首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The larval development ofPhoronis psammophila Cori is divided into 6 phases (on the basis of increasing pairs of larval tentacles); furthermore an initial and a ripe phase are distinguished. Specific aspects of the development are described: Formation and structure of larval tentacles; anlage of adult tentacles as a thickening in the larval tentacle base; late development of the metasome (larva with 4–6 tentacles); formation of the metasome pouch in the larva with 8 tentacles; enlargement of the apical plate; differentiation of the gut; differentiation of larval nephridia; formation of pigment particles in the larva with 6 tentacles (storage function of pigments and its significance for larval identification); different types of discoflagella in various regions of the body. The larval development shows the following tendencies: Improvement of locomotion; intensification of food filtration; anlage of adult organs in the larva leading to a shortening of metamorphosis duration. The larva ofP. psammophila is compared with those ofP. pallida, P. hippocrepia, andP. vancouverensis. Earlier larval determinations ofP. psammophila (e.g.Actinotrocha sabatieri, A. hatschekii) are shown to have been mistakes. Termination of the postembryonic phase (metamorphosis) can be induced experimentally by bacteria and also by cations. Pure or mixed bacteria cultures must be present at the beginning exponential growth phase. The bacteria density required is 20–94×106 bact.ml?1 for pure cultures and on the average 28×106 bact. ml?1 for mixed cultures. Metamorphosis initiation by cations can be induced with CsCl (0.06 M) and RbCl (0.035 M). Metamorphosis ofP. psammophila occurs in 6 phases: larva, ready for metamorphosis; larva, activated by bacteria or ions; evagination of the metasome diverticle, dislocation of gut; losing and swallowing of episphaere and larval tentacles; formation of the youngP. psammophila. All developmental phases are described and compared with those ofP. muelleri; imperfect metamorphosis is characterized and the youngP. psammophila compared with older stages and the adult Phoronis.  相似文献   

2.
Muscle development in the bamboo sole Heteromycteris japonicus was investigated, focusing primarily on the cranial muscles, using an improved whole mount immunohistochemical staining method with potassium hydroxide, hydrogen peroxide and trypsin. Larvae of H. japonicus had branchial levators, but not all of them were retained in adults, a condition also seen in the Japanese flounder Paralichthys olivaceus. In particular, larval branchial levators II and III disappeared during development, while I and IV remained to become the levator internus I and levator posterior, which were well‐defined muscles in adults. In place of the atrophied muscles, levatores externi and levator internus II developed and regulated the branchial arches. The results showed that the muscle composition in the dorsal branchial arches changed to the adult form before metamorphosis in H. japonicus, as seen in P. olivaceus, and this transformation may be common to all members of that group.  相似文献   

3.
Flounders form left-right asymmetry in body coloration during metamorphosis through differentiation of adult-type melanophores and xanthophores on the ocular side. As the first step in investigating the formation of flounder body coloration asymmetry, in this study, we aimed to determine where the precursors of adult-type chromatophores distribute in larvae before metamorphosis. In Paralichthys olivaceus and Verasper variegatus, GTP cyclohydrolase 2 (gch2), a common marker of melanoblasts and xanthoblasts, was found to be transiently expressed in cells located along the bilateral skeletal muscles at the basal parts of the dorsal and anal fins of premetamorphic larvae. When V. variegatus larvae were fed with a strain of Artemia collected in Brazil, this gch2 expression was abolished and the differentiation of adult-type melanophores was completely inhibited, while the density of larval melanophores was not affected. In a cell trace test in which the cells at the basal part of the dorsal fin were labeled with DiI at the premetamorphic stage, adult-type melanophores labeled with DiI were found in the skin on the ocular side after metamorphosis. These data suggest that, in flounder larvae, adult-type melanophores are distributed at the basal parts of the dorsal and anal fins as unpigmented precursor cells.  相似文献   

