首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
3-Deoxy-d-manno-octulosonate 8-phosphate synthase (KDO8PS) catalyzes the reaction between phosphoenol pyruvate and d-arabinose 5-phosphate to generate KDO8P. This reaction is part of the biosynthetic pathway to 3-deoxy-d-manno-octulosonate, a component of the lipopolysaccharide of the Gram-negative bacterial cell wall. Two distinct groups of KDO8PSs exist, differing by the absolute requirement of a divalent metal ion. In this study Acidithiobacillus ferrooxidans KDO8PS has been expressed and purified and shown to require a divalent metal ion, with Mn2+, Co2+ and Cd2+ (in decreasing order) being able to restore activity to metal-free enzyme. Cd2+ significantly enhanced the stability of the enzyme, raising the Tm by 14 °C. d-Glucose 6-phosphate and d-erythrose 4-phosphate were not substrates for A. ferrooxidans KDO8PS, whereas 2-deoxy-d-ribose 5-phosphate was a poor substrate and there was negligible activity with d-ribose 5-phosphate. The 243AspGlyPro245 motif is absolutely conserved in the metal-independent group of synthases, but the Gly and Pro sites are variable in the metal-dependent enzymes. Substitution of the putative metal-binding Asp243 to Ala in A. ferrooxidans KDO8PS gave inactive enzyme, whereas substitutions Asp243Glu or Pro245Ala produced active enzymes with altered metal-dependency profiles. Prior studies indicated that exchange of a metal-binding Cys for Asn converts metal-dependent KDO8P synthase into a metal-independent form. Unexpectedly, this mutation in A. ferrooxidans KDO8P synthase (Cys21Asn) gave inactive enzyme. This finding, together with modest activity towards 2-deoxy-d-ribose 5-phosphate suggests similarities between the A. ferrooxidans KDO8PS and the related metal-dependent 3-deoxy-d-arabino-heptulosonate phosphate synthase, and highlights the importance of the AspGlyPro loop in positioning the substrate for effective catalysis in all KDO8P synthases.  相似文献   

2.
The preparation of 1-deoxy-d-xylulose 5-phosphate, the key intermediate of MEP biosynthetic pathway for terpenoids by using recombinant 1-deoxy-d-xylulose 5-phosphate synthase of Rhodobacter capsulatus was optimized. The simple one-pot synthesis coupling with a newly established ion-exchange purification process affords the target compound with more than 80% yield and high purity (>95%). The procedure can also be employed to synthesize isotope labeled 1-deoxy-d-xylulose 5-phosphate by using isotope labeled starting materials.  相似文献   

3.
Interconversion of d-ribose-5-phosphate (R5P) and d-ribulose-5-phosphate is an important step in the pentose phosphate pathway. Two unrelated enzymes with R5P isomerase activity were first identified in Escherichia coli, RpiA and RpiB. In this organism, the essential 5-carbon sugars were thought to be processed by RpiA, while the primary role of RpiB was suggested to instead be interconversion of the rare 6-carbon sugars d-allose-6-phosphate (All6P) and d-allulose-6-phosphate. In Mycobacterium tuberculosis, where only an RpiB is found, the 5-carbon sugars are believed to be the enzyme's primary substrates. Here, we present kinetic studies examining the All6P isomerase activity of the RpiBs from these two organisms and show that only the E. coli enzyme can catalyze the reaction efficiently. All6P instead acts as an inhibitor of the M. tuberculosis enzyme in its action on R5P. X-ray studies of the M. tuberculosis enzyme co-crystallized with All6P and 5-deoxy-5-phospho-d-ribonohydroxamate (an inhibitor designed to mimic the 6-carbon sugar) and comparison with the E. coli enzyme's structure allowed us to identify differences in the active sites that explain the kinetic results. Two other structures, that of a mutant E. coli RpiB in which histidine 99 was changed to asparagine and that of wild-type M. tuberculosis enzyme, both co-crystallized with the substrate ribose-5-phosphate, shed additional light on the reaction mechanism of RpiBs generally.  相似文献   

