首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The calculations have been done for CH/π interaction with π-system of Ni(II)-acetylacetonato chelate ring. The results show that there is an attractive electrostatic interaction, while dispersion component is a major source of attractive interacting energies. The interaction was compared with CH/π interaction between two benzene rings. The comparison shows that two interactions are quite similar, enabling to estimate the energy of CH/π interaction with π-system of Ni(II)-acetylacetonato chelate ring to be about 10.5 kJ/mol. The results indicate that CH/π interactions of chelate ring in various molecular systems can be as important as CH/π interactions of phenyl ring.  相似文献   

2.
Molecular mechanics simulations using Cerius2 combined with X-ray diffraction and supported with vibrational spectroscopy have been used to investigate the layered structure of vanadyl phosphate VOPO4 intercalated with ethanol. This intercalated structure exhibits certain degree of disorder, which affects the diffraction diagram and obstructs the conventional structure analysis based on diffraction methods only. Present structure analysis is focused to the crystal packing in the interlayer space and layer stacking in the intercalate. The bilayer arrangement of ethanol molecules in the interlayer has been found, giving the basal spacing d = 13.21 Å, experimental d-value obtained from X-ray diffraction is 13.17 Å. One half from the total number of CH3CH2OH molecules is anchored with their oxygens to VOPO4 layers to complete vanadium octahedra and their orientation is not very strictly defined. The second half of ethanoles is linked with hydrogen bridges to the anchored etahanoles and sometimes also to the layer oxygens. Positions and orientations of these unachored ethanoles with respect to VOPO4 layers exhibit certain degree of disorder, resulting in the disorder in layer stacking. Molecular mechanics simulations revealed the character of this displacement disorder in layer stacking and enabled to determine the components of the displacement vector.  相似文献   

3.
We designed a phenylglycine (Phg)-incorporated ascidiacyclamide (ASC) analogue, cyclo(-Phg-oxazoline-d-Val-thiazole-Ile-oxazoline-d-Val-thiazole- ([Phg]ASC), with the aim of stabilizing the square conformation of ASC through interactions between amino acid side chains. X-ray diffraction analysis showed that [Phg]ASC has a square structure, similar to ASC, in which the sec-butyl group of Ile and the benzene ring of Phg are in close proximity. Consistent with that finding, 1H NMR experiments revealed significant high-field shifts in the sec-butyl group of Ile, which suggests a potential for CH/π interactions between the sec-butyl group of Ile and the benzene ring of Phg. The CD spectra of [Phg]ASC were less affected by TFE titration or increasing temperature than those of ASC. In addition, [Phg]ASC showed approximately three times greater toxicity toward HL-60 cells than ASC. Thus the potently cytotoxic conformation of [Phg]ASC may be stabilized by CH/π interactions between the side chains of the Ile and Phg residues.  相似文献   

4.
The structural, mechanical, electronic, and optical properties of orthorhombic Bi2S3 and Bi2Se3 compounds have been investigated by means of first principles calculations. The calculated lattice parameters and internal coordinates are in very good agreement with the experimental findings. The elastic constants are obtained, then the secondary results such as bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, anisotropy factor, and Debye temperature of polycrystalline aggregates are derived, and the relevant mechanical properties are also discussed. Furthermore, the band structures and optical properties such as real and imaginary parts of dielectric functions, energy-loss function, the effective number of valance electrons, and the effective optical dielectric constant have been computed. We also calculated some nonlinearities for Bi2S3 and Bi2Se3 (tensors of elasto-optical coefficients) under pressure.
Figure
Energy spectra of dielectric function and energy-loss function (L) along the x- and z-axes for Bi2S3  相似文献   

