首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 526 毫秒
1.
Water-soluble chitosan (WSC)-poly(l-aspartic acid) (PASP)-polyethylene glycol (PEG) nanoparticles (CPP nanoparticles) were prepared spontaneously under quite mild conditions by polyelectrolyte complexation. These nanoparticles were well dispersed and stable in aqueous solution, and their physicochemical properties were characterized by turbidity, FTIR spectroscopy, dynamic light scattering (DLS), transmission electron microscope (TEM), and zeta potential. PEG was chosen to modify WSC-PASP nanoparticles to make a protein-protective agent. Investigation on the encapsulation efficiency and loading capacity of the bovine serum albumin (BSA)-loaded CPP nanoparticles was also conducted. Encapsulation efficiency was obviously decreased with the increase of initial BSA concentration. Furthermore, its in vitro release characteristics were evaluated at pH 1.2, 2.5, and 7.4. In vitro release showed that these nanoparticles provided an initial burst release, followed by a slowly sustained release for more than 24 h. The BSA released from CPP nanoparticles showed no significant conformational change compared with native BSA, which is superior to the BSA released from nanoparticles without PEG. A cell viability study suggested that the nanoparticles had good biocompatibility. This nanoparticle system was considered promising as an advanced drug delivery system for the peptide and protein drug delivery.  相似文献   

2.
目的:以BSA作为模型药物,制备壳聚糖季铵盐-OREC复合物纳米微粒,建立一种安全有效的药物控释传递系统。方法:超声条件下,制备不同质量比的具有壳聚糖硅酸盐插层结构的复合物纳米微粒,观察其形态学特征、进行红外光谱分析。同时,测定OREC对BSA包封率和载药量的影响。结果:成功制备了不同质量比的OREC-HTCC纳米粒子。电镜结果显示纳米粒呈圆球形,均匀,平均粒径约为30nm。红外图谱分析证实,HTCC插入了OREC插层中,BSA成功地包裹入HTCC-ALG/OREC混合材料制备的纳米微粒。加入OREC后,纳米粒子的包封率及载药量均明显提高,但随着加入量的增加,包封率及载药量逐渐减少。结论:OREC-HTCC纳米粒子是良好的蛋白药物载体,具有粒径小、包封率高、缓释效果好等优点,为CS-OREC作为潜在的药物给药系统的进一步应用提供科学依据。  相似文献   

3.
Modeling the influence of a technology such as nanoparticle systems on drug delivery is beneficial in rational formulation design. While there are many studies showing drug delivery enhancement by nanoparticles, the literature provides little guidance regarding when nanoparticles are useful for delivery of a given drug. A model was developed predicting intracellular drug concentration in cultured cells dosed with nanoparticles. The model considered drug release from nanoparticles as well as drug and nanoparticle uptake by the cells as the key system processes. Mathematical expressions for these key processes were determined using experiments in which each process occurred in isolation. In these experiments, intracellular delivery of saquinavir, a low solubility drug dosed as a formulation of poly(ethylene oxide)-modified poly(epsilon- caprolactone) (PEO-PCL) nanoparticles, was studied in THP-1 human monocyte/macrophage (Mo/Mac) cells. The model accurately predicted the enhancement in intracellular concentration when drug was administered in nanoparticles compared to aqueous solution. This simple model highlights the importance of relative kinetics of nanoparticle uptake and drug release in determining overall enhancement of intracellular drug concentration when dosing with nanoparticles.  相似文献   

4.
The purpose of this study was to examine the effect of charge ratio on the formation and properties of the chitosan (CS)-dextran sulfate (DS) nanoparticles developed for the delivery of water-soluble small and large molecules, including proteins. Rhodamine 6G (R6G) and bovine serum albumin (BSA) were chosen as model molecules. CS-DS nanoparticles were formulated by a complex coacervation process under mild conditions. The influence of formulation and process variables, including the charge ratio of the 2 ionic polymers, on particle size, zeta potential, and nanoparticle entrapment of R6G and BSA was studied. The in vitro release of R6G and BSA was also evaluated, and the integrity of BSA in the release fraction was assessed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Depending on the concentration and charge ratio of DS and CS, nanoparticles with varied size (>or=244 nm) and zeta potential (-47.1-60 mV) were obtained. High entrapment efficiency (98%) was achieved for both R6G and BSA when the charge ratio of the 2 ionic polymers was greater than 1.12. The release of both R6G and BSA from nanoparticles was based on the ion-exchange mechanism. BSA showed much slower continuous release for up to 7 days while still maintaining its integrity for an extended period. The CS-DS nanoparticles developed based on the modulation of charge ratio show promise as a system for controlled delivery of both small and large molecules, including proteins.  相似文献   

