首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 311 毫秒
1.
Matrix vesicles (MVs) are involved in the initial step of mineralization in skeletal tissues and provide an easily model to analyze the hydroxyapatite (HA) formation. Sr stimulates bone formation and its effect was tested on MVs. Sr2+ (15-50 μM) in the mineralization medium containing MVs, 2 mM Ca2+ and 3.42 mM Pi, retarded HA formation. Sr2+ (1-5 mM) in the same medium-induced other types of mineral than HA and cancelled the ATP-, ADP- or PPi-induced retardation in the mineral formation. Our findings suggest that the beneficial effect of Sr2+ at a low dose (15-50 μM) is rather an inhibitor of bone resorption than an activator of mineral formation, while at high Sr2+ concentration (1-5 mM), mineral formation, especially other types of mineral than HA, is favored.  相似文献   

2.
Variable pH 13C NMR and 1H NMR spectroscopic studies of the β-cyclodextrin (β-CD) in alkaline aqueous solutions revealed that β-CD does not deprotonate at pH < 12.0. Further increase in solution pH results in the deprotonation of OH-groups adjacent to C-2 and C-3 carbon atoms of β-CD glucopyranose units, whereas the deprotonation of OH-groups adjacent to C-6 carbon atoms is expressed less markedly. The pKa values for β-CD OH-groups adjacent to C-2 and C-3 carbon atoms are rather close, pKa1,2 being 13.5 ± 0.2 (22.5 °C).  相似文献   

3.
The divalent cation, Ca2+, plays crucial roles in plant growth, development and stress resistance. Limonium bicolor seedlings were treated with 200 mM NaCl combined with three levels of Ca2+ (0 mM, 5 mM and 20 mM) for 15 days to study the effects of Ca2+ on development and salt-secretion rates of salt glands. It was shown that the 4th leaf areas of L. bicolor seedlings under 20 mM Ca2+ treatment were significantly higher than those under 0 mM and 5 mM Ca2+ treatments. The total number and the densities of salt glands per leaf increased markedly with increased Ca2+ concentrations. The diameters of salt glands increased by 59% and 63% as Ca2+ concentration increased from zero to 5 mM and 20 mM, respectively. Under 20 mM Ca2+ treatment, the salt-secretion rate per leaf was obviously higher than that treated with 5 mM Ca2+, but there was no significant difference in the salt-secretion rates per salt gland between the two groups. Under 0 mM Ca2+ treatment, leaf-cell membrane permeability increased significantly, which led to serious leakage of ions and a significant increase in Na+ loss rate. The results showed that the increase of Ca2+ concentration markedly enhanced development and salt-secretion rates of salt glands in the leaves of L. bicolor, the increase of salt secretion per leaf is due to the efficiency of the secretion process per salt gland and the number of salt glands, the salt-secretion rates per salt gland have a relationship with the diameters of salt glands.  相似文献   

4.
Adaptation to salinity of a semi-arid inhabitant plant, henna, is studied. The salt tolerance mechanisms are evaluated in the belief that gas exchange (water vapor and CO2) should play a key role on its adaptation to salt stress because of the strong evaporation conditions and soil water deficit in its natural area of distribution. We grow henna plants hydroponically under controlled climate conditions and expose them to control (0 mM NaCl), and two levels of salinity; medium (75 mM NaCl) and high (150 mM NaCl). Relative growth rate (RGR), biomass production, whole plant and leaf structure and ultrastructure adaptation, gas exchange, chlorophyll fluorescence, nutrients location in leaf tissue and its balance in the plant are studied. RGR and total biomass decreased as NaCl concentration increased in the nutrient solution. At 75 mM NaCl root biomass was not affected by salinity and RGR reached similar values to control plants at the end of the experiment. At this salinity level henna plant responded to salinity decreasing shoot to root ratio, increasing leaf specific mass (LSM) and intrinsic water use efficiency (iWUE), and accumulating high concentrations of Na+ and Cl in leaves and root. At 150 mM NaCl growth was severely reduced but plants reached the reproductive phase. At this salinity level, no further decrease in shoot to root ratio or increase in LSM was observed, but plants increased iWUE, maintaining water status and leaf and root Na+ and Cl concentrations were lower than expected. Moreover, plants at 150 mM NaCl reallocated carbon to the root at the expense of the shoot. The effective PSII quantum yield [Y(II)] and the quantum yield of non-regulated energy dissipation [Y(NO)] were recovered over time of exposure to salinity. Overall, iWUE seems to be determinant in the adaptation of henna plant to high salinity level, when morphological adaptation fails.  相似文献   