5.
Kang YK  Byun BJ 《Biopolymers》2012,97(10):778-788
The relative free energies of the folded structures of the seven model peptides with PLX (X = W, Y, F, H, and A) and ALX (X = W and A) sequences to the corresponding extended structures are calculated using the density functional methods in water to evaluate the relative strengths of CH···π interactions, especially proline···aromatic interactions for the PLX motif of the C-terminal subdomain of villin headpiece. It has been found that the Pro···π contacts for the folded structures of the PLW, PLY, PLF, and PLH peptides have in common a geometric pattern having the edge of the Pro ring interacting with the face of the aromatic ring, as found for functionally important Pro residues in proteins. At the M06-2X/cc-pVTZ//SMD M06-2X/6-31+G(d) level of theory, the relative stabilities of the folded structures to the extended structures are obtained in the order PLW > ALW > PLA > PLH > PLY > ALA > PLF by the conformational Gibbs free energies in water, which is reasonably consistent with the observed results from the CD thermal analysis for wild-type and mutants of the C-terminal subdomains of villin headpieces. Although the interaction energies excluding the solvation free energies play a role in determining the relative stabilities of the PLX and ALX peptides, the solvation and entropic terms are found to be of consequence, too. In particular, it has been known that ~40% of the total interaction energy of the PLW peptide is ascribed to the CH···π interactions of the contacting side chains for Pro and Trp residues, in which the dispersion terms play a role.  相似文献   

6.
Bispecific antibody and antibody-like molecules are of wide interest as potential therapeutics that can recognize two distinct targets. Among the variety of ways such molecules have been engineered is by creating “knob” and “hole” heterodimerization sites in the CH3 domains of two antibody heavy chains. The molecules produced in this manner maintain their biological activities while differing very little from the native human IgG sequence. To better understand the knob-into-hole interface, the molecular mechanism of heterodimerization, and to engineer Fc domains that could improve the assembly and purity of heterodimeric reaction products, we sought crystal structures of aglycosylated heterodimeric and homodimeric “knob” and “hole” Fc fragments derived from bacterial expression. The structure of the knob-into-hole Fc was determined at 2.64 Å. Except for the sites of mutation, the structure is very similar to that of the native human IgG1 Fc, consistent with a heterodimer interaction kinetic KD of < 1 nM. Homodimers of the “knob” and “hole” mutants were also obtained, and their X-ray structures were determined at resolutions 2.5 Å and 2.1 Å, respectively. Both kinds of homodimers adopt a head-to-tail quaternary structure and thus do not contain direct knob/knob or hole/hole CH3 interactions. The head-to-tail arrangement was disfavored by adding site-directed mutations at F241 and F243 in the CH2 domains, leading to increases in both rate and efficiency of bispecific (heterodimer) assembly.  相似文献   

7.
鸡传染性支气管炎(Infectious bronchitis,IB)是由传染性支气管炎病毒(Infectious bronchitis virus,IBV)引起的一种急性高度接触性传染病.该病主要侵害鸡的呼吸系统、消化系统和泌尿生殖系统,可引起雏鸡死亡,蛋鸡产蛋量和蛋品质下降,给养禽业造成很大的经济损失,成为影响世界各国养禽业发展的主要疫病之一.IBV是尼多病毒目(Nidovirales)冠状病毒科(Coronaviridae)冠状病毒属(Coronavirus)第三群的典型代表种[1].其基因组为不分节段的单股正链RNA,全长约27.6kb[2].IBV S蛋白形成病毒表面的纤突结构,翻译后的前体蛋白在跨膜时被裂解为N端的S1和C端的S2两个亚单位.S1为IBV的重要免疫原蛋白,能诱导机体产生血凝抑制抗体和病毒中和抗体[3].而且S1基因的点突变、插入、缺失或重组是IBV产生新血清型、亚型或变异株的主要原因[4].S2糖蛋白的主要功能是将S1蛋白锚定在病毒粒子的囊膜上,同时其N端也存在抗原表位[5].  相似文献   

8.
9.
The potential energy surface for the dissociation of methane CH4 → CH3 + H is investigated by displaying the gradients of the SCF and correlated electron density as colored regions on isodensity surfaces. It is shown that coloring the gradients of the electron density is sensitive enough to show differences among the SCF, MBPT (2), D-MBPT(4) and L-CCD densities.  相似文献   

