首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel cellulose-based polyelectrolyte (AM-C) containing acylamino (DS = 0.625) and carboxyl (DS = 0.148) groups was homogeneously synthesized from cellulose with acrylamide in NaOH/urea aqueous solutions. Solution properties of AM-C in aqueous solutions were investigated by laser light scattering, rheometry, and viscometry. The results indicated that AM-C could form large aggregates spontaneously in water with or without the addition of salts by the strong hydrogen bonds and electrostatic interaction between acylamino and carboxyl groups. Steady-shear flow study showed a Newtonian behavior of the solutions in the dilute regime while a shear-thinning behavior as the concentration increases. The critical concentration (ce) for transition from dilute to concentrated solution was determined to be 0.7 wt %. Aqueous solutions of AM-C displayed good thermo-stability, reversible liquid-like characters attributing to the chemical modification. The derivation from Cox-Merz rule at relatively low concentration was related to the co-existence of single chain and large aggregates of AM-C in dilute regime. As the polymer concentration increased, the AM-C system was transformed into a homogeneous entanglement structure, resulting in the disappearance of deviations from the Cox-Merz rule.  相似文献   

2.
Hybrid nanofibrous materials with antibacterial activity consisting of yarns from N-carboxyethylchitosan (CECh) and poly(ethylene oxide) (PEO) that contain 5 wt % or 10 wt % silver nanoparticles (AgNPs) were prepared. This was achieved by electrospinning using formic acid as a solvent and as a reducing agent for silver ions. AgNO3 was used as an Ag+-containing salt. Its concentration was selected to be 0.02 mol/L or 0.04 mol/L in order the content of the AgNPs in the electrospun nanofibers to be 5 wt % or 10 wt %, respectively. The self-bundling of the fibers into yarns with a mean diameter of ca. 35 μm was enabled only by using a grounded needle electrode. The reduction of the silver ions to an elemental silver was evidenced by UV-vis spectroscopy, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The transmission electron microscopy (TEM) analyses revealed that AgNPs formed at AgNO3 concentration of 0.02 mol/L were with a mean diameter of 4 ± 0.5 nm and were distributed uniformly within the fiber. The increase of AgNO3 concentration to 0.04 mol/L led to the preparation of AgNPs with a higher mean diameter and a broader diameter distribution as well as to aggregate formation. The performed studies on the antibacterial activity of CECh/PEO/AgNPs fibrous materials against Staphylococcus aureus showed that at AgNPs content of 5 wt % the mats had bacteriostatic, and at AgNPs content of 10 wt %—bactericidal activity.  相似文献   

3.
Two kinds of chitosans, namely N-acetylated and N-deacetylated chitosan were prepared by the modified processes. They can dissolve in both acid and alkali solution. 13C NMR was used to study the basic solution of chitosan, and XRD, FT-IR and SEM were used to study the structure of N-acetylated and N-deacetylated chitosan. The result from X-ray diffraction showed that a transformation of crystal structure occurred during the N-acetylation or N-deacetylation process with the decrease of crystallinity and expansion of crystal lattices. FT-IR spectra revealed that the intermolecular and intramolecular hydrogen bonds were destroyed by both treatments and a looser structure was observed by the SEM. The lower crystallinity, the decreased intermolecular interactions, the more disordered and looser structure were easy for the permeation of LiOH/urea aqueous solution and coordinated with the breakage of intermolecular and intramolecular hydrogen bond by LiOH at low temperature, the prepared chitosans dissolved in LiOH/urea/H2O mixture.  相似文献   

4.
Water-soluble and white quaternized chitin (QC) was homogeneously synthesized by stirring transparent chitin solution (2%) in 8 wt%NaOH/4 wt% urea aqueous solution containing 2,3-Epoxypropyltrimethylammonium Chloride (EPTMAC) at 10 °C for 24 h. The structure and properties of quaternized chitin were characterized by FT-IR, XRD, 1H NMR, GPC, element analysis and ζ-potential. The results indicate that quaternary groups were successfully incorporated onto chitin backbones and the degree of substitution (DS) of quaternary groups can be easily adjusted by changing the molar ratio of chitin unit to EPTMAC. Additionally, quaternized chitin shows better antibacterial activity against Escherichia coli and Staphylococcus aureus as compared with chitosan. Thus, this work provides a simply and “green” method to functionalize chitin and the resulting quaternized chitin may have potential applications in environmental, food and biomedical fields.  相似文献   