5.
An RNA kissing complex formed by the dimerization initiation site plays a critical role in the survival and infectivity of human immunodeficiency virus. Two dimerization initiation site kissing sequences, Mal and Lai, have been found in most human immunodeficiency virus 1 variants. Formation and stability of these RNA kissing complexes depend crucially on cationic conditions, particularly Mg2+. Using optical tweezers, we investigated the mechanical unfolding of single RNA molecules with either Mal-type (GUGCAC) or Lai-type (GCGCGC) kissing complexes under various ionic conditions. The force required to disrupt the kissing interaction of the two structures, the rip force, is sensitive to concentrations of KCl and MgCl2; addition of 3 mM MgCl2 to 100 mM KCl changes the rip force of Mal from 21 ± 4 to 46 ± 3 pN. From the rip force distribution, the kinetics of breaking the kissing interaction is calculated as a function of force and cation concentration. The two kissing complexes have distinct unfolding transition states, as shown by different values of ΔX, which is the distance from the folded structure to the unfolding transition state. The ΔX of Mal is ∼ 0.6 nm smaller than that of Lai, suggesting that fewer kissing base pairs are broken at the transition state of the former, consistent with observations that the Lai-type kissing complex is more stable and requires significantly more force to unfold than the Mal type. More importantly, neither K+ nor Mg2+ significantly changes the position of the transition state along the reaction coordinate. However, increasing concentrations of cations increase the kinetic barrier. We derived a cation-specific parameter, m, to describe how the height of the kinetic barrier depends on the concentration of cations. Our results suggest that Mg2+ greatly slows down the unfolding of the kissing complex but has moderate effects on the formation kinetics of the structure.  相似文献   

6.
The impact of Zn2+ ion on interactions of flavonols galangin (Gal), kaempferol (Kae), quercetin (Que) and myricetin (Myr) with bovine serum albumin (BSA) in aqueous solution were studied by fluorescence quenching technique. The results exhibited that Zn2+ ion affected significantly the interactions and the effect was distinct for the flavonol bearing different number of B-ring hydroxyl. Each flavonol can quench the fluorescence of BSA, displaying a quenching extent of Myr > Que > Kae > Gal, which is in good agreement with the number variation of the B-ring hydroxyl. The presence of Zn2+ ion promoted the quenching for the flavonols, exhibiting an extent of Que > Myr > Kae > Gal. The values of Ka for Kae, Que and Myr decreased whereas KSV and kq for Gal, Kae and Que increased with the number of B-ring hydroxyl. The type of BSA fluorescence quenching for Gal, Kae and Que hardly changed but the preference of static quenching increased. The values of KSV and kq for Myr remarkably decreased and the fluorescence quenching of BSA alternatively occurred via both static and dynamic type instead of only one (static or dynamic). The results suggest the key role of the B-ring hydroxyl and the distinct effect of its number in the interactions. Each flavonol may capture the BSA-bound ZnII in the solution, forming ZnII-flavonol complex that is possibly responsible for BSA fluorescence quenching. The B-ring hydroxyl could establish hydrogen bonds with BSA in the absence of Zn2+ and act as donors for chelating in the presence of Zn2+. The formation of dinuclear ZnII-Myr complex together with the hydrogen bonds between the free B-ring hydroxyl and BSA may contribute to the exceptional behavior of Myr.  相似文献   

7.
A linear water-insoluble (1→3)-β-d-glucan, coded as GL-IV-I, was isolated from the fruit body of Ganoderma lucidum by extracting with NaOH solution. Its derivatives were prepared by using sulfation, carboxymethylation, hydroxyethylation, hydroxypropylation, and methylation, respectively, and these were labeled as S-GL, CM-GL, HE-GL, HP-GL and M-GL. Five derivatives exhibited good water solubility. Their structures and chain conformations were investigated with infrared spectroscopy, elemental analysis (EA), one- and two-dimensional NMR spectroscopy, laser light scattering (LLS), and size-exclusion chromatography combined with LLS (SEC-LLS). The reactivity of the hydroxyl group of GL-IV-I was ordered as C-6 > C-4 > C-2 for the five derivatives. The degree of substitution (DS) of the derivatives was calculated from EA and NMR spectroscopy to be from 0.32 to 1.18. The weight-average molecular mass (Mw) of GL-IV-I, S-GL, CM-GL, HE-GL, HP-GL, and M-GL was 13.3 × 104, 10.1 × 104, 6.3 × 104, 7.2 × 104, 5.1 × 104, and 14.1 × 104, respectively. The conformation analysis studies revealed that GL-IV-I exists as a compact coil in dimethyl sulfoxide, whereas the five derivatives are slightly expanded flexible chains in 0.9% aqueous NaCl solution.  相似文献   

