首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We previously proposed a mechanism for the structural formation of cellulose from its solution using a molecular dynamics (MD) simulation and suggested that the initial structure from its solution plays a critical role in determining its final structure. Structural changes in the van der Waals-associated cellulose molecular sheet as the initial structure were examined by MD simulation; the molecular sheet was found to be disordered due to maltohexaoses as an amylose model in terms of the hydrogen bonding system of cellulose. The structure and properties of cellulose/amylose blends prepared from an aqueous NaOH solution were examined experimentally by wide-angle X-ray diffraction and dynamic viscoelasticity measurements. The crystallinity of cellulose in the cellulose/amylose blend films was lower than that of cellulose film. The diffraction peaks of the cellulose/amylose blends were slightly shifted; specifically, () was shifted to a higher angle, and (1 1 0) and (0 2 0) were shifted to lower angles. These experimental results probably resulted from the disordered molecular sheet, as revealed by MD simulations.  相似文献   

2.
Molecular structures of dimethylbis(trimethylsilylketyl)silane (Me2Si[C(SiMe3)CO]2), dimethylbis(trimethylgermylketyl)silane (Me2Si[C(GeMe3)CO]2), and dimethylbis(trimethylstannylketyl)germane (Me2Ge[C(SnMe3)CO]2) have been studied in the gas phase by electron diffraction accompanied by high level ab initio and DFT calculations. Extensive theoretical conformational analyses of the molecules in the vapour predicted a possibility of existence of two types of conformers with small energy differences. The first type had gauche-gauche arrangements of the ketenyl groups in the central C(CO)XC(CO) fragments directed away from each other. The second type had nearly syn-gauche arrangements of the ketenyl groups. In addition, the energy differences were found to depend on the level of computations used. The experimental analysis, in turn, was unable to distinguish between different conformers due to the large number of similar overlapping distances. The experimental data were fitted by an averaged single-conformer model, which nevertheless allowed reliable determination of bonds and bonded angles in the molecules. Main experimental (rh1) structural parameters for Me2Si[C(SiMe3)CO]2, Me2Si[C(GeMe3)CO]2, and Me2Ge[C(SnMe3)CO]2, i.e. Me2X[C(YMe3)CO]2 (X,Y = Si, Ge, Sn), are (X-C)mean 187.7(1) pm, 194.6(2) pm, 216.1(3) pm; (Y-C)mean, 187.7(1) pm, 188.8(8) pm, 194.6(4) pm; (CC)mean, 135.3(5) pm, 131.6(5) pm, 131.5(13) pm; (CO)mean, 117.0(7) pm, 117.4(7) pm, 119.0(11) pm; (C-H)mean, 110.6(7) pm, 110.0(4) pm, 109.1(13) pm; (X(Y)-CC)mean, 114.4(2)°, 115.6(1)°, 115.6(2)°; (C-X(Y)-CMe)mean, 108.3(3)°, 108.4(3)°, 108.9(13)°; C(2)-C(1)-Y(4)-C(10), −19(6)°, 5(4)°, −9(10)°; C(7)-C(6)-Y(9)-C(38),−22(7)°, −32(3)°, −9(10)°; C(2)-C(1)-X(5)-C(6), 128(4)°, 142(1)°, 108(9)°; C(7)-C(6)-X(5)-C(1), 92(6)°, 115(2)°, 108(9)°, respectively.  相似文献   