5.
A novel glucose oxidase/chitosan/α-zirconium phosphate (GOD/chitosan/α-ZrP) ternary biocomposite was prepared by co-intercalating glucose oxidase (GOD) and chitosan into the interlayers of α-zirconium phosphate (α-ZrP) via a delamination–reassembly procedure. The results of X-ray diffraction, infrared spectroscopy, circular dichroism, and ultraviolet spectrum characterizations indicated not only the layered and hybrid structure of the GOD/chitosan/α-ZrP ternary biocomposite but also the recovered activity of the intercalated GOD improved by the co-intercalated chitosan. By depositing the GOD/chitosan/α-ZrP biocomposite film onto a glassy carbon electrode, the direct electrochemistry of the intercalated GOD was achieved with a fast electron transfer rate constant, ks, of 7.48 ± 3.52 s−1. Moreover, this GOD/chitosan/α-ZrP biocomposite modified electrode exhibited a sensitive response to glucose in the linear range of 0.25–8.0 mM (R = 0.9994, n = 14), with a determination limit of 0.076 mM.  相似文献   

6.
Novel chitosan/ZnO nanoparticle (CS/nano-ZnO) composite membranes were prepared via the method of sol-cast transformation and studied by UV-vis absorption spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray fluorescence spectrometry (EDX). The characterization revealed that ZnO nanoparticles dispersed homogeneously within the chitosan matrix. The mechanical and antibacterial properties of the product were investigated. The results showed that the ZnO content had an effect on the mechanical properties of CS/nano-ZnO composite membranes, and that the antibacterial activities of CS membranes for Bacillus subtilis, Escherichia coli, and Staphylococcus aureus were enhanced by the incorporation of ZnO. Further, CS/nano-ZnO composite membranes with 6-10 wt % ZnO exhibited high antibacterial activities.  相似文献   

7.
The aim of this study was to develop a new inorganic-organic hybrid film. Nanohydroxyapaptite (nHAP) particles as the inorganic phase was mixed with cellulose in 7 wt.% NaOH/12 wt.% urea aqueous solution with cooling to prepare a blend solution, and then inorganic-organic hybrid films were fabricated by coagulating with Na2SO4 aqueous solution. The structure and properties of the hybrid films were characterized by high resolution transmitting electron microscopy (HRTEM), field emission scanning electron microscopy (FESEM), thermo-gravimetric analysis (TGA), Fourier transform infra-red (FT-IR) spectra, wide angle X-ray diffraction (WAXD) and tensile testing. The results revealed that the HAP nanoparticles with mean diameter of about 30 nm were uniformly dispersed and well immobilized in the hybrid film as a result of the role of the nano-and micropores in the cellulose substrate. A strong interaction existed between HAP and cellulose matrix, and their thermal stability and mechanical strength were improved as a result of good miscibility. Furthermore, the results of 293T cell viability assay indicated that the HAP/cellulose films had excellent biocompatibility and safety, showing potential applications in biomaterials.  相似文献   

8.
Tao Y  Xu W 《Carbohydrate research》2008,343(18):3071-3078
A water-insoluble hyperbranched β-d-glucan (TM3a), extracted from sclerotia of Pleurotus tuber-regium, was treated by microwave exposure to improve its solubility in water. This method led to complete dissolution of the TM3a polysaccharide in 0.02 wt % aqueous NaN3. Various treatment periods were tested, and optimal conditions corresponded to 35 s at 765 W. The solution properties of TM3a in water were studied systematically by using size-exclusion chromatography combined with laser light scattering, viscometry, and dynamic light scattering at 25 °C. The dependences of intrinsic viscosity ([η]), radius of gyration (), and hydrodynamic radius (Rh) on weight average molecular weight (Mw) for TM3a in 0.02 wt % aqueous NaN3 at 25 °C were found to be , , and in the Mw range from 8.20 × 105 to 4.88 × 106. The fractal dimension, ratio of , and the <r2>o/Mw value of TM3a were calculated and discussed. The results indicated that TM3a existed in a sphere-like conformation in 0.02 wt % aqueous NaN3. Furthermore, by using transmission electron microscopy, we observed directly the spherical molecules of TM3a. This work gave valuable information on improvement of solubility and chain conformation characterization of the water-insoluble polysaccharide in water.  相似文献   