5.
目的:以牛血清白蛋白(BSA)作为模型药物,制备壳聚糖/有机累托石复合物微球,建立一种安全有效的药物控释传递系统。方法:壳聚糖(CS)/有机累托石(OREC)和海藻酸钠,按照不同的混合比例交联,在Ca2+水溶液中包裹BSA而形成壳核结构的微球。采用傅立叶红外光谱(FTIR)、动态光散射(DLS)、原子力显微镜(AFM)、X-衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)观察研究微球的形态、CS和OREC的插层结构、BSA的包封率和控释效果。结果:口光学显微镜和扫描电镜观察显示,形成了壳核结构的微球。傅里叶变换光谱和X-射线能量分散显示,OREC存在于微球中。小角X-射线衍射证实,CS链成功的插入OREC插层中。BSA的包封率和控释检测结果显示,与纯的CS/ALG形成的微球相比较,CO复合物所形成的微球药物释放率明显提高。结论:OREC-HTCC纳米粒子是良好的蛋白药物载体,具有包封率高、缓释效果好等优点,为CS-OREC作为潜在的药物给药系统的进一步应用提供科学依据。  相似文献   

6.
Shortage of functional groups on surface of poly(lactide-co-glycolide) (PLGA)-based drug delivery carriers always hampers its wide applications such as passive targeting and conjugation with targeting molecules. In this research, PLGA nanoparticles were modified with chitosan through physical adsorption and chemical binding methods. The surface charges were regulated by altering pH value in chitosan solutions. After the introduction of chitosan, zeta potential of the PLGA nanoparticle surface changed from negative charge to positive one, making the drug carriers more affinity to cancer cells. Functional groups were compared between PLGA nanoparticles and chitosan-modified PLGA nanoparticles. Amine groups were exhibited on PLGA nanoparticle surface after the chitosan modification as confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The modified nanoparticles showed an initial burst release followed by a moderate and sustained release profile. Higher percentage of drugs from cumulative release can be achieved in the same prolonged time range. Therefore, PLGA nanoparticles modified by chitosan showed versatility of surface and a possible improvement in the efficacy of current PLGA-based drug delivery system.  相似文献   

7.
To minimize the side effect of chemotherapy, a novel reduction/pH dual-sensitive drug nanocarrier, based on PEGylated dithiodipropionate dihydrazide (TPH)-modified hyaluronic acid (PEG-SS-HA copolymer), was developed for targeted delivery of doxorubicin (DOX) to hepatocellular carcinoma. The copolymer was synthesized by reductive amination via Schiff's base formation between TPH-modified HA and galactosamine-conjugated poly(ethylene glycol) aldehyde/methoxy poly(ethylene glycol) aldehyde. Conjugation of DOX to PEG-SS-HA copolymer was accomplished through the hydrazone linkage formed between DOX and PEG-SS-HA, and confirmed by FTIR and 1H NMR spectra. The polymer–DOX conjugate could self-assemble into spherical nanoparticles (∼150 nm), as indicated by TEM and DLS. In vitro release studies showed that the DOX-loaded nanoparticles could release DOX rapidly under the intracellular levels of pH and glutathiose. Cellular uptake experiments demonstrated that the nanoparticles could be efficiently internalized by HepG2 cells. These results indicate that the PEG-SS-HA copolymer holds great potential for targeted intracellular delivery of DOX.  相似文献   