4.
d-Arabinose isomerase (d-AI), also known as l-fucose isomerase (l-FI), catalyzes the aldose–ketose isomerization of d-arabinose to d-ribulose, and l-fucose to l-fuculose. Bacillus pallidus (B. pallidus) d-AI can catalyze isomerization of d-altrose to d-psicose, as well as d-arabinose and l-fucose. Three X-ray structures of B. pallidusd-AI in complexes with 2-methyl-2,4-pentadiol, glycerol and an inhibitor, l-fucitol, were determined at resolutions of 1.77, 1.60 and 2.60 Å, respectively. B. pallidusd-AI forms a homo-hexamer, and one subunit has three domains of almost equal size; two Rossmann fold domains and a mimic of the (β/α) barrel fold domain. A catalytic metal ion (Mn2+) was found in the active site coordinated by Glu342, Asp366 and His532, and an additional metal ion was found at the channel for the passage of a substrate coordinated by Asp453. The X-ray structures basically supported the ene-diol mechanism for the aldose–ketose isomerization by B. pallidusd-AI, as well as Escherichia coli (E. coli) l-FI, in which Glu342 and Asp366 facing each other at the catalytic metal ion transfer a proton from C2 to C1 and O1 to O2, acting as acid/base catalysts, respectively. However, considering the ionized state of Asp366, the catalytic reaction also possibly occurs through the negatively charged ene-diolate intermediate stabilized by the catalytic metal ion. A structural comparison with E. colil-FI showed that B. pallidusd-AI possibly interconverts between “open” and “closed” forms, and that the additional metal ion found in B. pallidusd-AI may help to stabilize the channel region.  相似文献   

5.
An enzymatic method for obtaining d-xylulose 5-phosphate has been developed, based on the irreversible reaction catalyzed by transketolase: hydroxypyruvate + d-glyceraldehyde-3-phosphate → d-xylulose 5-phosphate. The preparations of sodium d-xylulose 5-phosphate, obtained using this approach, were 88% pure and contained no aldehyde admixtures.  相似文献   

6.
Phosphonate and homophosphonate analogues of 3-deoxy-D-arabino heptulosonate 7-phosphate and D-gluco heptulosonate 7-phosphate behave as competitive inhibitors of 3-dehydroquinate synthetase. Phosphonates have better affinities than homophosphonates and protect efficiently the enzyme against thermal denaturation. No evidence has been obtained for 5-keto phosphonate intermediate formation in the interaction of such analogues with 3-dehydroquinate synthetase and NAD+.  相似文献   

7.
3-Deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS) catalyses the first step of the shikimate pathway for the biosynthesis of aromatic amino acids. Allosteric regulation of Thermotoga maritima DAH7PS is mediated by l-Tyr binding to a discrete ACT regulatory domain appended to a core catalytic (β/α)8 barrel. Variants of T. maritima DAH7PS (TmaDAH7PS) were created to probe the role of key residues in inhibitor selection. Substitution Ser31Gly severely reduced inhibition by l-Tyr. In contrast both l-Tyr and l-Phe inhibited the TmaHis29Ala variant, while the variant where Ser31 and His29 were interchanged (His29Ser/Ser31His), was inhibited to a greater extent by l-Phe than l-Tyr. These studies highlight the role and importance of His29 and Ser31 for determining both inhibitory ligand selectivity and the potency of allosteric response by TmaDAH7PS.  相似文献   

8.
A new stereoselective preparation of N-aceyl-d-galactosamine (1b) starting from the known p-methoxyphenyl 3,4-O-isopropylidene-6-O-(1-methoxy-1-methylethyl)-β-d-galactopyranoside (10) is described using a simple strategy based on (a) epimerization at C-2 of 10 via oxidation-reduction to give the talo derivative 11, (b) amination with configurational inversion at C-2 of 11 via a SN2-type reaction on its 2-imidazylate, (c) anomeric deprotection of the p-methoxyphenyl β-d-galactosamine glycoside 14, (d) complete deprotection. Applying the same protocol to 2,3:5,6:3′,4′-tri-O-isopropylidene-6′-O-(1-methoxy-1-methylethyl)-lactose dimethyl acetal (4), directly obtained through acetonation of lactose, the disaccharide β-d-GalNAcp-(1→4)-d-Glcp (1a) was obtained with complete stereoselectivity in good (40%) overall yield from lactose.  相似文献   

9.
A sensitive and specific radioassay for l-glutamine-d-fructose-6-phosphate aminotransferase (EC 5.3.1.19) activity is presented. Picomoles of product are measurable, and the assay can be applied to systems having limited quantities of available protein, particularly in extracts of either cell or organ cultures. The assay is at least 10,000 times more sensitive under K1 concentrations of fructose 6-phosphate than the modified Elson-Morgan colorimetric assay and 20 times more sensitive under saturating conditions of fructose 6-phosphate. As little as 0.5 μg of cell-extract protein will yield measurable product. In contrast, 280 μg of crudeextract protein from colon is required with the modified Elson-Morgan colorimetric assay.  相似文献   