3.
From the crystals of trans aquabis(N,N-dimethylglycinato-κNO)copper(II) dihydrate (compound 1, space group P212121) novel crystal structure of trans aquabis(N,N-dimethylglycinato-κNO)copper(II) (compound 2, space group Pbca) was obtained and analysed by X-ray diffraction. In the crystal structure 1, the O-H?O hydrogen bonds form three-dimensional network. In the crystal structure 2, two-dimensional layers stacking to each other are formed, with non-polar N,N-dimethyl groups placed on the opposite sides of the layers, and with the polar part in the middle forming CO?O-H and C-H?O hydrogen bonds. Different hydrogen bonding patterns in 1 and 2 do not pronouncedly affect molecular geometry of the title compound. Molecular mechanics force field suited for studying the properties of bis(amino acidato)copper(II) complexes in the solid state can follow the differences between the experimental molecular structures in the two diverse crystalline surroundings. To make possible direct comparison between crystal lattices, the force field was applied to predict unit cell packing of supposed anhydrous bis(N,N-dimethylglycinato)copper(II) in space group Pbca. Relative intermolecular energies of hypothetic anhydrous crystal and simulated 1 and 2 crystals are discussed. On the basis of experimental and theoretical results we conclude that the main effect of two water molecules of crystallisation in 1 is to stabilise the crystal packing via hydrogen bonding, whilst similar pyramidal copper(II) coordination geometry in 1 and 2 is due to axially coordinated water molecule and its intermolecular interactions.  相似文献   

4.
We have examined the role of different solvents in the crystallisation process of cis-octahedral, diphenyltin(IV)-bis-cupferronato complex, Ph2Sn(cupf)2 (1), where . The Mössbauer spectra of frozen chloroform solution of 1 revealed the presence of cis and trans isomers. This cis-trans isomerisation was investigated by Mössbauer spectroscopy and the results inspired the synthesis of two new heptacoordinated derivatives: Ph2Sn(cupf)2(H2O) (2) and Ph2Sn(cupf)2(EtOH) · EtOH (3). In both compounds, the O-donor solvent molecules (H2O, EtOH) form novel Sn-O bonds with the Ph2Sn(IV) centre of 1, consequently the phenyl groups attached to tin undergo an intramolecular rearrangement. Compound 2 contains O-H ? O hydrogen bonded infinite chains. In compound 3, O-H ? O hydrogen-bonds and short O ? O contacts assemble the complexes and uncoordinated solvent molecules into dimeric supramolecules. These solvents have structure-determining roles at both molecular and supramolecular levels: at molecular level the coordination of solvent determines intramolecular rearrangement by changing the conformation of the parent unsolvated complex, whilst at supramolecular level they control the association of solvated molecules via hydrogen bonds.  相似文献   

5.
Ab initio MO calculations were carried out at the MP4/6-311++G(3df,3pd)//MP2/6-311++G(3df,3pd) level to investigate the conformational Gibbs energy of a series of methyl ethers CH3O-CH2-X (X = OH, OCH3, F, Cl, Br, CN, CCH, C6H5, CHO). It was found that the Gibbs energy of the gauche conformers is lower in every case than that of the corresponding anti conformers. In the more stable gauche conformers, the interatomic distance between X and the hydrogen atom was shorter than the sum of the van der Waals radii. The natural bonding orbital (NBO) charges of group X were more negative in the gauche conformers than in the anti conformers. We suggest that the CH/n and CH/π hydrogen bonds play an important role in stabilizing the gauche conformation of these compounds.  相似文献   

6.
The vibrational spectra and crystal structures of four lanthanide and potassium salts of 3,5-bis(dicyanomethylene)cyclopentane-1,2,4-trionate (), known as croconate violet (CV), are described in this work. All LnKC22N8O6 (Ln = La+3, Nd+3, Gd+3 and Ho+3) compounds are isostructural, crystallizing in the triclinic space group. In each compound the lanthanide ion is acting as both monodentate and chelate metal sites, whereas the potassium presents only monodentate coordination. The crystal structure shows the formation of a periodic 2D structure extended by K-N bonds parallel to the crystallographic [0 0 1] direction; these 2D sheets form hydrogen bonds with water molecules giving rise to a 3D extended arrangement. It is not possible to observe any type of π-interaction and the main forces responsible to stabilize the structures are the hydrogen bonds. The vibrational spectra of all the compounds are very similar, and the most important vibrational markers for the croconate violet ion, namely the ν(CN) and ν(CO) modes, behave differently: the ν(CN) modes are not shifted by the presence of the lanthanide ion species, only showing small band intensity differences, whereas the ν(CO) bands are shifted to higher wavenumbers, due to their coordination to the metal sites.  相似文献   