8.
To develop materials with improved controllability and specificity, we have investigated composite hydrogels with temperature-sensitive properties using photo cross-linking. Specifically, our novel composite materials are composed of nanoparticles made of poly(N-isopropylacrylamide) (PNIPAAm), temperature-sensitive hydrogels, and a photo cross-linker, poly(ethylene glycol) diacrylate (PEGDA). PNIPAAm particles were synthesized by emulsion polymerization and by varying concentration of four main factors: monomers (N-isopropylacrylamide), cross-linkers (N,N'-methylenebisacrylamide), surfactants (sodium dodecyl sulfate, SDS), and initiators (potassium persulfate). We found that the surfactant, SDS, was the most important factor affecting the particle size using the factorial design analysis. Additionally, both nano- and micro-PNIPAAm particles had excellent loading efficiency (>80% of the incubated bovine serum albumin (BSA)), and their release kinetics expressed an initial burst effect followed by a sustained release over time. Furthermore, BSA-loaded PNIPAAm nanoparticles were used to form three-dimensional gel networks by means of a photocuring process using a photo cross-linker, PEGDA, and a photoinitiator, Irgacure-2959 (I-2959). Results from scanning electron microscopy and in vitro BSA release studies from these hydrogels demonstrated that PNIPAAm nanoparticles were embedded inside the PEG polymeric matrix and the composite material was able to release BSA in response to changes in temperature. These PNIPAAm nanoparticle hydrogel networks may have advantages in applications of controlled drug delivery systems because of their temperature sensitivity and their ability of in situ photopolymerization to localize at the specific region in the body.  相似文献   

9.
Therapeutic proteins are utilized in a variety of clinical applications, but side effects and rapid in vivo clearance still present hurdles. An approach that addresses both drawbacks is protein encapsulation within in a polymeric nanoparticle, which is effective but introduces the additional challenge of destabilizing the nanoparticle shell in clinically relevant locations. This study examined the effects of crosslinking self-assembled poly(l -lysine)-grafted-poly(ethylene glycol) nanoparticles with redox-responsive 3,3′-dithiobis(sulfosuccinimidyl propionate) (DTSSP) to achieve nanoparticle destabilization in a reductive environment. The polymer-protein nanoparticles (DTSSP NPs) were formed through electrostatic self-assembly and crosslinked with DTSSP, which contains a glutathione-reducible disulfide. As glutathione is upregulated in various cancers, DTSSP NPs could display destabilization within cancer cells. A library of DTSSP NPs was formed with varying copolymer to protein (C:P) and crosslinker to protein (X:P) mass ratios and characterized by size and encapsulation efficiency. DTSSP NPs with a 7:1 C:P ratio and 2:1 X:P ratio were further characterized by stability in the presence proteases and reducing agents. DTSSP NPs fully encapsulated the model protein and displayed 81% protein release when incubated with 5 mM dithiothreitol for 12 hr. This study contributes to understanding stimulus-responsive crosslinking of polymeric nanoparticles and could be foundational to clinical administration of therapeutic proteins.  相似文献   

10.
The effect of the co-lyophilization of bovine serum albumin (BSA) with poly(ethylene glycol) (PEG) on the BSA encapsulation efficiency and formation of soluble BSA aggregates upon solid-in-oil-in-oil (s/o/o) encapsulation in poly(lactic-co-glycolic) acid (PLGA) microspheres was investigated. Suspension of the lyophilized BSA-PEG formulations in methylene chloride produced small protein powder particles of less than 1 m diam. and this afforded high encapsulation efficiencies of typically 90% ameliorating one of the problems in s/o/o encapsulation. Formation of soluble BSA aggregates upon s/o/o encapsulation followed by 24 h in vitro release was between 5% and 22%, much lower than values of 59% reported for BSA without stabilizing excipients. Therefore, PEG also afforded BSA stabilization during s/o/o encapsulation. Sustained release occurred over ca. 2 months and was complete.  相似文献   

11.
We design and develop chitosan nanoparticles which load two different drugs simultaneously. Aspirin (acetylsalicylic acid, ASA), a hydrophilic drug and probucol (PRO), a hydrophobic drug, are chosen as typical drugs, which are widely used to treat restenosis. The drug loaded chitosan nanoparticles are prepared by gelation of chitosan with tripolyphosphate (TPP) by ionic cross-linking. The physicochemical properties of nanoparticles are investigated by FTIR, transmission electron microscope (TEM), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The images show that these particles are spherical in shape with ASA being in the amorphous phase, while PRO is crystalline. The properties of chitosan nanoparticles such as encapsulation capacity and controlled release behaviors of ASA and PRO are evaluated. Experimental results indicate that the loading capacity (LC), encapsulation efficiency (EE) and ASA and PRO release behaviors are affected by several factors including pH, concentration of TPP, chitosan molecular weight (MW) and ASA initial concentration as well as PRO. In vitro release shows that the nanoparticles provide a continuous release. Entrapped ASA is released for more than 24 h and PRO lasts longer for 120 h.  相似文献   

