首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of antimalarial activity of clotrimazole was studied placing emphasis on its role in inhibiting hemoperoxidase for inducing oxidative stress in Plasmodium falciparum. Clotrimazole, in the presence of H2O2, causes irreversible inactivation of the enzyme, and the inactivation follows pseudo-first order kinetics, consistent with a mechanism-based (suicide) mode. The pseudo-first order kinetic constants are ki = 2.85 microM, k(inact) = 0.9 min(-1), and t(1/2) = 0.77 min. The one-electron oxidation product of clotrimazole has been identified by EPR spectroscopy as the 5,5'-dimethyl-1-pyrroline N-oxide (DMPO) adduct of the nitrogen-centered radical (aN = 15 G), and as DMPO protects against inactivation, this radical is involved in the inactivation process. Binding studies indicate that the clotrimazole oxidation product interacts at the heme moiety, and the heme-clotrimazole adduct has been dissociated from the inactivated enzyme and identified (m/z 1363) by mass analysis. We found that the inhibition of hemoperoxidase increases the accumulation of H2O2 in P. falciparum and causes oxidative stress. Furthermore, the inhibition of hemoperoxidase correlates well with the inhibition of parasite growth. The results described herein indicate that the antimalarial activity of clotrimazole might be due to the inhibition of hemoperoxidase and subsequent development of oxidative stress in P. falciparum.  相似文献   

2.
Regulation of delta-aminolevulinic acid (ALA) synthase and heme oxygenase was analyzed in primary rat hepatocytes and in two immortalized cell lines, CWSV16 and CWSV17 cells. ALA synthase was induced by 4,6-dioxohepatnoic acid (4,6-DHA), a specific inhibitor of ALA dehydratase, in all three systems; however, the induction in CWSV17 cells was greater than in either of the other two systems. Therefore, CWSV17 cells were used to explore the regulation of both enzymes by heme and 4,6-DHA. Data obtained from detailed concentration curves demonstrated that 4,6-DHA induced the activity of ALA synthase once ALA dehydratase activity became rate-limiting for heme biosynthesis. Heme induced heme oxygenase activity with increases occurring at concentrations of 10 microM or greater. Heme blocked the 4,6-DHA-dependent induction of ALA synthase with an EC50 of 1.25 microM. Heme-dependent decreases of ALA synthase mRNA levels occurred more quickly and at lower concentrations than heme-dependent increases of heme oxygenase mRNA levels. ALA synthase mRNA remained at reduced levels for extended periods of time, while the increases in heme oxygenase mRNA were much more transient. The drastic differences in concentrations and times at which heme-dependent effects were observed strongly suggest that two-different heme-dependent mechanisms control the ALA synthase and heme oxygenase mRNAs. In CWSV17 cells, heme decreased the stability of ALA synthase mRNA from 2.5 to 1.3 h, while 4,6-DHA increased the stability of the mRNA to 5.2 h. These studies demonstrate that regulation of ALA synthase mRNA levels by heme in a mammalian system is mediated by a change in ALA synthase mRNA stability. The results reported here demonstrate the function of the regulatory heme pool on both ALA synthase and heme oxygenase in a mammalian hepatocyte system.  相似文献   

3.
The hemolytic activities of sodium deoxycholate (DChol) and its tauro-conjugate (TDChol) and glyco-conjugate (GDChol) were analysed. 50 % hemolysis occurred in 30 min at pH 7.3, at the concentrations of these detergents equal to 0.044, 0.042 and 0.040 % respectively. These values are below their critical micellar concentrations. Based on its kinetics, this hemolysis is classified as being of permeability type. The detergents increase the permeability of erythrocyte membranes to KCl, and colloid osmotic hemolysis occurs. The minimum of hemolytic activity of the three cholates is at about pH 7.5. A very high increase in hemolytic activity occurs at pHs below 6.8, 6.5 and 6.2 for DChol, TDChol, and GDChol, respectively. These values are close to the pK(a) for DChol (6.2), but much higher than the pK(a) for TDChol (1.9) and GDChol (4.8). It is therefore suggested that the increase in hemolytic activity is not a result of the protonation of the anionic groups of the cholates. At acidification below pH 6, the kinetics of DChol induced hemolysis change to the damage type characterised by nonselective membrane permeability. Such a transition is not observed in TDChol and GDChol induced hemolysis. It is therefore suggested that the change in the type of hemolysis depends on protonation of the anionic group of cholates.  相似文献   

