首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xylans were isolated from the pericarp of prickly pear seeds of Opuntia ficus-indica (OFI) by alkaline extraction, fractionated by precipitation and purified. Six fractions were obtained and characterized by sugar analysis and NMR spectroscopy. They were assumed to be (4-O-methyl-d-glucurono)-d-xylans, with 4-O-α-d-glucopyranosyluronic acid groups linked at C-2 of a (1→4)-β-d-xylan. The sugar composition and the 1H and 13C NMR spectra showed that their chemical structures were very similar, but with different proportions of d-Xyl and 4-O-Me-d-GlcA. Our results showed that, on average, the water soluble xylans have one nonreducing terminal residue of 4-O-methyl-d-glucuronic acid for every 11 to 14 xylose units, whereas in the water non-soluble xylans, xylose units can varied from 18 to 65 residues for one nonreducing terminal residue of 4-O-methyl-d-glucuronic acid.  相似文献   

2.
5-Deoxy-5-iodo-1,2-O-isopropylidene-3-O-methyl-α- d-xylofuranose, prepared quantitatively from its 5-Op-tolylsulfonyl precursor, readily gave the 5-C-(diethoxy-phosphinyl) derivative. Treatment of this compound with sodium dihydrobis(2-methoxyethoxy)aluminate, followed by hydrogen peroxide, mineral acid, and hydrogen peroxide, yielded 5-deoxy-5-C-(hydroxyphosphinyl)-3-O-methyl-α,β- d-xylopyranoses in 65% overall yield. The structures of these sugar analogs were effectively established on the basis of the mass and 400-MHz, 1H-n.m.r. spectra of the four title compounds, derived by treatment with diazomethane and then acetic anhydride in pyridine. 5-C-[(S)-(1-Acetoxyethenyl)phosphino]-1,2,4-tri-O-acetyl-5-deoxy-3-O-methyl-β- d-xylopyranose was also isolated and characterized.  相似文献   

3.
Sialyl Lewis (sLex) is the smallest naturally occurring carbohydrate ligand that binds to E-Selectin on the activated endothelium. We report here the total synthesis of acetic acid-sLex analog (12), for testing as a therapeutic agent. Methoxyethyl 4-O-(3,4-O-isopropylidene-β-d-galactopyranosyl)-β-d-glucopyranoside (3) was prepared starting from the methoxyethyl-β-d-lactoside (2), which was selectively benzoylated to give the methoxyethyl 2,6-di-O-benzoyl-4-O-(2,6-di-O-benzoyl-3,4-O-isopropylidene-β-d-galactopyranosyl)-β-d-glucopyranoside (4). Glycosylation of acceptor 4 with methyl 2,3,4-tri-O-benzyl-1-thio-β-l-fucopyranoside (5) in the presence of cupric bromide and tetrabutylammonium bromide afforded the corresponding methoxyethyl 2,6-di-O-benzyl-3-O-(2,3,4-tri-O-benzyl-α-l-fucopyranosyl)-4-O-(2,6-di-O-benzyl-3,4-O-isopropylidene-β-d-galactopyranosyl)-β-d-glucopyranoside (6). Selective removal of the 4″,6″-O-isopropylidene group from 6 gave the deprotected trisaccharide 7. The regioselective esterification of O-3″ of trisaccharide 8 (obtained from the dibutylstannylene derivative of 7) with benzyl-2-bromoacetate and tetrabutylammonium bromide afforded the 3″-O-carbobenzyloxymethyl trisaccharide derivative 9, which on saponification and hydrogenolysis with palladium-charcoal afforded the target trisaccharide 12 glycomimetic of Sialyl Lewis (sLex) trisaccharide omitting the sialic acid moiety.  相似文献   

4.
The 1,2-O-(2-oxa-3-oxocyclopentylidene) derivative of 3,4,6-tri-O-acetyl-α-d-glucopyranose was prepared in both the exo (4) and endo (5) forms. The compounds were prepared by bromide-ion promoted cyclization of 3,4,6-tri-O-acetyl-2-O-(3-carboxypropanoyl)-α-d-glucopyranosyl bromide. The similar acylorthoester derivatives of phthalic acid were prepared from 3,4,6-tri-O-acetyl-2-O-(2-carboxybenzoyl)-α-d-glucopyranosyl bromide. The cyclizations produced a much higher ratio of the endo forms than would have been expected from their relative thermodynamic stabilities. The configurations were established by nuclear Overhauser enhancement studies and their conformations deduced from 1H-n.m.r. parameters. The greater stability of the exo isomers appears to have a stereoelectronic origin. Preliminary efforts to engage the acylorthoesters in reactions with isopropyl alcohol to form glycosides are reported. It was discovered that a carboxylic acid provides powerful catalysis for the β to α anomerization of O-acetylated glucopyranosides by stannic chloride.  相似文献   