9.
Water-soluble N-(4-carboxybutyroyl) chitosan derivatives with different degrees of substitution (DS) were synthesized to enhance the antimicrobial activity of chitosan molecule against plant pathogens. Chitosan in a solution of 2% aqueous acetic acid-methanol (1:1, v/v) was reacted with 0.1, 0.3, 0.6 and 1 mol of glutaric anhydride to give N-(4-carboxybutyroyl) chitosans at DS of 0.10, 0.25, 0.48 and 0.53, respectively. The chemical structures and DS were characterized by 1H and 13C NMR spectroscopy, which showed that the acylate reaction took place at the N-position of chitosan. The synthesized derivatives were more soluble than the native chitosan in water and in dilute aqueous acetic acid and sodium hydroxide solutions. The antimicrobial activity was in vitro investigated against the most economic plant pathogenic bacteria of Agrobacterium tumefaciens and Erwinia carotovora and fungi of Botrytis cinerea, Pythium debaryanum and Rhizoctonia solani. The antimicrobial activity of N-(4-carboxybutyroyl) chitosans was strengthened than the un-modified chitosan with the increase of the DS. A compound of DS 0.53 was the most active one with minimum inhibitory concentration (MIC) of 725 and 800 mg/L against E. carotovora and A. tumefaciens, respectively and also in mycelial growth inhibiation against B. cinerea (EC50 = 899 mg/L), P. debaryanum (EC50 = 467 mg/L) and R. solani (EC50 = 1413 mg/L).  相似文献   

10.
A novel non-toxic procedure is described for the grafting of chitosan-based microcapsules containing grapefruit seed oil extract onto cellulose. The cellulose was previously UV-irradiated and then functionalized from an aqueous emulsion of the chitosan with the essential oil. The novel materials are readily attained with durable fragrance and enhanced antimicrobial properties. The incorporation of chitosan as determined from the elemental analyses data was 16.08 ± 0.29 mg/g of sample. Scanning electron microscopy (SEM) and gas chromatography-mass spectroscopy (GC-MS) provided further evidence for the successful attachment of chitosan microcapsules containing the essential oil to the treated cellulose fibers. The materials thus produced displayed 100% inhibition of Escherichia coli and Staphylococcus epidermidis up to 48 h of incubation. Inhibition of bacteria by the essential oil was also evaluated at several concentrations.  相似文献   

11.
The solution plasma system was introduced to treat chitosan solution in order to prepare low molecular weight chitosan. The plasma treatment time was varied from 0 min to 300 min. The plasma-treated chitosan was characterized including viscosity, molecular weight by GPC, and chemical characteristics by FT-IR. The results showed that after treated with plasma for 15-60 min, the viscosity of chitosan solution and apparent molecular weight of chitosans were remarkably decreased, compared to those of untreated sample. Longer treatment time had less effect on both viscosity and molecular weight of samples. Eventually, long treatment time (≥180 min) showed no influence on both viscosity and apparent molecular weight. This suggested that the degradation process of chitosan occurred during plasma treatment. FT-IR analysis revealed that chemical structure of chitosan was not affected by solution plasma treatment. TOF-MS results showed that chitooligosaccharides with the degree of polymerization of 2-8 were also generated by solution plasma treatment. The results suggested that solution plasma system could be a potential method for the preparation of low molecular weight chitosan and chitooligosaccharides.  相似文献   

12.
By dynamic light scattering in combination with fluorescence spectroscopy and TEM it was shown that aggregation in aqueous solutions is inherent not only to chitosan, but also to two other water-soluble derivatives of chitin: O-carboxymethylchitin and di-N,N-carboxymethylchitosan. Aggregation is observed even for the samples without N-acetyl-d-glucosamine units, which remain upon incomplete chemical modification of chitin, indicating that specific interactions between residual chitin repeat units cannot be the main reason for the aggregation. At the same time, 7 M urea weakens the aggregation, thus testifying that hydrogen bonding and/or hydrophobic interactions are partially responsible for this phenomenon. The incomplete disruption of aggregates in 7 M urea may arise from crystallization of junction zones between different macromolecules, which makes some hydrogen bonds inaccessible for urea or too stable for breaking by this agent.  相似文献   