7.
Carboxymethyl cellulose is widely used in many industrial aspects and also in laboratory due to its good biocompatibility. However, special researches on infrared especially aiming at the hydrogen bonds structure of carboxymethyl cellulose were relatively poor. We demonstrate here a full view of infrared spectroscopy in the temperature range of 40–220 °C, mainly aiming at the hydrogen bonds in the NaCMC film. The two important transition points was defined with DSC and together with Infrared analysis, that is, 100 °C corresponding to the complete loss of water molecules and 170 °C to the starting temperature point the O6H6 being oxidized. The series of IR spectra during heating from 40 to 220 °C was analyzed by the two-dimensional correlation method. We found that the water molecules bound with CO groups and OH groups. With the evaporating of water molecules, the hydrated CO groups gradually transited into non-hydrated CO groups. As the temperature continued to increase, the intrachain hydrogen bonds were weakened and transited into weak hydrogen bonds. When the temperature was higher than 170 °C, the O6H6 groups were gradually oxidized and thus the interchain hydrogen bonds formed between CH2COONa groups and O6H6 were weakened. In summary, we defined the main sorts of hydrogen bonds in carboxymethyl cellulose and pictured the changes of the hydrogen bonds structure during heating process, which may provide for the further application in both industry aspects and laboratory use.  相似文献   

8.
The X-ray crystal structure of lentil lectin in complex with -d-glucopyranose has been determined by molecular replacement and refined to anR-value of 0.20 at 3.0 Å resolution. The glucose interacts with the protein in a manner similar to that found in the mannose complexes of concanavalin A, pea lectin and isolectin I fromLathyrus ochrus. The complex is stabilized by a network of hydrogen bonds involving the carbohydrate oxygens O6, O4, O3 and O5. In addition, the -d-glucopyranose residue makes van der Waals contacts with the protein, involving the phenyl ring of Phe123. The overall structure of lentil lectin, at this resolution, does not differ significantly from the highly refined structures of the uncomplexed lectin.Molecular docking studies were performed with mannose and its 2-O and 3-O-m-nitro-benzyl derivatives to explain their high affinity binding. The interactions of the modelled mannose with lentil lectin agree well with those observed experimentally for the protein-carbohydrate complex. The highly flexible Me-2-O-(m-nitro-benzyl)--d-mannopyranoside and Me-3-O-(m-nitro-benzyl)--d-mannopyranoside become conformationally restricted upon binding to lentil lectin. For best orientations of the two substrates in the combining site, the loss of entropy is accompanied by the formation of a strong hydrogen bond between the nitro group and one amino acid, Gly97 and Asn125, respectively, along with the establishment of van der Waals interactions between the benzyl group and the aromatic amino acids Tyr100 and Trp128.RL and FC are joint first authors.  相似文献   

9.
The crystal and molecular structure of the nonapeptide antibiotic leucinostatin A, containing some uncommon amino acids and three Aib residues, has been determined by x-ray diffraction analysis. The molecule crystallizes in the orthorhombic space group P2(1)2(1)2(1), a = 10.924, b = 17.810, c = 40.50 A, C62H111N11O13, HCl.H2O, Z = 4. The peptide backbone folds in a regular right-handed alpha-helix conformation, with six intramolecular i----(i + 4) hydrogen bonds, forming C13 rings. The nonapeptide chain includes at the C end an unusual beta-Ala residue, which also adopts the helical structure of the other eight residues. In the crystal the helices are linked head to tail by electrostatic and hydrogen-bond interactions, forming continuous helical rods. The crystal packing is formed by adjacent parallel and antiparallel helical rods. Between adjacent parallel helical columns there are only van der Waals contacts, while between adjacent antiparallel helical columns hydrogen-bond interactions are formed.  相似文献   

