombomere 3, the otic epithelium, and cardiac precursors, suggesting a more direct role for Hoxa1 in development of these tissues than previously believed.  相似文献   

15.

Background  

Previous studies of mixed background mice have demonstrated that targeted deletion of Vgf produces a lean, hypermetabolic mouse that is resistant to diet-, lesion-, and genetically-induced obesity. To investigate potential mechanism(s) and site(s) of action of VGF, a neuronal and endocrine secreted protein and neuropeptide precursor, we further analyzed the metabolic phenotypes of two independent VGF knockout lines on C57Bl6 backgrounds.  相似文献   

16.
The bulbocavernosus (BC) and levator ani (LA) muscles are present in males but absent or severely reduced in females, and the fate of these muscles controls the survival of motoneurons in the sexually dimorphic spinal nucleus of the bulbocavernosus. However, the mechanism underlying the sex difference in BC and LA development has been controversial. We examined the role of cell death in sexual differentiation of the bulbocavernosus BC/LA muscles in mice. Muscle development was mapped from embryonic day 16 (E16) to postnatal day 5 (P5). A sex difference (male>female) first arose on E17 (BC) or E18 (LA), and increased in magnitude postnatally. TUNEL labeling revealed dying cells in the BC and LA muscles of both sexes perinatally. However, females had a significantly higher density of TUNEL-positive cells than did males. A role for the proapoptotic factors, Bax and Bak, in BC/LA development was tested by examining mice lacking one or both of these proteins. In females lacking either Bax or Bak, the BC was absent and the LA rudimentary. Deletion of both bax and bak genes, however, rescued the BC, increased LA size approximately 20-fold relative to controls, and virtually eliminated TUNEL-positive cells in both muscles. We conclude that cell death plays an essential role in sexual differentiation of the BC/LA muscles. The presence of either Bax or Bak is sufficient for cell death in the BC/LA, whereas the absence of both prevents sexually dimorphic muscle cell death.  相似文献   

17.
Smad5 is a member of the Smad family of intracellular mediators of BMP signals and in endothelial cells of TGF-beta signals. We and others previously showed that loss of Smad5 in the mouse results in embryonic lethality (between E9.5-E11.5) due to multiple embryonic and extraembryonic defects. To circumvent the early embryonic lethality and to allow tissue- and time-specific Smad5 inactivation, we created a conditional Smad5 allele in the mouse. Floxed Smad5 (Smad5(flE2,Neo/flE2,Neo)) mice were generated in which both exon2 and the Neo-cassette were flanked by loxP sites. Here we demonstrate that embryos with ubiquitous Cre-mediated deletion of Smad5 (Smad5(flDeltaE2/flDeltaE2)) phenocopy the conventional Smad5 knockout mice. Smad5(flE2/flE2) mice are now available and will be a valuable tool to analyze the role of Smad5 beyond its crucial early embryonic function throughout development and postnatal life.  相似文献   

18.
19.
Hughes H. P. A. and van Knapen F. 1982. Characteristics of a secretory antigen from Toxoplasma gondii and its role in circulating antigen production. International Journal for Parasitology12: 433–437. In vitro culture of RH Toxoplasma gondii in HEp2 cells was found to yield an antigen, of mol. wt. 324,000 dallons, which is one of the components of circulating antigen (CAg). Hydrophobic interaction electrophoresis of 125I labelled solubilised parasites has shown that this antigen, in common with the other CAg component, is of intracellular origin. Cyclophosphamide had no effect on either parasite proliferation or on secretion of antigen in vitro. Although immune lysis appears to be the major pathway of CAg release in vivo, secretion by the parasite may be important in the expression of CAg in serum and body fluids immediately following infection.  相似文献   

20.
《Autophagy》2013,9(4):701-703
Lafora disease (LD), a fatal neurodegenerative disorder characterized by intracellular inclusions called Lafora bodies (LBs), is caused by recessive loss-of-function mutations in the genes encoding either laforin or malin. Previous studies suggested a role of these proteins in regulating glycogen biosynthesis, in glycogen dephosphorylation and in the modulation of intracellular proteolytic systems. However, the contribution of each of these processes to LD pathogenesis is unclear. Here we review our recent finding that dysfunction of autophagy is a common feature of both laforin- and malin-deficient mice, preceding other pathological manifestations. We propose that autophagy plays a primary role in LD pathogenesis and is a potential target for its treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号