13.
Removal of a basic dye (Methylene Blue) from aqueous solution was investigated using a cross-linked succinyl-chitosan (SCCS) as sorbent. The chemical structures of chitosan and its derivatives were testified by FT-IR. X-ray diffraction, DTG analysis and swelling measurements were conducted to clarify the characteristics of the chemically modified chitosan. The effect of process parameters, such as pH of the initial solution, and concentrations of dyes on the extent of Methylene Blue (MB) adsorption was investigated. The Langmuir isotherm model was used to fit the equilibrium experimental data, giving a maximum sorption capacity of 289.02 mg/g at 298 K. Kinetic studies showed that the kinetic data were well described by the pseudo-second-order kinetic model. Thermodynamic parameters such as enthalpy change (ΔH°), free energy change (ΔG°) and entropy change (ΔS°) were determined to be −25.32 kJ mol−1, −6.76 kJ mol−1 and −62.36 J mol−1 K−1, respectively, which leads to a conclusion that the adsorption process is spontaneous and exothermic.  相似文献   

14.
Zhang Q  Deng S  Yu G  Huang J 《Bioresource technology》2011,102(3):2265-2271
The crosslinked chitosan beads were used as an efficient biosorbent to remove perfluorooctane sulfonate (PFOS) from aqueous solution. The chitosan biosorbent had a sorption capacity up to 5.5 mmol/g for PFOS at the equilibrium concentration of 0.33 mmol/L, much higher than some conventional adsorbents. The sorption kinetics indicated that the sorption equilibrium was reached quickly at high pH and low PFOS concentrations, and the adsorbent size also affected the sorption rate to some extent. The double-exponential model described the kinetic data well, and the sorption of PFOS on the chitosan beads was a diffusion-controlled process. Based on the sorption kinetics and adsorbent characterization, the uptake mechanisms including electrostatic and hydrophobic interactions were identified to be responsible for PFOS sorption, and the hemi-micelles and micelles may form in the porous structure due to high PFOS concentrations within the adsorbent, which had the main contribution to the high sorption capacity.  相似文献   

15.
Studies on the HCl-catalysed microwave-assisted dehydration of highly concentrated aqueous fructose (27 wt %) to 5-hydroxymethylfurfural (HMF) revealed a significant increase in the fructose conversion rate over the conventional heated systems. Water, being the most benign solvent and therefore ideal for green and sustainable chemistry, normally is a poor solvent for the dehydration process resulting in low HMF selectivities and yields. However, reaction at 200 °C with microwave irradiation with a short reaction time of only 1 s resulted in good HMF selectivity of 63% and fructose conversion of 52%, while prolonged irradiation for 60 s (or more) resulted in nearly full fructose conversion (95%) but lower HMF yield (53%). Decreasing the fructose concentration significantly improved the HMF selectivity, but possibly made the production route less attractive from an industrial point of view due to the resultant low throughput.  相似文献   

16.
The recombinant Escherichia coli M15/BCJ2315 which harbored a mandelonitrilase from Burkholderia cenocepacia J2315 was immobilized via catecholic chitosan and functionalized with magnetism by iron oxide nanoparticles. The immobilized cells showed high activity recovery, enhanced stability and good operability in the enantioselective hydrolysis of mandelonitrile to (R)-(−)-mandelic acid. Furthermore, the immobilized cells were reused up to 15 cycles without any activity loss in completely hydrolyzing mandelonitrile (100 mM) within 1 h in aqueous solution. The ethyl acetate–water biphasic system was built and optimized. Under the optimal conditions, as high as 1 M mandelonitrile could be hydrolyzed within 4 h with a final yield and ee value of 99% and 95%, respectively. Moreover, the successive hydrolysis of mandelonitrile was performed by repeated use of the immobilized cells for 6 batches, giving a final productivity (g L−1 h−1) and relative production (g g−1) of 40.9 and 38.9, respectively.  相似文献   