4.
We have used density functional methods to calculate fully relaxed potential energy curves of the seven lowest electronic states during the binding of O(2) to a realistic model of ferrous deoxyheme. Beyond a Fe-O distance of approximately 2.5 A, we find a broad crossing region with five electronic states within 15 kJ/mol. The almost parallel surfaces strongly facilitate spin inversion, which is necessary in the reaction of O(2) with heme (deoxyheme is a quintet and O(2) a triplet, whereas oxyheme is a singlet). Thus, despite a small spin-orbit coupling in heme, the transition probability approaches unity. Using reasonable parameters, we estimate a transition probability of 0.06-1, which is at least 15 times larger than for the nonbiological Fe-O(+) system. Spin crossing is anticipated between the singlet ground state of bound oxyheme, the triplet and septet dissociation states, and a quintet intermediate state. The fact that the quintet state is close in energy to the dissociation couple is of biological importance, because it explains how both spin states of O(2) may bind to heme, thereby increasing the overall efficiency of oxygen binding. The activation barrier is estimated to be <15 kJ/mol based on our results and M?ssbauer experiments. Our results indicate that both the activation energy and the spin-transition probability are tuned by the porphyrin as well as by the choice of the proximal heme ligand, which is a histidine in the globins. Together, they may accelerate O(2) binding to iron by approximately 10(11) compared with the Fe-O(+) system. A similar near degeneracy between spin states is observed in a ferric deoxyheme model with the histidine ligand hydrogen bonded to a carboxylate group, i.e. a model of heme peroxidases, which bind H(2)O(2) in this oxidation state.  相似文献   

5.
Small leucine-rich proteoglycans, such as biglycan, and their side chain sulfated glycosaminoglycans (GAGs), have been suggested to be involved in bone formation and mineralization processes. The present study was designed to investigate whether chondroitin sulfate (CS), one of the GAG, and its oversulfated structures coupled with bone morphogenetic protein-4 (BMP-4) alter the differentiation and subsequent mineralization of MC3T3-E1 osteoblastic cells. CS-E, one of the oversulfated CS structure, enhanced cell growth, alkaline phosphatase (ALP) activity, collagen deposition, and mineralization whereas heparin enhanced only ALP activity and mineralization. As well as CS-E, CS-H, and CPS also enhanced the mineralization of the cells. CS-E enhanced the mineralization of the cells by interacting with protein in the conditioned medium. CS-E induced mineralization was significantly inhibited by an antibody against BMP-4. The addition of exogenous BMP-4 further increased the capacity of CS-E to enhance mineralization. Fluorescence correlation spectroscopy method using fluoresceinamine-labeled GAG revealed that the oversulfated GAGs have a high affinity for BMP-4. The disaccharide analysis of the cells indicated that MC3T3-E1 cells are capable of producing oversulfated structures of CS by themselves. The lack of CS from the cells after chondroitinase treatment resulted in the inhibition of mineralization. These results in the present study indicate that oversulfated CS, which possesses 4,6-disulfates in N-acetyl-galactosamine, binds to BMP-4 and promotes osteoblast differentiation and subsequent mineralization.  相似文献   

6.
Surfactant protein (SP)-A and SP-D, immunoglobulins, and complement all modulate inflammation within the lung by regulating pathogen clearance. For example, SP-A binds to and opsonizes a variety of bacteria and viruses, thereby enhancing their phagocytosis by innate immune cells such as alveolar macrophages. Immunoglobulins, which bind to antigen and facilitate Fc receptor-mediated phagocytosis, can also activate complement, a family of soluble proteins with multiple host defense functions. Previous studies showed that SP-A and complement protein C1q interact. Since complement protein C1q binds to IgG and IgM immune complexes, the hypothesis tested in this study was that SP-A, which is structurally homologous to C1q, also binds to IgG and affects its functions. SP-A binds to the Fc, rather than the Fab, region of IgG. Binding is calcium dependent but not inhibited by saccharides known to bind to SP-A's carbohydrate recognition domain. The binding of SP-A does not inhibit the formation of immune complexes or the binding of IgG to C1q. In contrast, SP-A enhances the uptake of IgG-coated erythrocytes, suggesting that SP-A might be influencing Fc receptor-mediated uptake. In summary, this study shows a novel interaction between SP-A and IgG and a functional consequence of the binding.  相似文献   