8.
Sixteen combinations of 5 treatments at 4 levels were designed in a L16(45) orthogonal experimental design to evaluate associative effects of five methanogenesis inhibitors at four dose levels: nitroethane (NE, 0 mM, 5 mM, 10 mM and 15 mM), 2-nitroethanol (NEOH, 0 mM, 5 mM, 10 mM and 15 mM), 2-nitro-1-propanol (NPOH, 0 mM, 5 mM, 10 mM and 15 mM), pyromellitic diimide (PMDI, 0 mM, 0.02 mM, 0.05 mM and 0.07 mM) and 2-bromoethanesulphonate (BES, 0 mM, 0.01 mM, 0.03 mM and 0.05 mM) on in vitro ruminal methane production of the mixed substrate (Chinese wildrye hay:maize meal = 4:1) using a cumulative gas production technique. After 48 h incubation, in vitro dry matter disappearance (IVDMD), total gas production (GP48, ml/g DM) and total volatile fatty acids (VFA) production in various combinations of these inhibitors were decreased by 10.6-56.0, 26.5-44.5 and 20.3-47.6%, respectively (P<0.05). The molar proportion of acetate in the inhibitor combination groups was decreased by 6.6-12.5% while those of propionate and butyrate were increased by 7.0-19.2 and 21.9-56.5% (P<0.01), respectively. Methane proportion (MP) in total gas production was reduced by 79.4-98.5% (P<0.01), and the highest inhibition occurred in the combination of 10 mM NE, 10 mM NPOH, 0.07 mM PMDI and 0.01 mM BES in cultures. The partial correlation coefficients between NE, NEOH, NPOH, PMDI or BES and CH4 proportion were −0.465 (P<0.01), −0.417 (P<0.01), −0.355 (P<0.05), −0.408 (P<0.01) and −0.345 (P<0.05), respectively, indicating that NE was the most potent inhibitor, followed by NEOH and PMDI, and finally NPOH and BES. In general, VFA production in the inhibitor combinations was substantially shifted to produce much more butyrate and propionate and less acetate. The combination of 15 mM NE, 10 mM NEOH, 5 mM NPOH, 0.07 mM PMDI and 0.01 mM BES in cultures, leading to >95% methane inhibition, may be the optimal application of these inhibitors with less depression of total VFA production. Further feeding trials to validate these combinations is still required on rumen function, methane production, growth performance and milk production.  相似文献   

9.
Ion-selective microelectrodes are a powerful tool in studying adaptive responses of plant cells and tissues to various abiotic stresses. However, application of this technique in Na+ flux measurements was limited due to poor selectivity for Na+ ions of commercially available Na+ cocktails. Often, these cocktails cannot discriminate between Na+ and other interfering ions such as K+ and Ca2+, leading to inaccurate measurements of Na+ concentration and, consequently, inaccurate Na+ flux calculations. To overcome this problem, three Na+-selective cocktail mixtures were prepared using tetramethoxyethyl ester derivative of p-t-butyl calix[4]arene. These cocktail mixtures were compared with commercially available ETH 227-based Na+ cocktail for selectivity for Na+ ions over other ions (particularly K+ and Ca2+). Among the three calixarene-based Na+ cocktails tested, cocktail 2 [in % w/w: Na+ ionophore (4-tert-butylcalix[4]arene-tetra acetic acid tetraethyl ester) 3.5, the plasticizer (2-nitrophenyl octyl ether) 95.9 and lipophilic anion (potassium tetrakis (4-chlorophenyl) borate) 0.6] showed the best selectivity for Na+ ions over K+ and Ca2+ ions and was highly stable over time (up to 10 h). Na+ flux measurements under a wide range of NaCl concentrations (25-150 mM) using Na+ cocktail 2 established a clear dose-response relationship between severity of salt stress and magnitude of Na+ influx at the distal elongation and mature zones of Arabidopsis thaliana roots. Furthermore, Na+ cocktail 2 was compared with commercially available ETH 227-based Na+ cocktail by measuring Na+ fluxes at the two Arabidopsis root zones in response to 100 mM NaCl treatment. With calixarene-based Na+ cocktail 2, a large decreasing Na+ influx (0-15 min) followed by small Na+ influx (15-45 min) was measured, whereas with ETH-based Na+ cocktail Na+ influx was short-lived (1-3 min) and was followed by Na+ efflux (3-45 min) that might have been due to K+ and Ca2+ efflux measured together with Na+ influx. In conclusion, Na+-selective calixarene-based microelectrodes have excellent potential to be used in real-time Na+ flux measurements in plants.  相似文献   