10.
将既能耐抗重金属又能降解苯酚的细菌Ralstonia m etalliduransCH34固定化以提高其降酚效率。首先通过正交实验,得到了固定化该菌种的最优制备条件,然后对固定化细胞的降酚效果进行了研究。结果表明,固定化R.m etalliduransCH34的降酚效果明显优于游离细胞;抗重金属毒性方面也有较大提高;在加入额外碳源(甲苯,柠檬酸)情况下,固定化R.m etalliduransCH34进行苯酚降解时所受影响明显要小于游离态菌。  相似文献   

11.
采用含α 乙酸萘酯和固兰RR的表面琼脂法从RalstoniaeutrophaCH34的基因文库中筛选酯酶基因estA ,对含有estA的 1 7kbDNA片段的核甘酸序列分析表明 ,该基因全长82 5bp,编码由 2 75个氨基酸组成的EstA蛋白 ,分子量为 30 785D。经推导氨基酸序列的同源性分析 ,发现EstA与参与芳香化合物代谢中间位裂解途径的水解酶有很高的同源性。  相似文献   

12.
Thed mutagenic activities of 11 N-methyl-N′-alkyl-N-nitrosoureas were tested on Samonellatyphimurium TA1535 and compared with chemical properties (alkylating activity and decompostion rate). In their relative mutagenicities the N-nitrosoureas that had a cyclic N′-alkyl group showed far more mutagenic activity than those having a chain N′-alkyl group. M(1-A)NU and M(2-A)NU, which had the most bulky N′-alkyl group in this series, exhibited lethal effects at high concentrations. The mutagenicity showed a small positive correlation with decomposition rates but not with alkylating activities on 4-(p-nitrobenzyl_prridine. The highest mutagenicity in this series was observed in N-methyl-N′-cyclobutyl-N-nitrosourea.These results suggest that, in this series of N-methyl-M′-alkyl-N-nitrosoureas, structural differences in the N′-alkyl groups had great significance in mutagenicity.  相似文献   

13.
14.
选择我国应用的五株鸡传染性支气管炎活疫苗毒株(JAAS、IBN、Jlin、J9和H120)和当地流行毒株(CK/CH/LDL/97 Ⅰ)作为研究对象,对其S1基因进行序列比对分析,结果表明疫苗株与流行毒株的核昔酸序列及推导的氨基酸序列同源性分别不超过76.4%和78.7%.S1基因的核苷酸系统发育树显示,疫苗株与流行毒株分属不同进化群,亲缘关系较远,属于不同的基因型.用这五株活疫苗进行针对强毒株CK/CH/LDL/97Ⅰ株的免疫保护实验,可见临床发病率为30%~100%;攻毒5d后每组随机扑杀10只鸡,采集器官,应用RT-PCR法检测病毒,气管样品病毒检出率为50%~90%,肾脏样品病毒检出率为10%~30%.由此可见:我国目前使用的主要活疫苗对异种IBV分离株的感染不能提供完全的保护作用.  相似文献   

15.
The mutagenicity of N-methyl-N′-nitro-N-nitrosoguanidine to Salmonella typhimurium hisG46 was enhanced by pre-incubating the chemical with bacteria in sodium phosphate buffer. Addition of glucose (to 15 mM) to the pre-incubation mixture further enhanced the mutagenicity. Pre-incubation with glucose also increased the mutagenicity of N-methyl-N-nitrosourea. Fructose, galactose, pyruvate and succinate also enhanced the mutagenicity of N-methyl-N′-nitro-N-nitrosoguanidine. The effect of glucose was observed with S. typhimurium strains hisG46, TA1975, TA1950, TA1535 and TA100.  相似文献   

