首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Fucosylated chondroitin sulfate (FCScs) isolated from sea cucumber Cucumaria syracusana was characterized by Fourier Transform InfraRed spectroscopy (FT-IR), Nuclear Magnetic Resonance (NMR) spectroscopy and high performance size exclusion chromatograph, a multi-angle laser light scattering detector, a viscometer and a differential refractive index (dRI) detector (HPSEC-MALLS-dRI). The anticoagulant activities of FCScs were studied by the classical clotting time assays and the purified systems containing thrombin and antithrombin or heparin cofactor II. The effect on thrombin generation was investigated using calibrated automated thrombography (CAT). The results obtained showed that the FCS with high sulfate content 31 % and relatively low average molecular weight of 36.3 kDa was isolated from C. syracusana in amount of ∼ 35.6 mg/g dry body wall. Structural analysis of this polysaccharide revealed the presence backbone structure of chondroitin sulfate chain branched by two types of fucose 2,4-O-di and 3,4-O-disulfated residues in respective ratios of 57.5 and 42.5 %. The FCScs exhibited a high anticoagulant activity mediated essentially by heparin cofactor II (HCII) and to lesser extent by antithrombin (AT) with IC50 values of 0.05 μg/mL and 0.09 μg/mL, respectively. Furthermore, the results of CAT assay showed that the velocity index decreases 3-times at 50 μg/mL in comparison with normal plasma. The overall results showed high anticoagulant activity attributed to the high sulfate content and abundance of disulfated fucose branches of FCScs which made it a promising candidate of anticoagulation drug.  相似文献   

2.
Quaternary ammonium chitosan sulfates with diverse degrees of substitution (DS) ascribed to sulfate groups between 0.52 and 1.55 were synthesized by reacting quaternary ammonium chitosan with an uncommon sulfating agent (N(SO3Na)3) that was prepared from sodium bisulfite (NaHSO3) through reaction with sodium nitrite (NaNO2) in the aqueous system homogeneous. The structures of the derivatives were characterized by FTIR, 1H NMR and 13C NMR. The factors affecting DS of quaternary ammonium chitosan sulfates which included the molar ratio of NaNO2 to quaternary ammonium chitosan, sulfated temperature, sulfated time and pH of sulfated reaction solution were investigated in detail. Its anticoagulation activity in vitro was determined by an activated partial thromboplastin time (APTT) assay, a thrombin time (TT) assay and a prothrombin time (PT) assay. Results of anticoagulation assays showed quaternary ammonium chitosan sulfates significantly prolonged APTT and TT, but not PT, and demonstrated that the introduction of sulfate groups into the quaternary ammonium chitosan structure improved its anticoagulant activity obviously. The study showed its anticoagulant properties strongly depended on its DS, concentration and molecular weight.  相似文献   

3.
A natural low molecular weight heparin (8.5 kDa), with an anticoagulant activity of 95 IU/mg by the USP assay, was isolated from the shrimp Penaeus brasiliensis. The crustacean heparin was susceptible to both heparinase and heparitinase II from Flavobacterium heparinum forming tri- and di-sulfated disaccharides as the mammalian heparins. (13)C and (1)H NMR spectroscopy revealed that the shrimp heparin was enriched in both glucuronic and non-sulfated iduronic acid residues. The in vitro anticlotting activities in different steps of the coagulation cascade have shown that its anticoagulant action is mainly exerted through the inhibition of factor Xa and heparin cofactor II-mediated inhibition of thrombin. The shrimp heparin has also a potent in vivo antithrombotic activity comparable to the mammalian low molecular weight heparins.  相似文献   

4.
A high molecular weight sulphated (18.4%) proteoglycan was isolated from extracts of Codium fragile ssp. atlanticum by molecular exclusion chromatography on Sepharose 2B. Ion exchange chromatography, using Sepharose CL-6B, of lower molecular weight components eluted from the Sepharose 2B column gave two major products with sulphate contents of 10.2% and 7.5%, respectively. Anticoagulant activities of each of the three products were assessed using coagulation techniques and chromogenic substrate assays. An increase in anticoagulant effect was demonstrated by increasing concentration and sulphate content of each algal component. The mechanism of anticoagulant action was shown to be, principally, anti-thrombin in character due to potentiation of heparin cofactor II and antithrombin III activity. Although the anticoagulant substances described are unlikely to be used as antithrombotic therapeutic agents, they have uses as biomedical reagents for investigation of the processes of thrombin inhibition.  相似文献   