10.
Iodine-cyclohexa-amylose tetrahydrate [(C6H10O5)6 ·I2·d4H2O] crystallizes in the orthorhombic space-group P212121, a  14.240 Å, b  36.014 Å, c  9.558 Å. The structure was solved by heavy-atom techniques and refined by least-squares methods to a conventional discrepancy index R  0.148 for the 2872 observed data. The six d-glucose residues are in the C1 chair conformation; the conformational angles vary in magnitude from 45 to 66°, the angles O(5)-C(5)-C(6)-O(6) are close to · 70°, and the six O(4) atoms are almost coplanar (r.m. s. displacement 0.13 Å). Only four of the six O(2) ?O(3) intramolecular hydrogen bonds have formed, which renders the molecule less symmetrical and more conical-shaped than in the previously determined α-cyclodextrin-potassium acetate complex. The iodine molecule is coaxial with the cyclohexa-amylose molecule. The I-I distance is a conventional 2.677 Å. Close interactions between the iodine atoms and the host molecule comprise carbon atoms C(5) and C(6) and oxygen atoms O(4), with interatomic distances all equal to or greater than van der Waals contacts. Intermolecular, almost-linear, short contacts O ? I-I?O with I?O distances of 3.22 and 3.07 Å indicate attractive interaction.The molecules are arranged in herring-bone “cage-type” fashion, with the four water molecules as space-filling mediators; the structure is held together by an intricate network of hydrogen bonds.  相似文献   

11.
In this paper, we report the syntheses and crystal structures of two intercluster salt compounds, [Al13O4(OH)24(H2O)12][H2W12O40](OH) · 20H2O (1) and [Al13O4(OH)24(H2O)12][H2W12O40](OH) · 24H2O (2). The crystal structures of these compounds show that they are polymorphs to each other with different modes of packing of the and ions. The structures of 1 and 2 can be described as alternating arrangements of ionic clusters that optimize electrostatic interactions and hydrogen bonds between them. The structure of 1 is analogous to the PtS structure and that of 2 is similar to the β-BeO structure with the clusters forming tetrahedral or square planar coordination geometries to each other.  相似文献   

12.
Reexamination of the crystal structure of silk (Bombyx mori) was carried out by X-ray diffraction method. Four molecular chains are contained in the rectangular unit cell with parameters, a = 9.38 A, b = 9.49 A, and c (fiber axis) = 6.98 A, and the space group P2(1)-C(2)2. Silk assumes the statistical crystal structure, in which two antipolar-antiparallel sheet structures with different orientations statistically occupy a crystal site with the ratio 2:1. The molecular conformation is essentially the same pleated sheet structure as Marsh, Corey and Pauling proposed. However, the sheet structure formed by hydrogen bonds assumes the antipolar antiparallel structure different from that proposed by Marsh, Corey and Pauling, in which the methyl groups of alanine residues alternately point to both sides of the sheet structure along the hydrogen bonding direction. The crystalline region of silk is composed of stacking of two antipolar antiparallel sheet structures with different orientations.  相似文献   