10.
Starting from 3β-hydroxy-17-oxo-16,17-secoandrost-5-ene-16-nitrile (1), the new 16,17-secoandrostane derivatives 4-9 were synthesized. On the other hand, 3β-hydroxy-17-oxa-d-homoandrost-5-ene-16-one (10) yielded the new d-homo derivatives 12, 13 and 15. In vitro antiproliferative activity of selected compounds against three tumor cell lines (human breast adenocarcinoma ER+, MCF-7, human breast adenocarcinoma ER−, MDA-MB-231, prostate cancer AR−, PC-3, and normal fetal lung fibroblasts, MRC-5) was evaluated. Compounds 3 and 12 showed strong antiproliferative activity against PC-3 cells, the IC50 values being 2 μM and 0.55 μM, respectively. Compounds 6 (10 μM) and 14 (9 μM) showed moderate activity against MDA-MB-231 cells. The synthesized compounds 1-3, 5-8, 10 and 12-15 were not toxic to normal fetal lung fibroblasts cells, MRC-5.  相似文献   

11.
The coenzyme-bound form of human skeletal muscle d-glyceraldehyde-3-phosphate dehydrogenase has been shown to crystallize in the space group C2 and not C2221 as previously reported. The unit cell contains two tetrameric molecules with the dimer of molecular weight 72,000 as the crystallographic asymmetric unit. The recorded X-ray intensity distribution clearly indicates the presence of non-crystallographic 2-fold axes perpendicular to the crystallographic 2-fold axis showing that the subunits are arranged with near perfect 222 symmetry.Isomorphous derivatives of the enzyme have been prepared and the heavy atom positions defined in complete agreement with the C2 space group assignment. Further confirmation that the space group is C2 and not C2221 comes from the 3.5 Å resolution electron density map of the human enzyme, which appears almost identical to that of the lobster holo-enzyme where no such space group ambiguity exists.  相似文献   

12.
Ribose-5-phosphate isomerase (Rpi; EC 5.3.1.6) is a key activity of the pentose phosphate pathway. Two unrelated types of sequence/structure possess this activity: type A Rpi (present in most organisms) and type B Rpi (RpiB) (in some bacteria and parasitic protozoa). In the present study, we report enzyme kinetics and crystallographic studies of the RpiB from the human pathogen, Trypanosoma cruzi. Structures of the wild-type and a Cys69Ala mutant enzyme, alone or bound to phosphate, D-ribose 5-phosphate, or the inhibitors 4-phospho-D-erythronohydroxamic acid and D-allose 6-phosphate, highlight features of the active site, and show that small conformational changes are linked to binding. Kinetic studies confirm that, similar to the RpiB from Mycobacterium tuberculosis, the T. cruzi enzyme can isomerize D-ribose 5-phosphate effectively, but not the 6-carbon sugar D-allose 6-phosphate; instead, this sugar acts as an inhibitor of both enzymes. The behaviour is distinct from that of the more closely related (to T. cruzi RpiB) Escherichia coli enzyme, which can isomerize both types of sugars. The hypothesis that differences in a phosphate-binding loop near the active site were linked to the differences in specificity was tested by construction of a mutant T. cruzi enzyme with a sequence in this loop more similar to that of E. coli RpiB; this mutant enzyme gained the ability to act on the 6-carbon sugar. The combined information allows us to distinguish the two types of specificity patterns in other available sequences. The results obtained in the present study provide insights into the action of RpiB enzymes generally, and also comprise a firm basis for future work in drug design.  相似文献   

13.
A simple, four-step synthesis of d-lividosamine starting from N-acetyl-d-glucosamine via a furanosyl oxazoline intermediate is described.  相似文献   

14.
Modified d-glucose and d-mannose analogs are potentially clinically useful metabolic inhibitors. Biological evaluation of 2-deoxy-2-halo analogs has been impaired by limited availability and lack of efficient methods for their preparation. We have developed practical synthetic approaches to 2-deoxy-2-fluoro-, 2-chloro-2-deoxy-, 2-bromo-2-deoxy-, and 2-deoxy-2-iodo derivatives of d-glucose and d-mannose that exploit electrophilic addition reactions to a commercially available 3,4,6-tri-O-acetyl-d-glucal.  相似文献   