5.
An anticoagulant was isolated from a marine green alga, Codium cylindricum. The anticoagulant was composed mainly of galactose with a small amount of glucose, and was highly sulfated (13.1% as SO Na). The anticoagulant properties of the purified anticoagulant were compared with that of heparin by assays of activated partial thromboplastin time (APTT), prothrombin time (PT) and thrombin time (TT) using normal human plasma. The anticoagulant showed similar activities with heparin, however, weaker than heparin. On the other hand, the anticoagulant did not affect PT even at the concentration at which APTT and TT were strongly prolonged. The anticoagulant did not potentiate antithrombin III (AT III) and heparin cofactor II (HC II), thus the anticoagulant mechanism would be different from that of other anticoagulants isolated so far from the genus Codium.  相似文献   

6.
In order to develop a promising substitute for heparin, N-succinyl chitosan (NSC) was chemically modified by sulfating agent N(SO(3)Na)(3), which were synthesized with sodium bisulfite and sodium nitrite in aqueous solution. The N-succinyl chitosan sulfates (NSCS) products were characterized by infrared spectroscopy (FT-IR) and (13)C NMR. The degree of substitution (DS) of NSCS depended on the ratio of sulfating agent to N-succinyl chitosan, reaction temperature, reaction time and pH of sulfation agent. N-succinyl chitosan sulfates with DS of 1.97 were obtained under optimal conditions. The in vitro coagulation assay of NSCS was determined by activated partial thromboplastin time (APTT), prothrombin time (PT) and thrombin time (TT) assays. The results showed that NSCS obviously prolonged APTT. The anticoagulant activity strongly depended on DS, molecular weight (M(w)) and concentration of NSCS. The anticoagulant activity of NSCS promoted with the increase of DS and concentration, and NSCS exhibited the best anticoagulant activity with the M(w) of 1.37×10(4).  相似文献   

7.
A polysaccharide was isolated from marine green algae Monostroma latissimum, and its chemical characteristic and anticoagulant activity were investigated. The results demonstrated that the polysaccharide was high rhamnose-containing sulfated polysaccharide, and was mainly composed of 1,2-linked l-rhamnose residues with sulfate groups substituted at positions C-3 and/or C-4. The sulfated polysaccharide exhibited high anticoagulant activities by assays of the activated partial thromboplastin time (APTT) and thrombin time (TT). The anticoagulant property of the sulfated polysaccharide was mainly attributed to powerful potentiation thrombin by heparin cofactor II.  相似文献   

8.

Background

The polysaccharide of culture medium from Arthrospira platensis was extracted by ultrafiltration, partially characterized and assayed for anticoagulant activity.

Methods

The crude polysaccharidic fraction was fractionated by anion exchange chromatography on DEAE-cellulose, subjected to acetate cellulose electrophoresis and characterized by physicochemical procedures. The anticoagulant effect of the ultrafiltrated polysaccharide was checked by several coagulation tests.

Results

Anion exchange chromatography revealed in the whole ultrafiltrated polysaccharidic fraction the occurrence of a sulfated spirulan-like component designated PUF2. The average molecular weight of PUF2 was determined by size exclusion chromatography combined with multi-angle light scattering (SEC-MALS) and viscosimetry and was 199 kDa and the sulfate content was 20% weight/dry weight. The physicochemical characterization indicated the occurrence of rhamnose (49.7%), galacturonic and glucuronic acid (32% of total sugar). The anticoagulant effect of this sulfated polysaccharide was mainly due to the potentiation of thrombin inhibition by heparin cofactor II and was 4-times higher than that of the porcine dermatan sulfate whereas it had no effect on anti-Xa activity.

Conclusions

An ultrafiltrated sulfated polysaccharide, likely a calcium spirulan was obtained from the culture medium of A. platensis and showed an anticoagulant activity mediated by heparin cofactor II.