5.
Thiourea, PhNHC(S)NHP(O)(OPri)2 (LH) chelates of CoII, NiII, and PdII ions have been obtained and investigated by single-crystal X-ray diffraction, UV, IR, NMR spectroscopy, and EI mass-spectrometry. The unusual 1,3-N,S-coordination via sulfur and NP(O) nitrogen atoms has been found in the trans-square-planar NiL2 and PdL2 complexes, whereas the 1,5-O,S-coordination is realized in the tetrahedral CoL2 complex. DFT calculations have revealed significant stabilization of the 1,3-N,S-structures due to stronger crystal field and the NH-OP hydrogen bonds.  相似文献   

6.
5-Deoxy-1,2-O-isopropylidene-5-C-(methoxyphenylphosphinyl)-3-O-methyl-α-d-ribofuranose (4) was prepared from 1,2-O-isopropylidene-3-O-methyl-α-d-ribo-pentodialdo-1,4-furanose by an addition reaction with methyl phenylphosphinate, followed by deoxygenation of the terminal HOCHP group of the adduct by successive reaction with 1,1′-thiocarbonyldiimidazole and tributyltin hydride. Treatment of 4 with sodium dihydrobis(2-methoxyethoxy)aluminate, followed by deacetonation with mineral acid, and acetylation with acetic anhydride—pyridine, gave mainly the two title compounds, which were isolated by column chromatography on silica gel, and characterized by 90-MHz, 1H-n.m.r.-spectral analysis.  相似文献   

7.
Methylated anthocyanin glycosides were isolated from red Canna indica flower and identified as malvidin 3-O-(6-O-acetyl-β-d-glucopyranoside)-5-O-β-d-glucopyranoside (1), malvidin 3,5-O-β-d-diglucopyranoside (2), cyanidin-3-O-(6″-O-α-rhamnopyranosyl-β-glucopyranoside (3), cyanidin-3-O-(6″-O-α-rhamnopyranosyl)-β-galactopyranoside (4), cyanidin-3-O-β-glucopyranoside (5) and cyanidin-O-β-galactopyranoside (6) by HPLC-PDA. Their structures were subsequently determined on the basis of spectroscopic analyses, that is, 1H NMR, 13C NMR, HMQC, HMBC, ESI-MS, and UV-vis. Compounds (1-4) were found to be in major quantity while compounds (5-6) were in minor quantity.  相似文献   

8.
Glycosylation is one of the key modification steps for plants to produce a broad spectrum of flavonoids with various structures and colors. A survey of flavonoids in the blue flowers of Veronica persica Poiret (Lamiales, Scrophulariaceae), which is native of Eurasia and now widespread worldwide, led to the identification of highly glycosylated flavonoids, namely delphinidin 3-O-(2-O-(6-O-p-coumaroyl-glucosyl)-6-O-p-coumaroyl-glucoside)-5-O-glucoside (1) and apigenin 7-O-(2-O-glucuronosyl)-glucuronide (2), as two of its main flavonoids. Interestingly, the latter flavone glucuronide (2) caused a bathochromic shift on the anthocyanin (1) toward a blue hue in a dose-dependent manner, showing an intermolecular co-pigment effect. In order to understand the molecular basis for the biosynthesis of this glucuronide, we isolated a cDNA encoding a UDP-dependent glycosyltransferase (UGT88D8), based on the structural similarity to flavonoid 7-O-glucuronosyltransferases (F7GAT) from Lamiales plants. Enzyme assays showed that the recombinant UGT88D8 protein catalyzes the 7-O-glucuronosylation of apigenin and its related flavonoids with preference to UDP-glucuronic acid as a sugar donor. Furthermore, we identified and functionally characterized a cDNA encoding another UGT, UGT94F1, as the anthocyanin 3-O-glucoside-2″-O-glucosyltransferase (A3Glc2″GlcT), according to the structural similarity to sugar-sugar glycosyltransferases classified to the cluster IV of flavonoid UGTs. Preferential expression of UGT88D8 and UGT94F1 genes in the petals supports the idea that these UGTs play an important role in the biosynthesis of key flavonoids responsible for the development of the blue color of V. persica flowers.  相似文献   