12.
Polymer nanoparticles (NPs) are promising systems for the delivery of protein drugs, as they enhance circulation half‐life, reduce degradation, and increase selectivity of the encapsulated agent. Among the different methods for the preparation of protein‐loaded NPs, ionotropic gelation—which exploits cross‐linking between charged groups in the polymer and counterions in the protein solution—has been extensively investigated for chitosan NPs. The present study aims at exploring the possibility to apply the method to prepare BSA‐loaded polyurethane NPs. A poly(ε‐caprolactone)/poly(ethyleneglicol)‐based polyurethane bearing tert‐butyloxycarbonyl‐protected amino groups was synthesized by a two‐step synthesis procedure. Amino functionalities were exposed under acidic conditions, as confirmed by ninhydrin assay, and then exploited to obtain ionic cross‐linking with sodium tripolyphosphate counterions. The effect of polymer and sodium tripolyphosphate concentration on particles size and BSA encapsulation has been investigated, showing that the PUR concentration plays a major role. Small particles, at 300 nm, with high BSA loading (90%) have been obtained. Sustained BSA release and low burst effect (20%) have been observed, indicating good interaction between the protein and the polymer matrix. The study highlights the possibility of introducing alternative polymers to improve loading and release of proteins from NPs obtained through the ionotropic gelation method.  相似文献   

13.
Jung J  Lee IH  Lee E  Park J  Jon S 《Biomacromolecules》2007,8(11):3401-3407
We report the development and characterization of pH-sensitive poly(2-tetrahydropyranyl methacrylate) [poly(THPMA)] nanospheres and demonstrate their feasibility as an effective drug delivery vehicle. Poly(THPMA) nanospheres were prepared using either the double emulsion or single emulsion method for the encapsulation of, respectively, water soluble (rhodamine B) or organic soluble (paclitaxel) payloads. The resulting nanospheres showed pH-dependent dissolution behavior, resulting in significant morphologic changes and loss of nanoparticle mass under mild acidic conditions (pH 5.1) with a half-life of 3.3 days, as compared to physiologic condition (pH 7.4) with a half-life of 6.2 days. The in vitro drug release profile of the paclitaxel-loaded poly(THPMA) nanospheres revealed that the rate of drug release in pH 5.1 acetate buffer was relatively faster than that in pH 7.4 HEPES buffer. Furthermore, poly(THPMA) nanospheres showed lower cytotoxicity and higher cellular uptake as compared to the FDA-approved PLGA-based nanospheres currently in clinical practice.  相似文献   

14.
Controlled drug delivery technology of proteins/peptides from biodegradable nanoparticles has emerged as one of the eminent areas to overcome formulation associated problems of the macromolecules. The purpose of the present investigation was to develop protein-loaded nanoparticles using biodegradable polymer poly l-lactide-co-glycolidic acid (PLGA) with bovine serum albumin (BSA) as a model protein. Despite many studies available with PLGA-based protein-loaded nanoparticles, production know-how, process parameters, protein loading, duration of protein release, narrowing polydispersity of particles have not been investigated enough to scale up manufacturing of protein-loaded nanoparticles in formulations. Different process parameters such as protein/polymer ratio, homogenizing speed during emulsifications, particle surface morphology and surface charges, particle size analysis and in-vitro protein release were investigated. The in-vitro protein release study suggests that release profile of BSA from nanoparticles could be modulated by changing protein-polymer ratios and/or by varying homogenizing speed during multiple-emulsion preparation technique. The formulation prepared with protein-polymer ratio of 1:60 at 17,500 rpm gave maximum protein-loading, minimum polydispersion with maximally sustained protein release pattern, among the prepared formulations. Decreased (10,000 rpm) or enhanced (24,000 rpm) homogenizing speeds resulted in increased polydispersion with larger particles having no better protein-loading and -release profiles in the present study.  相似文献   