7.
At acidic pH values heme-protein cross-linked myoglobin (Mb-H) forms as a product of a peroxide-induced ferric-ferryl redox cycle. There is evidence that this molecule acts as a marker for heme-protein-induced oxidative stress in vivo and may exacerbate the severity of oxidative damage due to its enhanced prooxidant and pseudoperoxidatic activities. Therefore, an understanding of its properties and mechanism of formation may be important in understanding the association between heme-proteins and oxidative stress. Although the mechanism of formation of heme-protein cross-linked myoglobin is thought to involve a protein radical (possibly a tyrosine) and the ferryl heme, we show that this hypothesis needs revising. We provide evidence that in addition to a protein-based radical the protonated form of the oxoferryl heme, known to be highly reactive and radical-like in nature, is required to initiate cross-linking. This revised mechanism involves radical/radical termination rather than attack of a single radical onto the porphyrin ring. This proposal better explains the pH dependence of cross-linking and may, in part, explain the therapeutic effectiveness of increasing the pH on myoglobin-induced oxidative stress, e.g., therapy for rhabdomyolysis-associated renal dysfunction.  相似文献   

8.
9.
The contribution of desmosomes to epidermal integrity is evident in the inherited blistering disorder associated with the absence of a functional gene for plakophilin-1. To define the function of plakophilin-1 in desmosome assembly, interactions among the desmosomal cadherins, desmoplakin, and the armadillo family members plakoglobin and plakophilin-1 were examined. In transient expression assays, plakophilin-1 formed complexes with a desmoplakin amino-terminal domain and enhanced its recruitment to cell-cell borders; this recruitment was not dependent on the equimolar expression of desmosomal cadherins. In contrast to desmoplakin-plakoglobin interactions, the interaction between desmoplakin and plakophilin-1 was not mediated by the armadillo repeat domain of plakophilin-1 but by the non-armadillo head domain, as assessed by yeast two-hybrid and recruitment assays. We propose a model whereby plakoglobin serves as a linker between the cadherins and desmoplakin, whereas plakophilin-1 enhances lateral interactions between desmoplakin molecules. This model suggests that epidermal lesions in patients lacking plakophilin-1 are a consequence of the loss of integrity resulting from a decrease in binding sites for desmoplakin and intermediate filaments at desmosomes.  相似文献   

10.
Estrogenic actions are closely related to cardiovascular disease. Ritonavir (RTV), a human immunodeficiency virus (HIV) protease inhibitor, induces atherosclerosis in an estrogen-related manner. However, how RTV induce pathological phenotypes through estrogen pathway remains unclear. In this study, we found that RTV increases thickness of coronary artery walls of Sprague Dawley rats and plasma free fatty acids (FFA) levels. In addition, RTV could induce foam cell formation, downregulate both estrogen receptor α (ERα) and ERβ expression, upregulate G protein-coupled estrogen receptor (GPER) expression, and all of them could be partially blocked by 17β-estradiol (E2), suggesting RTV acts as an antagonist for E2. Computational modeling shows a similar interaction with ERα between RTV and 2-aryl indoles, which are highly subtype-selective ligands for ERα. We also found that RTV directly bound to ERα and selectively inhibited the nuclear localization of ERα, and residue Leu536 in the hydrophobic core of ligand binding domain (LBD) was essential for the interaction with RTV. In addition, RTV did not change the secondary structure of ERα-LBD like E2, which explained how ERα lost the capacity of nuclear translocation under the treatment of RTV. All of the evidences suggest that ritonavir acts as an antagonist for 17β-estradiol in regulating α subtype estrogen receptor function and early events of atherosclerosis.  相似文献   

11.
A bacterial membrane protein ZipA that tethers FtsZ to the membrane is known to promote FtsZ assembly. In this study, the binding of ZipA to FtsZ was monitored using fluorescence spectroscopy. ZipA was found to bind to FtsZ with high affinities at three different (6.0, 6.8 and 8.0) pHs, albeit the binding affinity decreased with increasing pH. Further, thick bundles of FtsZ protofilaments were observed in the presence of ZipA under the pH conditions used in this study indicating that ZipA can promote FtsZ assembly and stabilize FtsZ polymers under unfavorable conditions. Bis-ANS, a hydrophobic probe, decreased the interaction of FtsZ and ZipA indicating that the interaction between FtsZ and ZipA is hydrophobic in nature. ZipA prevented the dilution induced disassembly of FtsZ polymers suggesting that it stabilizes FtsZ protofilaments. Fluorescein isothiocyanate-labeled ZipA was found to be uniformly distributed along the length of the FtsZ protofilaments indicating that ZipA stabilizes FtsZ protofilaments by cross-linking them.  相似文献   