15.
d-Bornesitol and l-quebrachitol have been found in the leaves of Acer pseudoplatanus L. The results of incorporation studies using labeled myo-inositol-14C, l-inositol-14C and d-bornesitol-14C indicate that l-quebrachitol is produced by epimerization of d-bornesitol. In Artemisia vulgaris, however, the precursor of l-quebrachitol is l-inositol.  相似文献   

16.
Recently, we reported that YghZ from Escherichia coli functions as an efficient l-glyceraldehyde 3-phosphate reductase (Gpr). Here we show that Gpr co-purifies with a b-type heme cofactor. Gpr associates with heme in a 1:1 stoichiometry to form a complex that is characterized by a Kd value of 5.8 ± 0.2 μM in the absence of NADPH and a Kd value of 11 ± 1.3 μM in the presence of saturating NADPH. The absorbance spectrum of reconstituted Gpr indicates that heme is bound in a hexacoordinate low-spin state under both oxidizing and reducing conditions. The physiological function of heme association with Gpr is unclear, as the l-glyceraldehyde 3-phosphate reductase activity of Gpr does not require the presence of the cofactor. Bioinformatics analysis reveals that Gpr clusters with a family of putative monooxygenases in several organisms, suggesting that Gpr may act as a heme-dependent monooxygenase. The discovery that Gpr associates with heme is interesting because Gpr shares 35% amino acid identity with the mammalian voltage-gated K+ channel β-subunit, an NADPH-dependent oxidoreductase that endows certain voltage-gated K+ channels with hemoprotein-like, O2-sensing properties. To date the molecular origin of O2 sensing by voltage-gated K+ channels is unknown and the results presented herein suggest a role for heme in this process.  相似文献   

17.
An approach to stereoselective synthesis of α- or β-3-C-glycosylated l- or d-1,2-glucals starting from the corresponding α- or β-glycopyranosylethanals is described. The key step of the approach is the stereoselective cycloaddition of chiral vinyl ethers derived from both enantiomers of mandelic acid. The preparation of 1,5-anhydro-4,6-di-O-benzyl-2,3-dideoxy-3-C-[(2,3,4,6-tetra-O-benzyl-β-d-glucopyranosyl)methyl]-l-arabino-hex-1-enitol, 1,5-anhydro-4,6-di-O-benzyl-2,3-dideoxy-3-C-[(2,3,4,6-tetra-O-benzyl-β-d-glucopyranosyl)methyl]-d-arabino-hex-1-enitol, and 1,5-anhydro-4,6-di-O-benzyl-2,3-dideoxy-3-C-[(2,3,4-tri-O-benzyl-α-l-fucopyranosyl)methyl]-d-arabino-hex-1-enitol serves as an example of this approach.  相似文献   

18.
Six Schiff base derivatives of d-mannitol, 1,6-dideoxy-1,6-bis-{[(E)-arylmethylidene]amino}-d-mannitol (6: aryl = XC6H4: X = o-, m- and p- Cl or NO2), have been synthesized and evaluated for their in vitro antibacterial activity against Mycobacterium tuberculosis H37Rv using the Alamar Blue susceptibility test and the activity expressed as the minimum inhibitory concentration (MIC) in μg/mL. All three nitro derivatives exhibit significant activities: activities of (6d: X = o-NO2), (6e: X = m-NO2) and (6f: X = p-NO2) are 12.5, 25.0 and 25.0 μg/mL, respectively. When compared with first line drugs, such as ethambutol, they can be considered as a good starting point to develop new lead compounds for the treatment of multidrug-resistant tuberculosis. Characterization of the new compounds 6 is generally achieved spectroscopically. The structure of compound 3 has been confirmed by X-ray crystallography.  相似文献   

19.
The transformation of (5R)-2,6-di-O-benzyl-5-C-methoxy-β-d-galactopyranosyl-(1→4)-2,3:5,6-di-O-isopropylidene-aldehydo-d-glucose dimethyl acetal (8) into partially protected derivatives of d-xylo- and l-lyxo-aldohexos-5-ulose has been reported, applying appropriate epimerisation methods to its 3′-O- and 4′-O-protected alcoholic derivatives.  相似文献   

20.
A chiron approach strategy toward the total synthesis of (+)-muricatacin and (+)-5-epi-muricatacin starting from commercially available and inexpensive d-ribose through the key intermediate (S)-5-((R)-1-hydroxyallyl)furan-2(5H)-one has been disclosed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号