General significance

Old culture medium of A. platensis may represent an important source for the spirulan-like PUF2 which was endowed with potentially useful anticoagulant properties whereas its obtention by ultrafiltration may represent an extraction procedure of interest.  相似文献   

9.
Low molecular weight heparin of low-anticoagulant activity and high molecular weight heparin of correspondingly high activity were prepared by chromatography on protamine-Sepharose; preparations subjected to limited N-desulfation (5–10% free amino groups) by solvolysis were labeled with 5-dimethylaminonaphthalene-1-sulfonyl chloride (dansyl chloride) or rhodamine B isothiocyanate (RITC). The fluorescent heparins retained approximately 50% of the original anticoagulant activities. Dansyl-heparin on binding to antithrombin III (ATIII) exhibited a 2.5-fold enhancement of dansyl fluorescence intensity. This effect could be prevented by excess unlabeled heparin. A 7900 molecular weight dansyl-heparin preparation bound to ATIII with a stoichiometry of close to 2:1 and with an apparent association constant for binding (Ka) of 4.9 × 105, m?1, whereas a 21,600 molecular weight fraction bound at 0.7:1 with the protein and with an apparent Ka = 7.9 × 105, m?1. When ATIII reacted with a mixture of low molecular weight dansyl-heparin and low molecular weight RITC-heparin, there was enhancement of RITC fluorescence emission when excited at the dansyl excitation maximum; this effect was not observed when either of the labeled heparin species was prepared from high molecular weight material. The results are consistent with the proposal that a single molecule of high molecular weight, high-activity heparin occupies two sites when it binds to ATIII, whereas low molecular weight, low-activity heparin binds to the two sites separately.  相似文献   

10.
We previously reported that the sulfatide (galactosylceramide I3-sulfate) may have contradictory functions, namely both coagulant and anticoagulant roles in vivo: sulfatide induced giant thrombi formation when injected into rats with vein ligation, whereas no thrombi were formed when sulfatide was injected into rats without vein ligation. Rather it prolonged bleeding time. To investigate the structural features of sulfatide for both functions, a synthetic sulfatide (galactosylceramide I6-sulfate) which does not occur naturally, cholesterol 3-sulfate and ganglioside GM4 were examined together with naturally occurring sulfatide. Both sulfatides and cholesterol 3-sulfate induced giant thrombi in the rats with vein ligation within ten minutes of injection, although cholesterol 3-sulfate exhibited weaker coagulant activity than the sulfatides. On the contrary, both sulfatides significantly prolonged bleeding time but cholesterol 3-sulfate barely prolonged it when injected without vein ligation. GM4 exhibited neither coagulant nor anticoagulant activity. These results suggested that sulfate moiety in the sulfatides is essential for coagulant activity and that galactose residue enhances the activity, whereas both galactose and sulfate residues seem to be important for anticoagulant activity. This is because the sulfatides possess both residues but GM4 possesses galactose without sulfate and cholesterol 3-sulfate possesses sulfate without galactose. We previously reported that the possible mechanism of anticoagulation by sulfatide was due to its binding to fibrinogen, thereby inhibiting the conversion to fibrin. In this paper we reveal that both sulfatides inhibited thrombin activity independent of heparin cofactor II, thus providing evidence of another anticoagulation mechanism for the sulfatides.  相似文献   

11.
An anticoagulant was isolated from a marine green alga, Codium cylindricum. The anticoagulant was composed mainly of galactose with a small amount of glucose, and was highly sulfated (13.1% as SO3Na). The anticoagulant properties of the purified anticoagulant were compared with that of heparin by assays of activated partial thromboplastin time (APTT), prothrombin time (PT) and thrombin time (TT) using normal human plasma. The anticoagulant showed similar activities with heparin, however, weaker than heparin. On the other hand, the anticoagulant did not affect PT even at the concentration at which APTT and TT were strongly prolonged. The anticoagulant did not potentiate antithrombin III (AT III) and heparin cofactor II (HC II), thus the anticoagulant mechanism would be different from that of other anticoagulants isolated so far from the genus Codium.  相似文献   

12.
The major acidic polysaccharide from the brown alga Laminaria cichorioides is a complex and heterogeneous sulfated fucan. Its preponderant structure is a 2,3-disulfated, 4-linked alpha-fucose unit. The purified polysaccharide has a potent anticoagulant activity, as estimated by APTT assay ( approximately 40 IU/mg), which is mainly mediated by thrombin inhibition by heparin cofactor II. It also accelerates thrombin and factor Xa inhibition by antithrombin but at a lower potency. Sulfated fucan from L. cichorioides is a promising anticoagulant polysaccharide and a possible alternative for an antithrombotic compound due to its preferential heparin cofactor II-dependent activity.  相似文献   