12.
Bhakta MN  Wilks A 《Biochemistry》2006,45(38):11642-11649
The opportunistic pathogen Pseudomonas aeruginosa has evolved two outer membrane receptor-mediated uptake systems (encoded by the phu and has operons) by which it can utilize the hosts heme and hemeproteins as a source of iron. PhuS is a cytoplasmic heme binding protein encoded within the phu operon and has previously been shown to function in the trafficking of heme to the iron-regulated heme oxygenase (pa-HO). While the heme association rate for PhuS was similar to that of myoglobin, a markedly higher rate of heme dissociation (approximately 10(5) s(-1)) was observed, in keeping with a function in heme-trafficking. Additionally, the transfer of heme from PhuS to pa-HO was shown to be specific and unidirectional when compared to transfer to the non-iron regulated heme oxygenase (BphO), in which heme distribution between the two proteins merely reflects their relative intrinsic affinities for heme. Furthermore, the rate of transfer of heme from holo-PhuS to pa-HO of 0.11 +/- 0.01 s(-1) is 30-fold faster than that to apo-myoglobin, despite the significant higher binding affinity of apo-myoglobin for heme (kH = 1.3 x 10(-8) microM) than that of PhuS (0.2 microM). This data suggests that heme transfer to pa-HO is independent of heme affinity and is consistent with temperature dependence studies which indicate the reaction is driven by a negative entropic contribution, typical of an ordered transition state, and supports the notion that heme transfer from PhuS to pa-HO is mediated via a specific protein-protein interaction. In addition, pH studies, and reactions conducted in the presence of cyanide, suggest the involvement of spin transition during the heme transfer process, whereby the heme undergoes spin change from 6-c LS to 6-c HS either in PhuS or pa-HO. On the basis of the magnitudes of the activation parameters obtained in the presence of cyanide, whereby both complexes are maintained in a 6-c LS state, and the biphasic kinetics of heme transfer from holo-PhuS to pa-HO-wt, supports the notion that the spin-state crossover occur within holo-PhuS prior to the heme transfer step. Alternatively, the lack of the biphasic kinetic with pa-HO-G125V, 6-c LS, and with comparable rate of heme transfer as pa-HO is supportive of a mechanism in which the spin-change could occur within pa-HO. The present data suggests either or both of the two pathways proposed for heme transfer may occur under the present experimental conditions. The dissection of which pathway is physiologically relevant is the focus of ongoing studies.  相似文献   

13.
Phenomena occurring in the heme pocket after photolysis of carbonmonoxymyoglobin (MbCO) below about 100 K are investigated using temperature-derivative spectroscopy of the infrared absorption bands of CO. MbCO exists in three conformations (A substrates) that are distinguished by the stretch bands of the bound CO. We establish connections among the A substates and the substates of the photoproduct (B substates) using Fourier-transform infrared spectroscopy together with kinetic experiments on MbCO solution samples at different pH and on orthorhombic crystals. There is no one-to-one mapping between the A and B substates; in some cases, more than one B substate corresponds to a particular A substate. Rebinding is not simply a reversal of dissociation; transitions between B substates occur before rebinding. We measure the nonequilibrium populations of the B substates after photolysis below 25 K and determine the kinetics of B substate transitions leading to equilibrium. Transitions between B substates occur even at 4 K, whereas those between A substates have only been observed above about 160 K. The transitions between the B substates are nonexponential in time, providing evidence for a distribution of substates. The temperature dependence of the B substate transitions implies that they occur mainly by quantum-mechanical tunneling below 10 K. Taken together, the observations suggest that the transitions between the B substates within the same A substate reflect motions of the CO in the heme pocket and not conformational changes. Geminate rebinding of CO to Mb, monitored in the Soret band, depends on pH. Observation of geminate rebinding to the A substates in the infrared indicates that the pH dependence results from a population shift among the substates and not from a change of the rebinding to an individual A substate.  相似文献   