13.
Five new silver(I)-saccharinate complexes [Ag2(sac)2(tmen)2] (1), [Ag2(sac)2(deten)2] (2), [Ag2(sac)2(dmen)2] (3), [Ag(sac)(N,N-eten)] (4), and [Ag(sac)(dmpen)]n (5); (sac = saccharinate, tmen = N,N,N′,N′-tetramethylethylenediamine, deten = N,N′-diethylethylenediamine, dmen = N,N′-dimethylethylenediamine, N,N-eten = N,N-diethylethylenediamine and dmpen = 1,3-diamino-2,2-dimethylpropan) have been synthesized and characterized by elemental analyses, IR, thermal analyses, single crystal X-ray diffraction and antimicrobial activities. The crystallographic analyses show that all the complexes crystallize in monoclinic space group P21/c. In 1, the sac ligand acts as a bridge to connect the silver centres through its imino N and carbonyl O atoms forming an eight-membered bimetallic ring in a chair conformation. Complex 2 has also a dimeric structure in which the monomeric [Ag(sac)(deten)] units are linked by Ag?Ag interactions. In 3, saccharinate ligand acts as a bridging bidentate ligand between two silver(I) centres through sulfonyl group and imino N atom, forming an alternating polymeric chain through the direction [0 1 0]. In 4, the inter-molecular N-H?O hydrogen bonds form one-dimensional polymeric chains through the a axis, and these linear chains are inter-connected to each other by N-H?O hydrogen bonds, which produce a chain of edge-fused and rings along [1 0 0]. Complex 5 is a coordination polymer in which the monomeric [Ag(dmpen)(sac)]n units are linked by Ag?Ag interactions, and the dmpen ligand acts as a bridge between the silver(I) ions, forming a two-dimensional network parallel to the (1 0 0) plane.  相似文献   

14.
A study on the structure and magnetic properties of [Pr(NO3)(Pic)(H2O)2(EO3)](Pic) complex, where EO3 = triethylene glycol and Pic = picrate anion was conducted and characterized by single crystal X-ray structure analysis. Magnetic susceptibility (χM) was carried out from 2 to 300 K under both field-cooled (FC) and zero-field-cooled (ZFC) measurements with an applied magnetic field of 2000 Oe. The complex is crystallized in triclinic with space group . The coordination geometry around the Pr(III) ion was a tetradecahedron with a ten-coordination number. In the crystal, the molecular structure was stabilized by moderate and weak hydrogen bonding interactions between the cation [Pr(NO3)(Pic)(H2O)2(EO3)]+ moiety and [Pic] as counter-anion that led to the formation of a one-dimensional network. The temperature dependence of the magnetic susceptibility of [Pr(NO3)(Pic)(H2O)2(EO3)](Pic) shows the presence of weak antiferromagnetic interactions between the Pr(III) centers. The magnetic susceptibility for complex also obeys the Curie-Weiss law and is effective at high temperatures. Some factors that influence the photoluminescence intensity were also reported.  相似文献   

15.
《Inorganica chimica acta》2004,357(1):339-344
A cobalt-oxalato complex of formula {[Co(μ-ox)(H2O)2] · 2H2O}n (1) (ox=oxalate dianion) has been prepared and characterized by X-ray diffraction analysis, thermoanalytical techniques and variable temperature susceptibility measurements. The compound crystallizes in the triclinic space group with cell parameters: a=6.627(1), b=8.715(2), c=11.106(2) Å, α=69.86(1), β=83.45(1), γ=72.33(1)°. Its crystal structure consists of crystallization water molecules and one-dimensional linear chains of [Co(H2O)2]2+ units linked by bis-bidentate oxalato ligands. These structural units are held together by an extensive network of hydrogen bonds. The magnetic properties show the occurrence of antiferromagnetic interactions between the metal centers.  相似文献   

16.
Iron(III) porphinate complexes of phenolate that have NH?O hydrogen bonds on the coordinating oxygen, [FeIII(OEP){O-2,6-(RCONH)2C6H3}] (R = CF3 (1), CH3 (3)) and [FeIII(OEP)(O-2-RCONHC6H4)] (R = CF3 (2), CH3 (4)) (OEP = 2,3,7,8,12,13,17,18-octaethyl-21H, 23H-porphinato), were synthesized and characterized as models of heme catalase. The presence of NH?O hydrogen bonds was established by their crystal structures and IR shifts of the amide NH band. The crystal structure of 1 shows an extremely elongated Fe-O bond, 1.926(3) Å, compared to 1.887(2) Å in 2 or 1.848(4) Å in [FeIII(OEP)(OPh)]. The NH?O hydrogen bond decreases an electron donation from oxygen to iron, resulting in a long Fe-O bond and a positive redox potential.  相似文献   