13.
The separation of active and inactive forms of heparin.   总被引:38,自引:0,他引:38  
Heparin has been fractionated into two distinct forms. The isolation of these species was accomplished by sucrose density gradient centrifugation of heparin mixed with antithrombin-heparin cofactor. Approximately 13 of this mucopolysaccharide was bound to antithrombin-heparin cofactor and had potent anticoagulant activity. This component was clearly separated from the remaining 23 of the heparin which could not form a stable complex with antithrombin-heparin cofactor and had minimal anticoagulant activity.  相似文献   

14.
A linear sulfated fucan with a regular repeating sequence of [3)-alpha-L-Fucp-(2SO4)-(1-->3)-alpha-L-Fucp-(4SO4)-(1-->3)-alpha-L-Fucp-(2,4SO4)-(1-->3)-alpha-L-Fucp-(2SO4)-(1-->]n is an anticoagulant polysaccharide mainly due to thrombin inhibition mediated by heparin cofactor II. No specific enzymatic or chemical method is available for the preparation of tailored oligosaccharides from sulfated fucans. We employ an apparently nonspecific approach to cleave this polysaccharide based on mild hydrolysis with acid. Surprisingly, the linear sulfated fucan was cleaved by mild acid hydrolysis on an ordered sequence. Initially a 2-sulfate ester of the first fucose unit is selectively removed. Thereafter the glycosidic linkage between the nonsulfated fucose residue and the subsequent 4-sulfated residue is preferentially cleaved by acid hydrolysis, forming oligosaccharides with well-defined size. The low-molecular-weight derivatives obtained from the sulfated fucan were employed to determine the requirement for interaction of this polysaccharide with heparin cofactor II and to achieve complete thrombin inhibition. The linear sulfated fucan requires significantly longer chains than mammalian glycosaminoglycans to achieve anticoagulant activity. A slight decrease in the molecular size of the sulfated fucan dramatically reduces its effect on thrombin inactivation mediated by heparin cofactor II. Sulfated fucan with approximately 45 tetrasaccharide repeating units binds to heparin cofactor II but is unable to link efficiently the plasma inhibitor and thrombin. This last effect requires chains with approximately 100 or more tetrasaccharide repeating units. We speculate that the template mechanism may predominate over the allosteric effect in the case of the linear sulfated fucan inactivation of thrombin in the presence of heparin cofactor II.  相似文献   

15.
Hog mucosal heparin (N-sulfate, 0.84 mol; O-sulfate, 1.55 mol; N-acetyl, 0.12 mol; anticoagulant activity assayed by the method of U.S. Pharmacopeia, 161 USP units/mg) or its partially N-desulfated heparin (N-sulfate, 0.71 mol; O-sulfate, 1.47 mol; N-acetyl 0.12 mol; anticoagulant activity, 117 USP units/ mg) was reacted with 5-isothiocyanatofluorescein in 0.5M carbonate buffer (pH 8.5) at 35°C for 6 h to yield the corresponding N-fluoresceinylthiocarbamoyl heparins (λem 516 nm, λex 491 nm; degree of substitution 0.006 and 0.013, respectively, anticoagulant activity, 174 and 140 USP units/mg, respectively).The fluorescent heparin (degree of substitution, 0.006; 174 USP units/mg) was injected into rabbits intravenously. The half-life of the fluorescent heparin determined by fluorometry was 24 min, that determined by the clotting time assay was 39 min. The time-course of concentration and the half-life of the fluorescent heparin and of the starting heparin obtained by the clotting the assay were virtually identical.  相似文献   

16.
Rhodopsin is a canonical member of class A of the G protein-coupled receptors (GPCRs) that are implicated in many of the drug interventions in humans and are of great pharmaceutical interest. The molecular mechanism of rhodopsin activation remains unknown as atomistic structural information for the active metarhodopsin II state is currently lacking. Solid-state 2H NMR constitutes a powerful approach to study atomic-level dynamics of membrane proteins. In the present application, we describe how information is obtained about interactions of the retinal cofactor with rhodopsin that change with light activation of the photoreceptor. The retinal methyl groups play an important role in rhodopsin function by directing conformational changes upon transition into the active state. Site-specific 2H labels have been introduced into the methyl groups of retinal and solid-state 2H NMR methods applied to obtain order parameters and correlation times that quantify the mobility of the cofactor in the inactive dark state, as well as the cryotrapped metarhodopsin I and metarhodopsin II states. Analysis of the angular-dependent 2H NMR line shapes for selectively deuterated methyl groups of rhodopsin in aligned membranes enables determination of the average ligand conformation within the binding pocket. The relaxation data suggest that the β-ionone ring is not expelled from its hydrophobic pocket in the transition from the pre-activated metarhodopsin I to the active metarhodopsin II state. Rather, the major structural changes of the retinal cofactor occur already at the metarhodopsin I state in the activation process. The metarhodopsin I to metarhodopsin II transition involves mainly conformational changes of the protein within the membrane lipid bilayer rather than the ligand. The dynamics of the retinylidene methyl groups upon isomerization are explained by an activation mechanism involving cooperative rearrangements of extracellular loop E2 together with transmembrane helices H5 and H6. These activating movements are triggered by steric clashes of the isomerized all-trans retinal with the β4 strand of the E2 loop and the side chains of Glu122 and Trp265 within the binding pocket. The solid-state 2H NMR data are discussed with regard to the pathway of the energy flow in the receptor activation mechanism.  相似文献   