14.
The intraerythrocytic Plasmodium falciparum parasite converts most of host hemoglobin heme into a nontoxic heme crystal. Erythrocyte zinc protoporphyrin IX, normally present at 0.5 microM, which is a ratio of 1:40,000 hemes, can elevate 10-fold in some of the anemias associated with malaria disease protection. This work examines a binding mechanism for zinc protoporphyrin IX inhibition of heme crystallization similar to the antimalarial quinolines. Zinc protoporphyrin IX neither forms crystals alone nor extends on preformed heme crystals. Inhibition of both seed heme crystal formation and crystal extension occurs with an inhibitory concentration (IC)50 of 5 microM. Field emission in-lens scanning electron microscopy depicts the transition and inhibition of heme monomer aggregates to heme crystals with and without seeding of preformed hemozoin templates. In vitro zinc protoporphyrin IX, like the quinolines, binds to heme crystals in a saturable, specific, pH, and time-dependent manner. The ratio at saturation is approximately 1 zinc protoporphyrin IX per 250 hemes of the crystal. Unlike the quinolines, zinc protoporphyrin IX binds measurably in the absence of heme. Isolated ring and trophozoite stage parasites have an elevated zinc protoporphyrin IX to heme ratio 6 to 10 times that in the erythrocyte cytosol, which also corresponds to elevated ratios found in heme crystals purified from Plasmodium parasites. This work implicates protection from malaria by a mechanism where elevated zinc protoporphyrin IX in anemic erythrocytes binds to heme crystals to inhibit further crystallization. In endemic malaria areas, severe iron deficiency anemia should be treated with antimalarials along with iron replenishment.  相似文献   

15.
Clotrimazole is a broad‐spectrum antimycotic drug mainly used for the treatment of Candida albicans and other fungal infections. A synthetic, azole antimycotic, clotrimazole is widely used as a topical treatment for tinea pedis (athlete's foot), as well as vulvovaginal and oropharyngeal candidiasis. It displays fungistatic antimycotic activity by targeting the biosynthesis of ergosterol, thereby inhibiting fungal growth. As well as its antimycotic activity, clotrimazole has become a drug of interest against several other diseases such as sickle cell disease, malaria and some cancers. It has also been combined with other molecules, such as the metals, to produce clotrimazole complexes that show improved pharmacological efficacy. Moreover, several new, modified‐release pharmaceutical formulations are also undergoing development. Clotrimazole is a very well‐tolerated product with few side effects, although there is some drug resistance appearing among immunocompromised patients. Here, we review the pharmaceutical chemistry, application and pharmacology of clotrimazole and discuss future prospects for its further development as a chemotherapeutic agent.  相似文献   

16.
M H Feuston  W J Scott 《Teratology》1985,32(3):407-419
We have attempted to elucidate the mechanism of cadmium teratogenesis utilizing inbred mouse strains sensitive (C57BL/6J) or resistant (SWV) to the embryotoxic effect of this common heavy metal contaminant. Carbonic anhydrase activity of whole-embryo homogenates was moderately depressed in C57BL/6J mice compared to a slight and transient decrease in the resistant SWV mice. Embryonic erythrocytes were similarly examined, and the cadmium did not have any effect on carbonic anhydrase activity in either strain. Likewise, histochemical examination of carbonic anhydrase activity did not reveal any effect of cadmium in the embryos of their strain. Generally, the zinc concentration of embryos was not affected by cadmium administration. However, increased levels of zinc were observed in cadmium-exposed yolk sacs of both strains suggesting that cadmium produces an adverse effect on yolk sac function. Untreated C57BL/6J units (embryo plus surrounding extraembryonic membranes), embryos, and yolk sacs had much lower hemoglobin concentrations than those observed in untreated SWV units, embryos, and yolk sacs. Additionally, cadmium exposure significantly decreased C57BL/6J embryonic hemoglobin levels on gestation day 10 (PM) and increased C57BL/6J yolk sac hemoglobin levels on gestation days 10 (AM) and 10 (PM). No difference in hemoglobin concentration was observed between untreated and cadmium-treated SWV embryos or yolk sacs. We propose that cadmium induces forelimb ectrodactyly by creating an acidotic embryonic environment and that the primary site at which cadmium exerts its teratogenic effect might be the yolk sac.  相似文献   

17.
The binding and mitogenic properties of thrombin have been established in various transformed cell lines. In such systems, thrombin induces cell division in the absence of exogenous growth factors, and the enzyme is considered to act directly as a mitogen. This study explores thrombin's interaction with nontransformed, growth factor-dependent cells. Binding of 125I-alpha-thrombin to colony-stimulating factor (CSF)-1-dependent bone marrow-derived macrophages is saturable, time-dependent, and displaceable by both unlabeled alpha-thrombin, and esterolytically inactive thrombin. Both dissociation studies of pre-bound radio-labeled thrombin and Scatchard analysis assisted by the program "Ligand" suggest adherence of thrombin-binding data to a multi-site model. There are an estimated 2 x 10(4) high affinity sites (Kd = 7 x 10(-9)M) and 2 x 10(6) low affinity sites (Kd = 9 x 10(-7)M) per cell. Quiescent bone marrow-derived macrophages were cultured with either 10(-8)M thrombin, 1000 units of CSF-1/ml, or both and [3H]thymidine incorporation was determined. Thrombin alone did not induce mitogenesis. CSF-1 induced mitogenesis with peak [3H] thymidine incorporation occurring 24 h after addition of the mitogen. This CSF-1-dependent mitogenic influence was enhanced greater than 2-fold by treatment with thrombin.  相似文献   