10.
Protective effects of exogenous spermidine (Spd), activity of antioxygenic enzymes, and levels of free radicals in a well-known medicinal plant, Panax ginseng was examined. Seedlings grown in salinized nutrient solution (150 mM NaCl) for 7 d exhibited reduced relative water content, plant growth, increased free radicals, and showing elevated lipid peroxidation. Application of Spd (0.01, 0.1, and 1 mM) to the salinized nutrient solution showed increased plant growth by preventing chlorophyll degradation and increasing PA levels, as well as antioxidant enzymes such as CAT, APX, and GPX activity in the seedlings of ginseng. During salinity stress, Spd was effective for lowering the accumulation of putrescine (Put), with a significant increase in the spermidine (Spd) and spermine (Spm) levels in the ginseng seedlings. A decline in the Put level ran parallel to the higher accumulation of proline (Pro), and exogenous Spd also resulted in the alleviation of Pro content under salinity. Hydrogen peroxide (H2O2) and superoxide (O2) production rates were also reduced in stressed plants after Spd treatment. Furthermore, the combined effect of Spd and salt led to a significant increase in diamine oxidase (DAO), and subsequent decline in polyamine oxidase (PAO). These positive effects were observed in 0.1 and 1 mM Spd concentrations, but a lower concentration (0.01 mM) had a very limited effect. In summary, application of exogenous Spd could enhance salt tolerance of P. ginseng by enhancing the activities of enzyme scavenging system, which influence the intensity of oxidative stress.  相似文献   

11.
Cobalt(II) complexes with the non-steroidal anti-inflammatory drug naproxen in the presence or absence of nitrogen-donor heterocyclic ligands (pyridine, 2,2′-bipyridine or 1,10-phenanthroline) have been synthesized and characterized with physicochemical and spectroscopic techniques. The deprotonated naproxen acts as monodentate ligand coordinated to Co(II) ion through a carboxylato oxygen. The crystal structure of [bis(aqua)bis(naproxenato)bis(pyridine)cobalt(II)], 2 has been determined by X-ray crystallography. The EPR spectrum of complex 2 in frozen solution reveals that it retains its structure. UV study of the interaction of the complexes with calf-thymus DNA (CT DNA) has shown that the complexes can bind to CT DNA and [(2,2′-bipyridine)bis(methanol)bis(naproxenato)cobalt(II)] exhibits the highest binding constant to CT DNA. The cyclic voltammograms of the complexes recorded in DMSO solution and in the presence of CT DNA in 1/2 DMSO/buffer (containing 150 mM NaCl and 15 mM trisodium citrate at pH 7.0) solution have shown that they can bind to CT DNA by the intercalative binding mode which has also been verified by DNA solution viscosity measurements. Competitive study with ethidium bromide (EB) has shown that the complexes can displace the DNA-bound EB indicating that they bind to DNA in strong competition with EB. Naproxen and its cobalt(II) complexes exhibit good binding propensity to human or bovine serum albumin proteins having relatively high binding constant values. The antioxidant activity of the compounds has been evaluated indicating their high scavenging activity against hydroxyl free radicals and superoxide radicals.  相似文献   

12.
The mixed-ligand complex formation in the systems Hg2+-Edta4−-L (L = Cys2−, Met) has been studied by means of calorimetry, pH-potentiometry and NMR spectroscopy in aqueous solution at 298.15 K and the ionic strength of I = 0.5 (KNO3). The thermodynamic parameters of formation of the HgEdtaL, HgEdtaHL and (HgEdta)2L complexes have been determined. The most probable coordination mode for the complexone and the amino acid in the mixed-ligand complexes is discussed.  相似文献   