17.
Twenty-one fractions have been demonstrated in each of 15 different commercially available heparins subjected to electrofocusing. These fractions show a molecular-weight range from 3000 to 37,500 with a constant interval between molecular weights. Degradation of each fraction by purified enzymes of Flavobacterium heparinum yielded identical end products, suggesting chemical identity. Only fractions with a molecular weight of 7000 and up had significant anticoagulant activities. The phenomenon of electrofocusing of mucopolysaccharides is dependent upon pH, molecular weight, and ampholyte availability. Chemical composition of the mucopolysaccharide is also an essential factor since N- and O-desulfation of heparin markedly changed the focalization pattern. The pattern produced when heparin is subjected to electrofocusing is not duplicated by any other naturally occurring acidic mucopolysaccharide tested. Heparitin sulfate D shows some similarities to heparin and it is probable that heparitin sulfate D is a normal contaminant of heparin preparations (this assumption is supported by molecular-weight and anticoagulant activity determinations). The technique is specific and reproducible and unequivocally distinguishes heparin from other acid mucopolysaccharides.  相似文献   

18.
Sulfated polysaccharides from the green algae Ulva conglobata were isolated and prepared by extraction in hot water, precipitation with ethanol and purification by ion-exchange and size-exclusion column chromatography. The characterizations of the sulfated polysaccharides were defined, and containing 23.04–35.20% sulfate ester groups, 10.82–14.91% uronic acid and 3.82–4.51% protein. Gas chromatography analysis shows that the sulfated polysaccharides from Ulva conglobata are mainly consisted of rhamnose with variable contents of glucose and fucose, trace amounts of xylose, glactose and mannose. The anticoagulant properties of the sulfated polysaccharides were compared with those of heparin by studying the activated partial thromboplastin time using normal human plasma. The sulfated polysaccharide from Ulva conglobata collected in Qingdao, China is the most potent among the sulfated polysaccharides tested. The mechanism of anticoagulant activity mediated by the sulfated polysaccharides is due to the direct inhibition of thrombin and the potentiation of heparin cofactor II.  相似文献   

19.
《Analytical biochemistry》1997,251(2):219-226
A new, simple, and highly sensitive method for the determination of heparin has been established. Heparin was first converted into unsaturated disaccharides through the action of heparin lyases I, II, and III. A major trisulfated unsaturated disaccharide product results, consistent with structural analysis of a number of pharmaceutical heparins using one- and two-dimensional1H NMR spectroscopy. This disaccharide was analyzed by HPLC using fluorometric postcolumn derivatization. The correlation between the amount of this trisulfated unsaturated disaccharide and anticoagulant activity of heparin as measured by anti-IIa was determined. The analysis of these pharmaceutical heparins showed a linear correlation between both HPLC and bioassay. This HPLC method was then applied to a pharmacokinetic study of heparin intravenously administered to rabbits.  相似文献   

20.
Anticoagulant activity of a sulfated chitosan   总被引:12,自引:0,他引:12  
Chitin prepared from the shells of rice-field crabs (Somanniathelphusa dugasti) was converted into chitosan with a degree of acetylation of 0.21 and then sulfated with chlorosulfonic acid in N,N-dimethylformamide under semi-heterogeneous conditions to give 87% of water-soluble sulfated chitosan with degree of substitution (d.s) of 2.13. 1H NMR revealed the sulfate substitution at C-2, C-3 and C-6. Gel filtration on Sepharose CL-6B of the sulfated chitosan gave three fractions with average molecular weights of 7.1, 3.5, and 1.9 x 10(4). The three sulfated chitosan preparations showed strong anticoagulant activities, with the same mechanism of action observed for standard therapeutic heparin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号