18.
Katwa LC  Seidel ER 《Amino acids》2009,37(4):555-558
Visfatin is a newly identified 52 kD adipocytokine that appears to have insulinomimetic properties. We examined visfatin expression in visceral fat from lean and pregnant women. Visfatin gene expression was seven times higher in omental fat of pregnant women than in lean women. Both immunohistochemistry and immunoblot confirmed that visfatin protein was much higher in pregnant women than in nonpregnant women. However, serum visfatin was 20.8 ± 7.7 ng/ml (n = 7) in lean women as compared to only a slight increase to 40.3 ng/ml in pregnant women (n = 4). We measured visfatin mRNA content of human placenta and found that placenta expresses high levels of visfatin mRNA and protein. At a concentration of 2 nM, visfatin and insulin produced nearly identical increase in glucose transport. The discrepancy between the elevated visfatin expression and tissue visfatin compared to only a small increase in serum visfatin is a matter of controversy. The data on serum visfatin concentrations are replete with contradictory data. Taken together, we suggest that visfatin is not a hormone. Instead, we propose that visfatin acts in either a paracrine or autocrine mode. This hypothesis would explain what various laboratories have found widely discrepant values for serum visfatin. Since visfatin potently and efficaciously induced glucose transport in a cell culture model, any hypothetical role for visfatin in pregnancy should include the possibility that it may play a role in maternal/fetal glucose metabolism or distribution and that it may do so by acting locally.  相似文献   

19.
Ionized calcium binding adaptor molecule 1 (Iba1) is a microglia/macrophage-specific calcium-binding protein. Iba1 has the actin-bundling activity and participates in membrane ruffling and phagocytosis in activated microglia. In order to understand the Iba1-related intracellular signalling pathway in greater detail, we employed a yeast two-hybrid screen to isolate an Iba1-interacting molecule and identified another actin-bundling protein, L-fimbrin. In response to stimulation, L-fimbrin accumulated and co-localized with Iba1 in membrane ruffles induced by M-CSF-stimulation and phagocytic cups formed by IgG-opsonized beads in microglial cell line MG5. L-fimbrin was shown to associate with Iba1 in cell lysate of COS-7 expressing L-fimbrin and Iba1. By using purified proteins, direct binding of Iba1 to L-fimbrin was demonstrated by immunoprecipitation, glutathione S-transferase pull-down assays and ligand overlay assays. The binding of Iba1 was also found to increase the actin-bundling activity of L-fimbrin. These results indicate that Iba1 forms complexes with L-fimbrin in membrane ruffles and phagocytic cups, and suggest that Iba1 co-operates with L-fimbrin in modulating actin reorganization to facilitate cell migration and phagocytosis by microglia.  相似文献   

20.
Endoperoxide antimalarials based on the ancient Chinese drug Qinghaosu (artemisinin) are currently our major hope in the fight against drug-resistant malaria. Rational drug design based on artemisinin and its analogues is slow as the mechanism of action of these antimalarials is not clear. Here we report that these drugs, at least in part, exert their effect by interfering with the plasmodial hemoglobin catabolic pathway and inhibition of heme polymerization. In an in vitro experiment we observed inhibition of digestive vacuole proteolytic activity of malarial parasite by artemisinin. These observations were further confirmed by ex vivo experiments showing accumulation of hemoglobin in the parasites treated with artemisinin, suggesting inhibition of hemoglobin degradation. We found artemisinin to be a potent inhibitor of heme polymerization activity mediated by Plasmodium yoelii lysates as well as Plasmodium falciparum histidine-rich protein II. Interaction of artemisinin with the purified malarial hemozoin in vitro resulted in the concentration-dependent breakdown of the malaria pigment. Our results presented here may explain the selective and rapid toxicity of these drugs on mature, hemozoin-containing, stages of malarial parasite. Since artemisinin and its analogues appear to have similar molecular targets as chloroquine despite having different structures, they can potentially bypass the quinoline resistance machinery of the malarial parasite, which causes sublethal accumulation of these drugs in resistant strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号