13.
A series of cyanide-bridged binuclear complexes, (‘S3’)Ni-CN-M[TptBu] (‘S3’ = bis(2-mercaptophenyl)sulfide, TptBu = hydrotris(3-tert-butylpyrazolyl)borate, M = Fe (2-Fe), Co (2-Co), Ni (2-Ni), Zn (2-Zn)) was prepared by the coupling of K[(‘S3’)Ni(CN)] with [TptBu]MX. The isostructural series of complexes was structurally and spectroscopically characterized. A similar coupling strategy was used to synthesize the anionic copper(I) analogue, Et4N{(‘S3’)Ni-CN-Cu[TptBu]}, 2-Cu.An alternative synthesis was devised for the preparation of the linkage isomers of 2-Zn, i.e. of cyanide-bridged linkage isomers. X-ray diffraction, 13C NMR and IR spectral studies established that isomerization to the more stable Ni-CN-Zn isomer occurs. DFT computational results buttressed the experimental observations indicating that the cyanide-bridged isomer is ca. 5 kcal/mol more stable than its linkage isomer.  相似文献   

14.
Crop productivity is greatly affected by soil salinity, so improvement in salinity tolerance of crops is a major objective of many studies. We overexpressed the Arabidopsis thaliana SOS1 gene, which encodes a plasma membrane Na+/H+ antiporter, in tobacco (Nicotiana tabacum cv. Xanthi-nc). Compared with nontransgenic plants, seeds from transgenic tobacco had better germination under 120 mM (mmol L−1) NaCl stress; chlorophyll loss in the transgenic seedlings treated with 360 mM NaCl was less; transgenic tobacco showed superior growth after irrigation with NaCl solutions; and transgenic seedlings with 150 mM NaCl stress accumulated less Na+ and more K+. In addition, roots of SOS1-overexpressing seedlings lost less K+ instantaneously in response to 50 mM NaCl than control plants. These results showed that the A. thaliana SOS1 gene potentially can improve the salt tolerance of other plant species.  相似文献   

15.
A series of η2-bound terminal alkynes coordinated to the Tp′ platinum(II) methyl fragment (Tp′ = hydridotris(3,5-dimethylpyrazolyl)borate) has been synthesized. These complexes are thermally unstable and undergo slow oxidative addition upon gentle heating, resulting in the formation of alkynyl-hydride platinum(IV) complexes. The rate of conversion from Pt(II) reactants to Pt(IV) products was monitored and activation parameters have been calculated. The entropies of activation of these reactions suggest that the third arm of the Tp′ ligand is dissociating to facilitate oxidative addition of the alkyne C-H bond.  相似文献   

16.
Although it is now generally accepted that borate ion, B(OH)4?, reacts with suitable polyols in aqueous solution to form two types of complexes with strongly acidic properties (1), several investigators have presented evidence to show the formation of two types of complexes is stoichiometrically unsatisfactory (2,3).Aside from its usefulness in structural studies, the reaction has important implications in numerous biochemical applications. Many compounds of biological importance contain hydroxyl groups in positions favorable for reaction with borate ion.As an extension of previous work (4) we report here the determination of solution stability constants of borate ion complexes with several biologically important polyols by means of a pH method and in two instances a calorimetric method.  相似文献   

17.
This study investigated how modulation of intracellular calcium alters the functional activity of the EAAC1 glutamate transporter in C6 glioma cells. Pre-incubation of C6 glioma cells with the endoplasmic reticulum Ca2+ ATP pump inhibitor, thapsigargin (10 μM) produced a time-dependent increase in the Vmax for d-[3H]aspartate transport that reached a maximum at 15 min (143% of control; P < 0.001) that was accompanied by increased plasma membrane expression of EAAC1 and was blocked by inhibition of protein kinase C. Pre-incubation of C6 glioma cells with phorbol myristate-3-acetate (100 nM for 20 min) also caused a significant increase in the Vmax of sodium-dependent d-[3H]aspartate transport (190% of control; P < 0.01). In contrast, in the absence of extracellular calcium, thapsigargin caused a significant inhibition in d-[3H]aspartate transport that was not mediated by protein kinase C. Blockade of store-operated calcium channels with 2-aminoethoxydiphenyl borate (50 μM) or SKF 96365 (10 μM) caused a net inhibition of d-[3H]aspartate uptake. Co-incubation of C6 glioma cells with both thapsigargin and 2-aminoethoxydiphenyl borate (but not SKF 96365) prevented the increase in d-[3H]aspartate transport that was observed in the presence of thapsigargin alone. Furthermore, 2-aminoethoxydiphenyl borate, but not SKF 96365, reduced the increase in intracellular calcium that occurred following pre-incubation of the cells with thapsigargin. It is concluded that, in C6 glioma cells, stimulation of EAAC1-mediated glutamate transport by thapsigargin is dependent on entry of calcium via the NSCC-1 subtype of store operated calcium channel and is mediated by protein kinase C. In contrast, in the absence of store operated calcium entry, thapsigargin inhibits transport.  相似文献   