9.
3-O-Methylfluorescein phosphate hydrolysis, catalyzed by purified erythrocyte Ca2+-ATPase in the absence of Ca2+, was slow in the basal state, activated by phosphatidylserine and controlled proteolysis, but not by calmodulin. p-Nitrophenyl phosphate competitively inhibits hydrolysis in the absence of Ca2+, while ATP inhibits it with a complex kinetics showing a high and a low affinity site for ATP. Labeling with fluorescein isothiocyanate impairs the high affinity binding of ATP, but does not appreciably modify the binding of any of the pseudosubstrates. In the presence of calmodulin, an increase in the Ca2+ concentration produces a bell-shaped curve with a maximum at 50 μM Ca2+. At optimal Ca2+ concentration, hydrolysis of 3-O-methylfluorescein phosphate proceeds in the presence of fluorescein isothiocyanate, is competitively inhibited by p-nitrophenyl phosphate and, in contrast to the result observed in the absence of Ca2+, it is activated by calmodulin. In marked contrast with other pseudosubstrates, hydrolysis of 3-O-methylfluorescein phosphate supports Ca2+ transport. This highly specific activity can be used as a continuous fluorescent marker or as a tool to evaluate partial steps from the reaction cycle of plasma membrane Ca2+-ATPases.  相似文献   

10.
Water-soluble N-(4-carboxybutyroyl) chitosan derivatives with different degrees of substitution (DS) were synthesized to enhance the antimicrobial activity of chitosan molecule against plant pathogens. Chitosan in a solution of 2% aqueous acetic acid-methanol (1:1, v/v) was reacted with 0.1, 0.3, 0.6 and 1 mol of glutaric anhydride to give N-(4-carboxybutyroyl) chitosans at DS of 0.10, 0.25, 0.48 and 0.53, respectively. The chemical structures and DS were characterized by 1H and 13C NMR spectroscopy, which showed that the acylate reaction took place at the N-position of chitosan. The synthesized derivatives were more soluble than the native chitosan in water and in dilute aqueous acetic acid and sodium hydroxide solutions. The antimicrobial activity was in vitro investigated against the most economic plant pathogenic bacteria of Agrobacterium tumefaciens and Erwinia carotovora and fungi of Botrytis cinerea, Pythium debaryanum and Rhizoctonia solani. The antimicrobial activity of N-(4-carboxybutyroyl) chitosans was strengthened than the un-modified chitosan with the increase of the DS. A compound of DS 0.53 was the most active one with minimum inhibitory concentration (MIC) of 725 and 800 mg/L against E. carotovora and A. tumefaciens, respectively and also in mycelial growth inhibiation against B. cinerea (EC50 = 899 mg/L), P. debaryanum (EC50 = 467 mg/L) and R. solani (EC50 = 1413 mg/L).  相似文献   

11.
Transglycosylation reactions are useful for preserving a specific sugar structure during the synthesis of branched oligosaccharides. We have previously reported a panosyl unit transglycosylation reaction by pullulan-hydrolyzing amylase II (TVA II) cloned from Thermoactinomyces vulgaris R-47 (Tonozuka et al., Carbohydr. Res., 1994, 261, 157–162). The acceptor specificity of the TVA II transglycosylation reaction was investigated using pullulan as the donor and sugar alcohols as the acceptor. TVA II transferred the α-panosyl unit to the C-1 hydroxyl group of meso-erythritol, C-1 and C-2 of xylitol, and C-1 and C-6 of d-sorbitol. TVA II differentiated between the sugar alcohols’ hydroxyl groups to produce five novel non-reducing branched oligosaccharides, 1-O-α-panosylerythritol, 1-O-α-panosylxylitol, 2-O-α-panosylxylitol, 1-O-α-panosylsorbitol, and 6-O-α-panosylsorbitol. The Trp356→Ala mutant showed similar transglycosylation reactions; however, panose production by the mutant was 4.0–4.5-fold higher than that of the wild type. This suggests that Trp356 is important for recognizing both water and the acceptor molecules in the transglycosylation and the hydrolysis reaction.  相似文献   