17.
Hydrothermal reaction of copper(II) chloride with 2-hydroxypyrimidine generated double salt of [Cu2Cl(μ4-pymo)] (1) (Hpymo = hydroxylpyrimidine) while hydrothermal treatment of CuCl2, NaN3 and acetonitrile resulted in double salt of [Cu2(mtta)Cl] (2) (Hmtta = 5-methyltetrazole) in which in situ [2 + 3] cycloaddition reactions of acetonitrile with azide formed mtta ligand. X-ray single crystal structural analyses revealed that 1 shows a two-dimensional layer formed by fusion of one-dimensional structural motifs. The two-dimensional layers in 1 are held together by C-H?Cl hydrogen bonds to form three-dimensional supramolecular array. Compound 2 has a three-dimensional framework constructed from ribbons and [Cu8Cl4]4+ units. Uncommon coordination modes of μ4-1,2κO:3κN:4κN′ pymo and μ4-Cl (Cl at the apex of a Cu4Cl square pyramid) in 1 and μ41111 mtta in 2 were also observed. The short Cu(I)?Cu(I) distances were found in 1 and 2, indicating the existence of Cu(I)?Cu(I) interactions.  相似文献   

18.
A novel copper(II)-radical complex [Cu(NITmPy)(PDA)(H2O)] · (H2O) (1) (NITmPy = 2-(3′-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, H2PDA = 2,6-pyridinedicarboxylic acid) has been synthesized and structurally characterized by X-ray diffraction methods. It crystallizes in the triclinic space group . The Cu(II) ion exists in a distorted square pyramid environment. The molecules of [Cu(NITmPy)(PDA)(H2O)] · (H2O) are connected as a two-dimensional structure by the intermolecular hydrogen bonds. Magnetic measurements show intramolecular ferromagnetic interactions between NITmPy and Cu(II) ion and intermolecular antiferromagnetic interactions in 1.  相似文献   

19.
The title complexes, {[Ag(Pepy)(NO3)]} (1) and [HPepy(FeCl4)] (2) (Pepy = trans-2-(2-phenylethyleneyl)pyridine), had been synthesized and characterized structurally by single-crystal X-ray diffraction analysis, FTIR as well as thermal analysis. The geometrical structure of complex 1 is a one-dimensional helical zigzag chain. Each AgI center is five-coordinated by two anions and one Pepy ligand while the anion is an uncommon tetra-dentate coordinating to two AgI by O atoms, respectively. The anions connecting with AgI as bridge blocks resulted in the formation of crystalline of helical polymeric chain. In the mononuclear complex 2, the FeIII center is four-coordinated by four Cl as [FeCl4] anion, which connected with hydrogen atoms from the protonated N atom and the C atoms from HPepy+ to form multivalent hydrogen bonded network through N-H?Cl and C-H?Cl interactions. The two frameworks can be both considered as a 3D structure driven by diverse hydrogen bonds as well as π-π stacking interactions.  相似文献   

20.
Syntheses, spectroscopic and thermal characterization are reported for the potentially tetradentate bis(O,O′-4-acyl-5-pyrazolone) pro-ligands HQ3QH and HQ4QH (in detail HQ3QH: 1,5-bis(5-hydroxy-1-phenyl-3-methyl-1H-pyrazol-4-yl)pentane-1,5-dione, HQ4QH: 1,6-bis(5-hydroxy-1-phenyl-3-methyl-1H-pyrazol-4-yl)hexane-1,6-dione) and their di-n-butyltin(IV) derivatives and . Single crystal X-ray structural characterizations of the proligand HQ4QH and of the binuclear tin(IV) complex are also reported; both the ligand and complex molecules are centrosymmetric, the latter having two independent molecules in the structure. Sn-C, O(acyl), O(pz) distances (〈 〉) are 2.121(3), 2.119(6) and 2.37(4) Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号