18.
Human lens proteins (HLP) become chemically modified by kynurenines and advanced glycation end products (AGEs) during aging and cataractogenesis. We investigated the effects of kynurenines on AGE synthesis in HLP. We found that incubation with 5 mM ribose or 5 mM ascorbate produced significant quantities of pentosidine, and this was further enhanced in the presence of two different kynurenines (200–500 µM): N-formylkynurenine (Nfk) and kynurenine (Kyn). Another related compound, 3-hydroxykynurenine (3OH-Kyn), had disparate effects; low concentrations (10–200 µM) promoted pentosidine synthesis, but high concentrations (200–500 µM) inhibited it. 3OH-Kyn showed similar effects on pentosidine synthesis from Amadori-enriched HLP or ribated lysine. Chelex-100 treatment of phosphate buffer reduced pentosidine synthesis from Amadori-enriched HLP by ∼ 90%, but it did not inhibit the stimulating effect of 3OH-Kyn and EDTA. 3OH-Kyn (100–500 μM) spontaneously produced copious amounts of H2O2 (10–25 μM), but externally added H2O2 had only a mild stimulating effect on pentosidine but had no effect on Nε-carboxymethyl lysine (CML) synthesis in HLP from ribose and ascorbate. Further, human lens epithelial cells incubated with ribose and 3OH-Kyn showed higher intracellular pentosidine than cells incubated with ribose alone. CML synthesis from glycating agents was inhibited 30 to 50% by 3OH-Kyn at concentrations of 100–500 μM. Argpyrimidine synthesis from 5 mM methylglyoxal was slightly inhibited by all kynurenines at concentrations of 100–500 μM. These results suggest that AGE synthesis in HLP is modulated by kynurenines, and such effects indicate a mode of interplay between kynurenines and carbohydrates important for AGE formation during lens aging and cataract formation.  相似文献   

19.
The catalytic activity of the zinc(II) complexes of calix[4]arenes decorated with 1,5,9-triazacyclododecane ligands at the 1,2-, 1,3-, and 1,2,3-positions of the upper rim was investigated in the basic methanolysis (pH 10.4) of aryl acetates functionalised at the meta- and para-positions with a carboxylate anchoring group. Michaelis-Menten kinetics and turnover catalysis were observed. High rate accelerations, up to more than 104-fold at 0.2 mM catalyst, were recorded in the most favourable catalyst-substrate combinations. The order of catalytic efficiency of regioisomeric bimetallic complexes is 1,2-vicinal ? 1,3-distal, resulting from a significant degree of synergism between metal ions in the former, and a complete lack in the latter. The moderately higher efficiency of the trimetallic compared with the 1,2-vicinal bimetallic catalyst provides an indication of a possible cooperation of three zinc(II) ions in the catalysis.  相似文献   

20.
A series of gold(III) metalacycle of five-, six- and seven-membered ring was prepared by reacting Auric acid (HAuCl4 · 3H2O) with 1 equiv. unsubstituted ethylenediamine (en), propylene diamine (pn) and butylenediamine (bn) ligands and with some N-mono-substituted as well as N,N′-disubstituted ethylenediamine ligands. The general formula of these complexes is [Au(alkyldiamine)Cl2]Cl. These complexes are characterized by melting point and elemental analysis, while structural analysis was done by spectroscopic techniques such as UV-Vis, Far-IR, IR spectroscopy, 1H and 13C solution as well as 13C and 15 N solid-state NMR. The solid-state 15 N NMR shows that the chemical shift difference between free and bound ligand decreases as bn > pn > en, indicating stronger Au-N bond for bn complex compared to pn and en. UV-Vis shows relative stability of the Au(III) complexes of unsubstituted ethylenediamine with respect to N,N′-di-substituted ethylenediamine. Far-IR data show the six-membered metalacycle gold(III) alkanediamine complexes to be more stable. Spectroscopic data are evaluated by comparisons with calculated data of the built and optimized structure by gaussian03 at the RB3LYP level with LanL2DZ bases set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号