12.
A series of ‘clickable’ mannopyranosides bearing a triflate leaving group at C-2 position were synthesized and tested for their potential as 18F-labeling precursors. 3,4,6-Tri-O-acetyl-2-O-trifluoromethanesulfonyl-β-d-mannopyranosyl azide () was the most convenient precursor for a site-specific and reliable click chemistry-based three-step, two-pot concomitant 18F-labeling and glycosylation of an alkyne-functionalized amino acid derivative.  相似文献   

13.
Polycrystalline lead(II) complexes with O,O-dipropyl- and O,O-di-cyclo-hexyldithiophosphate ions were prepared and studied by means of 31P, 31C CP/MAS NMR spectroscopy and single-crystal X-ray diffraction. Prepared complexes are characterised by polynuclear structures, in which pairs of dithiophosphate groups asymmetrically link neighbouring lead atoms, forming infinite linear zigzag chains. In spite of the same combined structural function, dithiophosphate ligands in both complexes display structural inequivalence. To characterise the combined structural state of the dialkyldithiophosphate ligands, 31P chemical shift anisotropy parameters, δaniso and η, were estimated from spinning sideband patterns in experimental CP/MAS NMR spectra for each of the two prepared complexes as well as the initial potassium O,O-dipropyl- and O,O-di-cyclo-hexyldithiophosphate salts.  相似文献   

14.
Previous studies have shown that the carcinogen N-hydroxy-2-acetylaminofluorene is converted by one-electron oxidants to a free nitroxide radical which dismutates to N-acetoxy-2-acetylaminofluorene and 2-nitrosofluorene. The present study shows that the same oxidation can be achieved with horseradish peroxidase and H2O2. The free radical intermediate was detected by its ESR signal, and the yields of N-acetoxy-2-acetylaminofluorene and of 2-nitrosofluorene were determined under a number of conditions. Addition of tRNA to the reaction mixture containing N-acetoxy-N-2-acetyl[2′-3H]aminofluorene yielded tRNA-bound radioactivity; addition of guanosine yielded a reaction product which appears to be N-guanosin-8-yl)-2-acetylaminofluorene. The latter compound has previously been identified as a reaction product of N-acetoxy-2-acetylaminofluorene and guanosine. Preliminary attempts to demonstrate the formation of a nitroxide free radical or its dismutation products with rat liver mixed function oxidase systems were not successful.  相似文献   

15.
(2′,3′-O-Isopropylidene-5′-uridyl) 4-(2,3,4,6-tetra-O-acetyl-β-d-glycopyranosyl)allophanates were obtained in the reactions of 2′,3′-O-isopropylidene-uridine and O-peracetylated β-d-gluco-, galacto- and xylopyranosylamines, and OCNCOCl. 2,3,4,6-Tetra-O-acetyl-β-d-glucopyranosyl isocyanate and N-(2′,3′-O-isopropylidene-5′-uridyl)urea gave 1-(2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl)-5-(2′,3′-O-isopropylidene-5′-uridyl)biuret. Deprotection of the β-d-gluco configured allophanate and biuret was carried out by standard methods.  相似文献   

16.
Oxidation of 3,6-di-O-benzyl-1,2-O-isopropylidene-α-d-glucofuranose with pyridinium chlorochromate in the presence of molecular sieves, followed by conversion into the p-tolylsulfonylhydrazone, addition of methyl phenylphosphinate, and reduction with sodium borohydride, provided the key intermediate, namely, 5(R,S)-3,6-di-O-benzyl-5-deoxy-1,2-O-isopropylidene-5-C-[(methoxy)phenylphosphinyl]-α-d-xylo-hexofuranose, in 23% overall yield. Treatment of this compound with sodium dihydrobis(2-methoxyethoxy)aluminate, followed by the action of mineral acid and acetic anhydride, yielded the crystalline title compound, the structure of which was established on the basis of mass and 400-MHz, 1H-n.m.r. spectra. A general dependence of 2JPH values on the OPCH dihedral angles effectively served for assigning the configuration of C-1, C-5, and the ring-phosphorus atom of the present product and other such 5-C-phosphinylhexopyranoses.  相似文献   

17.
The efficiency of (Na+ + K+)-ATPase (i.e. the amount of K+ pumped per ATP hydrolyzed) in intact tumorigenic cells was estimated in this study. This was accomplished by simultaneously measuring the rate of ouabain-sensitive K+ uptake and oxygen consumption in tumorigenic cell suspensions during the reintroduction of K+ to K+-depleted cells. The ATP turnover was then estimated by assuming 5.6–6 ATP/O2 as the stoichiometry of NADH-linked respiration in these cells. In the three cell lines tested (hamster and chick embryo cells transformed with Rous sarcoma virus and Ehrlich ascites cells), the K+/ATP ratio was approximately 2, the same value as that found in normal tissues. Furthermore, only 20% of the total ATP production of these cells was used by (Na+ + K+)-ATPase.  相似文献   