16.
Bioethanol is one of the world’s most extensively produced biofuels. However, it is difficult to purify due to the formation of the ethanol–water azeotrope. Knowledge of the azeotrope structure at the molecular level can help to improve existing purification methods. In order to achieve a better understanding of this azeotrope structure, the characterization of (ethanol)5–water heterohexamers was carried out by analyzing the results of electronic structure calculations performed at the B3LYP/6-31+G(d) level. Hexamerization energies were found to range between ?36.8 and ?25.8 kcal/mol. Topological analysis of the electron density confirmed the existence of primary (OH…O) hydrogen bonds (HBs), secondary (CH…O) HBs, and H…H interactions in these clusters. Comparison with three different solvated alcohol systems featuring the same types of atom–atom interactions permitted the following order of stability to be determined: (methanol)5–water > (methanol)6 > (ethanol)5–water > (ethanol)6. These findings, together with accompanying geometric and spectroscopic analyses, show that similar cooperative effects exist among the primary HBs for structures with the same arrangement of primary HBs, regardless of the nature of the molecules involved. This result provides an indication that the molecular ratio can be considered to determine the unusual behavior of the ethanol–water system. The investigation also highlights the presence of several types of weak interaction in addition to primary HBs.
Graphical Abstract Water-ethanol clusters exhibit a variety of interaction types between their atoms, such as primary OH...O (blue), secondary CH...O (green) and H...H (yellow) interactions as revealed by Quantum Chemical Topology
  相似文献   

17.
The structure and conformational stability of vinyl selenonyl fluoride, chloride and bromide CH2=CH–SeO2X (X is F, Cl and Br) were investigated using density functional B3LYP/6-311+G** and ab initio MP2/6-311+G** calculations. From the calculations the molecules were predicted to exist only in the non-planar gauche conformation with the vinyl C=C group almost eclipsing one of the selenonyl Se=O bonds as a result of conjugation between the two moieties. Single-minimum potential scans were calculated at the DFT level for the molecules. The vibrational frequencies were computed using B3LYP/6-311+G**. Normal coordinate calculations were then carried out and potential energy distributions were calculated for the three molecules in the gauche conformation.Figure Potential function for the asymmetric torsion in vinyl selenonyl fluoride (dotted line), chloride (dashed line) and bromide (solid line) as determined at the DFT-B3LYP/6-311+G** level  相似文献   

18.
In an idealistic setting, it can be imagined that if every CH bond on an organic molecule could be selectively functionalized, the fields of chemical synthesis and drug discovery would be forever revolutionized. With the purpose of investigating the practicality of this idealistic scenario, our group has endeavored to unlock the potential of nature’s CH bonds by developing palladium-catalyzed, site selective CH insertions that can be incorporated into both known and new catalytic cycles. To this end, we have developed a number of catalytic transformations that not only provide rapid diversification of simple starting materials and natural products through CH functionalization, but streamline the synthesis of a variety of natural products with biological activity and expand upon methods to access highly valuable enantiopure materials.  相似文献   

19.
Animal aspartate decarboxylase (ADC), glutamate decarboxylase (GDC) and cysteine sulfinic acid decarboxylase (CSADC) catalyze the decarboxylation of aspartate, glutamate and cysteine sulfinic acid to β-alanine, γ-aminobutyric acid and hypotaurine, respectively. Each enzymatic product has been implicated in different physiological functions. These decarboxylases use pyridoxal 5-phosphate (PLP) as cofactor and share high sequence homology. Analysis of the activity of ADC in the presence of different amino determined that beta-alanine production from aspartate was diminished in the presence of cysteine. Comparative analysis established that cysteine also inhibited GDC and CSADC in a concentration-dependent manner. Spectral comparisons of free PLP and cysteine, together with ADC and cysteine, result in comparable spectral shifts. Such spectral shifts indicate that cysteine is able to enter the active site of the enzyme, interact with the PLP-lysine internal aldimine, form a cysteine-PLP aldimine and undergo intramolecular nucleophilic cyclization through its sulfhydryl group, leading to irreversible ADC inactivation. Cysteine is the building block for protein synthesis and a precursor of cysteine sulfinic acid that is the substrate of CSADC and therefore is present in many cells, but the presence of cysteine (at comparable concentrations to their natural substrates) apparently could severely inhibit ADC, CSADC and GDC activity. This raises an essential question as to how animal species prevent these enzymes from cysteine-mediated inactivation. Disorders of cysteine metabolism have been implicated in several neurodegenerative diseases. The results of our study should promote research in terms of mechanism by which animals maintain their cysteine homeostasis and possible relationship of cysteine-mediated GDC and CSADC inhibition in neurodegenerative disease development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号