15.
Phe-Tyr dipeptide which was investigated in Wakame food with greatest ACE-inhibitory activity is used as a pharmaceutical drug for the treatment of hypertension, cardiovascular diseases, and diabetic nephropathy. To improve the bioavailability of Phe-Tyr, a delivery system based on poly (lactic-co-glycolic acid) (PLGA) nanoparticles loaded with Phe-Tyr (Phe-Tyr-PLGA NPs) for treating hypertension and cardiovascular diseases was prepared in this study. In the experiments, poly(lactic-co-glycolic acid) (PLGA) and Phe-Tyr dipeptide-loaded PLGA nanoparticles were prepared using the double emulsion (w/o/w) method. The characterizations of the nanoparticles were performed with a UV–vis spectrometer, the Zeta-sizer system, and FTIR spectrometer. The optimum size of the Phe-Tyr dipeptide-loaded PLGA nanoparticle was obtained with a 213.8 nm average particle size, and a 0.061 polydispersity index, ?19.5 mV zeta potential, 34% of loaded and 90.09% of encapsulation efficiency. From TEM analysis, it was clearly seen that the dipeptide loaded nanoparticles had the spherical and non-aggregated morphology and Phe-Tyr dipeptide loaded-PLGA nanoparticles were obtained successfully. Cell toxicity of nanoparticles at different concentrations was assayed with XTT methods on L929 fibroblast cells. This study determined that the nanoparticles have low toxicity at lower concentration and toxicity augmented with increasing concentration of dipeptide. To analyze the effect of solvents on structure of Phe-Tyr, Molecular dynamics simulation was performed with GROMACS program and molecular orbital calculations were carried out to obtain structural and electronic properties of dipeptide. Moreover, molecular docking calculations were also employed to model and predict protein–drug interactions.  相似文献   

16.
In the present study we developed alginate-chitosan-poly(lactic-co-glycolic acid) (PLGA) composite microspheres to elevate protein entrapment efficiency and decrease its burst release. Bovine serum albumin (BSA), which used as the model protein, was entrapped into the alginate microcapsules by a modified emulsification method in an isopropyl alcohol-washed way. The rapid drug releases were sustained by chitosan coating. To obtain the desired release properties, the alginate-chitosan microcapsules were further incorporated in the PLGA to form the composite microspheres. The average diameter of the composite microcapsules was 31+/-9microm and the encapsulation efficiency was 81-87%, while that of conventional PLGA microspheres was just 61-65%. Furthermore, the burst releases at 1h of BSA entrapped in composite microspheres which containing PLGA (50:50) and PLGA (70:30) decreased to 24% and 8% in PBS, and further decreased to 5% and 2% in saline. On the contrary, the burst releases of conventional PLGA microspheres were 48% and 52% in PBS, respectively. Moreover, the release profiles could be manipulated by regulating the ratios of poly(lactic acid) to poly(glycolic acid) in the composite microspheres.  相似文献   

17.
Copolymers with different hydrophilic/lipophilic ratios (HLR) were used to optimize the compatibility between polymer as drug carrier and quercetin as lipophilic drug. Synthesis of amphiphilic triblock copolymers (TC) of poly(butylene adipate)–poly(ethylene glycol)–poly(butylene adipate) (PBA–PEG–PBA) with different PBA molecular weights is the first approach for this purpose. Polymerization and structural features of the polymers were analyzed by different characterization techniques (GPC, 1H NMR and FT-IR). Formation of hydrophobic and hydrophilic domains with different ratios in the ABA-triblock copolymers was studied by 1H NMR. The sunflower-like nanoparticles were prepared by self-assembling of the amphiphilic copolymers in the aqueous solution. The hydrophobic PBA segments formed the central solid-like core which stabilized by the hydrophilic PEG rings. The optimum HLR for these copolymers was determined on the basis of drug release time and profile, obtained from freeze-dried nanoparticle powders. The results indicated that optimum HLR for the sustained quercetin release obtained at higher molecular weight of polyesteric domains. Zeta potential measurements showed that the nanoparticle size was close related to the initial concentrations of the nanoparticle dispersions and the compositions of the triblock copolymers. Moreover, TEM pictures showed that the nanocarriers morphologies were changed by changing HLR of triblock copolymers. The PBA–PEG–PBA nanoparticles also showed good drug loading properties, suggesting that they were very suitable as delivery devices for hydrophobic drugs.  相似文献   