17.
Zirconium sulfophenyl phosphonate (ZrSP), Zr(O3P-C6H4SO3H)2, was synthesized and characterized to prepare nanocomposites based on chitosan (CS). The effects of ZrSP on the structure, morphology, and thermal properties, as well as the mechanical properties of the films were investigated by Fourier-transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), and tensile tests. FTIR spectroscopy revealed that electrostatic interactions had been formed in the nanocomposites, which improved the compatibility between CS and ZrSP. XRD and SEM results indicated the ZrSP nanoparticles were uniformly distributed in the chitosan matrix at low loading, and obvious aggregations existed at high loading. In addition, compared with neat CS, the values of tensile strength (σb), elongation at break (εb), and water resistance of CS/ZrSP-3 containing 0.6 wt % ZrSP had been improved by 60.0%, 69.7%, and 41.8%, respectively.  相似文献   

18.
A superabsorbent polymer (SAP) from chitosan was provided via carboxymethylation of chitosan, followed by cross-linking with glutaraldehyde and freeze-drying. This work was focused on an investigation of the effects of monochloroacetic acid (MCAA), sodium hydroxide, and reaction time on preparation of carboxymethyl chitosan (CMCS). The CMCS products were characterized using FTIR spectroscopy, and their degrees of substitution (DS) were measured using conductimetry and FTIR analysis. The highest DS value was obtained when the carboxymethylation reaction was carried out using 1.75 g MCAA and 1.75 g NaOH per g of chitosan in 4 h. The water solubilities of the CMCS products at various pHs were also evaluated, and the results indicated a significant impact of the reaction parameters on the solubility of CMCS. The CMCSs with the highest DS value resulted in SAPs having the highest water-binding capacity (WBC). The WBC of the best SAP measured after 10 min exposure in distilled water, 0.9% NaCl solution, synthetic urine, and artificial blood was 104, 33, 30, and 57 g/g, respectively. The WBC of this SAP at pH 2-9 passed a maximum at pH 6.  相似文献   

19.
In this study, carboxymethyl chitosan was prepared, characterized, and then photo-induced graft copolymerized with poly(ethylene glycol) under a nitrogen atmosphere in aqueous solution using 2,2-dimethoxy-2-phenyl acetophenone (DMPA) as the photo-initiator. The grafting copolymerization process was confirmed and the resulting copolymers were characterized using differential scanning calorimetry (DSC), FTIR spectroscopy, 2D-X ray diffraction, and elemental analysis. The kinetics of the grafting reactions was also studied. Under the applied experimental conditions, the optimum grafting values were obtained at: CMCs = 0.2 g, PEGA = 249 mM, DMPA = 10.4 mM at a 2 h reaction time. Some of the resulting copolymers were selected and used in the presence of methylene bisacrylamide (MBA) as a crosslinking agent to develop pH-responsive hydrogel matrices. The swelling characteristics and the in vitro release profiles of 5-fluorouracil (5-FU), as a model drug, from the hydrogels were investigated. The results revealed that the hydrogel matrices developed in this study can be customized to act as good candidates in drug delivery systems.  相似文献   

20.
The effect of sodium dodecyl sulfate (SDS) on human, bovine, porcine, rabbit and sheep serum albumins were investigated at pH 3.5 by using various spectroscopic techniques like circular dichroism (CD), intrinsic fluorescence and dynamic light scattering (DLS). In the presence of 4.0 mM SDS the secondary structure of all the albumins were not affected as measured by CD but fluorescence spectra revealed 8.0 nm blue shift in emission maxima. We further checked the stability of albumins in the absence and presence of 4.0 mM SDS by urea and temperature at pH 3.5. In the absence of SDS, urea starts unfolding both secondary as well as tertiary structural elements of the all the albumins at ∼2.0 M urea but in the presence of 4.0 mM SDS, urea was unable to unfold even up to 9.0 M. The albumins were thermally less stable at pH 3.5 with decrease in Tm but in the presence of 4.0 mM SDS, the Tm was increased. From this study, it was concluded that SDS is showing a protective effect against urea as well as thermal denaturation of albumins. This behavior may be due to electrostatic as well as the hydrophobic interaction of SDS with albumins. Further, we have proposed the mechanism of action of urea. It was found that urea interacted with proteins directly when proteins are in charged form. Indirect interaction may be taking place when the environment is more hydrophobic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号