18.
l-threo-2,3-Hexodiulosono-1,4-lactone 2-(arylhydrazones) (2) were prepared by condensation of dehydro-l-ascorbic acid with various arylhydrazines. Reaction of 2 with hydroxylamine gave the 2-(arylhydrazone) 3-oximes (3). On boiling with acetic anhydride, 3 gave 2-aryl-4-(2,3-di-O-acetyl-l-threo-glycerol-l-yl)-1,2,3-triazole-5-carboxylic acid 5,41-lactones (4). On treatment of 4 with liquid ammonia, 2-aryl-4-(l-threo-glycerol-l-yl)-1,2,3-triazole-5-carboxamides (5) were obtained. Acetylation of 5 with acetic anhydride-pyridine gave the triacetates, and vigorous acetylation with boiling acetic anhydride gave the tetraacetyl derivatives. Periodate oxidation of 5 gave the 2-aryl-4-formyl-1,2,3-triazole-5-carboxamides (8), and, on reduction, 8 gave the 2-aryl-4-(hydroxymethyl)-1,2,3-triazole-5-carboxamides, characterized as the monoacetates and diacetates. Controlled reaction of 2 with sodium hydroxide, followed by neutralization, gave 3-(l-threo-glycerol-l-yl)-4,5-isoxazolinedione 4-(arylhydrazones), characterized by their triacetates. Reaction of 2 with HBr-HOAc gave 5-O-acetyl-6-bromo-6-deoxy-l-threo-2,3-hexodiulosono-1,4-lactone 2-(arylhydrazones); these were converted into 4-(2-O-acetyl-3-bromo-3-deoxy-l-threo-glycerol-l-yl)-2-aryl-1,2,3-triazole-5-carboxylic acid 5,41-lactones on treatment with acetic anhydride-pyridine.  相似文献   

19.
A new cardenolide, 17β-H-periplogenin-3-O-β-d-digitoxoside (1), and a new pregnane glycoside, Δ5-pregnene-3β,16α-diol-d-O-[2,4-O-diacetyl-β-digitalopyranosyl-(1 → 4)-β-d-cymaropyranoside]-16-O-[β-d-glucopyranoside] (2) were isolated from the roots of Streptocaulon tomentosum (Asclepiadaceae) together with a series of known compounds. Their chemotaxonomic significance for the separation of S. tomentosum from Streptocaulon juventas is discussed, suggesting a rather clear distinction of these species.  相似文献   

20.
目的:探讨免疫相关GTP酶1(Irgm 1)对小鼠血管动脉粥样硬化(AS)斑块形成的影响。方法:高脂饲料喂养野生型(WT)、ApoE~(-/-)Irgm 1~(+/+)和ApoE~(-/-)Irgm1~(+/-)小鼠3个月,建立AS模型;取小鼠主动脉弓,免疫荧光染色方法观察WT和ApoE~(-/-)Irgm 1~(+/+)小鼠血管AS斑块中Irgm 1的表达情况及部位;Western blot方法检测WT和ApoE~(-/-)Irgm 1~(+/+)小鼠血管AS斑块中Irgm 1蛋白表达情况;Q-PCR方法检测WT和ApoE~(-/-)Irgm 1~(+/+)小鼠血管AS斑块中Irgm 1 m RNA表达情况;油红O染色观察ApoE~(-/-)Irgm1~(+/+)和ApoE~(-/-)Irgm1~(+/-)小鼠血管AS斑块形成情况;结果:与WT组相比,ApoE~(-/-)Irgm 1~(+/+)组小鼠主动脉弓AS斑块中Irgm 1+细胞明显增多,Irgm 1+细胞主要位于血管AS斑块的表面;与WT组相比,ApoE~(-/-)Irgm 1~(+/+)组小鼠血管AS斑块中Irgm 1蛋白表达显著增多(P0.001),Irgm 1 m RNA表达显著增多(P0.01);与ApoE~(-/-)Irgm1~(+/-)组相比,ApoE~(-/-)Irgm1~(+/+)组小鼠主动脉弓AS斑块面积显著增大(P0.01);结论:Irgm 1能够促进血管AS斑块的形成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号