18.
Liu SQ  Yang YY  Liu XM  Tong YW 《Biomacromolecules》2003,4(6):1784-1793
Temperature-sensitive diblock copolymers, poly(N-isopropylacrylamide)-b-poly(D,L-lactide) (PNIPAAm-b-PLA) with different PNIPAAm contents were synthesized and utilized to fabricate microspheres containing bovine serum albumin (BSA, as a model protein) by a water-in-oil-in-water double emulsion solvent evaporation process. XPS analysis showed that PNIPAAm was a dominant component of the microspheres surface. BSA was well entrapped within the microspheres, and more than 90% encapsulation efficiency was achieved. The in vitro degradation behavior of microspheres was investigated using SEM, NMR, FTIR, and GPC. It was found that the microspheres were erodible, and polymer degradation occurred in the PLA block. Degradation of PLA was completed after 5 months incubation in PBS (pH 7.4) at 37 degrees C. A PVA concentration of 0.2% (w/v) in the internal aqueous phase yielded the microspheres with an interconnected porous structure, resulting in fast matrix erosion and sustained BSA release. However, 0.05% PVA produced the microspheres with a multivesicular internal structure wrapped with a dense skin layer, resulting in lower erosion rate and a biphasic release pattern of BSA that was characterized with an initial burst followed by a nonrelease phase. The microspheres made from PNIPAAm-b-PLA with a higher portion of PNIPAAm provided faster BSA release. In addition, BSA release from the microspheres responded to the external temperature changes. BSA release was slower at 37 degrees C (above the LCST) than at a temperature below the LCST. The microspheres fabricated with PNIPAAm-b-PLA having a 1:5 molar ratio of PNIPAAm to PLA and 0.2% (w/v) PVA in the internal aqueous phase provided a sustained release of BSA over 3 weeks in PBS (pH 7.4) at 37 degrees C.  相似文献   

19.
Our objective was to prepare nanoparticulate system using a simple yet attractive innovated method as an ophthalmic delivery system for fluocinolone acetonide to improve its ocular bioavailability. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles were prepared by adopting thin film hydration method using PLGA/poloxamer 407 in weight ratios of 1:5 and 1:10. PLGA was used in 75/25 and 50/50 copolymer molar ratio of DL-lactide/glycolide. Results revealed that using PLGA with lower glycolic acid monomer ratio exhibited high particle size (PS), zeta potential (ZP) and drug encapsulation efficiency (EE) values with slow drug release pattern. Also, doubling the drug concentration during nanoparticles preparation ameliorated its EE to reach almost 100%. Furthermore, studies for separating the un-entrapped drug in nanoparticles using centrifugation method at 20,000 rpm for 30 min showed that the separated clear supernatant contained nanoparticles encapsulating an important drug amount. Therefore, separation of un-entrapped drug was carried out by filtrating the preparation using 20–25 μm pore size filter paper to avoid drug loss. Aiming to increase the PLGA nanoparticles mucoadhesion ability, surface modification of selected formulation was done using different amount of stearylamine and chitosan HCl. Nanoparticles coated with 0.1% w/v chitosan HCl attained most suitable results of PS, ZP and EE values as well as high drug release properties. Transmission electron microphotographs illustrated the deposition of chitosan molecules on the nanoparticles surfaces. Pharmacokinetic studies on Albino rabbit’s eyes using HPLC indicated that the prepared novel chitosan-coated PLGA nanoparticles subjected to separation by filtration showed rapid and extended drug delivery to the eye.  相似文献   

20.
Anionic copolymer systems containing sulfated monomers have great potential for delivery of cationic therapeutics, but N-isopropylacrylamide (NIPAm) 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) copolymer nanoparticles have seen limited characterization to date with regard to physical properties relevant to loading and release of therapeutics. Characterization of polymeric nanoparticles incorporating AMPS showed an increased size and decreased thermodynamic swelling ratios of AMPS containing particles as compared to NIPAm nanoparticles lacking AMPS. Particles with increasing AMPS addition showed an increased propensity for uniformity, intraparticle colloidal stability, and drug loading capacity. Peptide encapsulated in particles was shielded from peptide degradation in serum. Particles were shown not impede blood coagulation or to cause hemolysis. This study has demonstrated that AMPS incorporation into traditional NIPAm nanoparticles presents a tunable parameter for changing particle LCST, size, swelling ratio, ζ potential, and cationic peptide loading potential. This one-pot synthesis results in a thermosensitive anionic nanoparticle system that is a potentially useful platform to deliver cationic cell penetrating peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号