4.
To understand the relationship between the radioactive cesium (Cs) concentration in muscle of Japanese flounder Paralichthys olivaceus and the species' biological characteristics (size, sex, and age) under conditions of ecological equilibrium (i.e., distributed among ecosystem components over sufficient time, and with nearly constant ratios of Cs concentration in organisms to the concentration in water) as existed before the accident at the Fukushima Dai-ichi Nuclear Power Station (FDNPS), Japan, in 2011, we examined stable Cs, as it is thought to exist in equilibrium in the environment and behave similarly to radioactive Cs in aquatic animals. The concentration of stable Cs in 241 P. olivaceus (range 216–782 mm total length [TL]) collected in Sendai Bay, approximately 90 km north of the FDNPS, in June–July 2015 was expressed as an exponential function with size as an independent variable; the results show the concentration of stable Cs doubled with an increase in TL of 442 mm. Next, to evaluate the cause of the size-dependent change in stable Cs concentration, we examined 909 individuals (200–770 mm TL) collected in September 2013–July 2015 to determine their feeding habit based on size. Analysis of the frequency of occurrence of prey organisms in stomach contents showed that sand lance Ammodytes japonicus (55–180 mm standard length [SL]) was the most consistently consumed across size classes. Analysis on a wet-mass basis showed that A. japonicus and anchovy Engraulis japonicus (65–130 mm SL) were the main food of P. olivaceus sized 200–599 mm TL, whereas chub mackerel Scomber japonicus (120–230 mm SL) and two species of flatfishes (180–205 mm SL) were abundant in the diet of P. olivaceus sized ≥600 mm TL. All these prey items were presumed to have similar concentrations of stable Cs. Based on the above, the effect of diet on the relationship between stable Cs in muscle and fish size was considered negligible. That the diet of P. olivaceus largely did not change with size was also confirmed by C and N stable isotope ratios in P. olivaceus and their prey species. Therefore, the Cs–size relationship is probably determined by changes in the balance between the rate of Cs intake from food and seawater and the excretion rate during growth, both of which change as functions of body mass. Values of stable Cs concentrations among environmental components and animals appear to be a valid indicator for understanding the radioactive Cs distribution in the marine environment and aquatic animals under the equilibrium state, as existed before the 2011 nuclear accident.  相似文献   

5.
Summary Histological changes in the pituitary TSH cells and in the thyroid gland of flounder (Paralichthys olivaceus) larvae during spontaneous or artificially induced metamorphosis were studied. Activity of the immunoreactive TSH cells (IrTSH cells) gradually increased during premetamorphosis, reaching the highest level in prometamorphic larvae, and the cells were degranulated in metamorphic climax. The IrTSH cells were most inactive at the post-climax stage. The thyroid gland was morphologically the most active in metamorphic climax when the degranulation occurred in the pituitary IrTSH cells, and appeared inactive at post-climax. A few weeks after metamorphosis, both the IrTSH cells and the thyroid gland appeared to be activated again in the benthic, juvenile flounder. Administration of thyroxine or thiourea revealed negative feedback regulation of the pituitary-thyroid axis in flounder larvae. These results indicate that activation of the pituitary-thyroid axis induces metamorphosis in the flounder.  相似文献   

6.
Changes in tolerances to hypoxia and sodium azide, an indicator of cellular respiration, and activities of various energy metabolism-related chemical components were studied in Japanese flounder Paralichthys olivaceus during its early life stages from 3.5 to 20.5 mm in total length (TL). They showed flexion stage around 10.4 mm TL. Lethal levels of hypoxia increased with growth from 3.5 to 8 mm total TL, and the levels remained high in larvae, until 10.4 mm TL, decreased significantly thereafter. The 50% lethal concentration of sodium azide temporarily increased at 4.5 mm TL, diminished drastically between 4.5 and 10.4 mm TL, and then increased again in post-flexion larvae. Cytochrome c oxidase activity was highest in larvae around flexion, at 10.4 mm TL, and subsequently decreased. In post-flexion larvae at 13.0 mm TL, lactate dehydrogenase (LDH) and creatine kinase activities increased; LDH activity decreased at the juvenile stage. The adenosine triphosphate content and energy charge in fish were consistently higher in the larval stage than in the juvenile stage. These results indicated that, from just before flexion to the post-flexion stage, the energy metabolism of larvae is higher due to activated aerobic and subsequent anaerobic metabolism for metamorphosis; as a consequence, hypoxia tolerance in fish is the lowest during the increase of aerobic metabolism just before and around flexion.  相似文献   

7.
The development of Ophiothrix fragilis was documented using light microscopy, and the allometry of larval growth was quantified. Larval development to the suspended juvenile stage took 21 days under conditions that were probably optimal compared to those in the plankton. Larval shape changed through development as the larval body and arms grew. Growth of the posterolateral larval arms was continuous throughout development, even during metamorphosis when the larva became endotrophic. During this period, these larval arms function as locomotory organs, and their continuous growth is probably essential to support the juvenile as it increases in density through development of its calcareous plates. In induction assays using adult conspecifics, initiation of metamorphosis was spontaneous. Release of the posterolateral arms was induced by the presence of adults. This response is likely to enhance a juvenile's chance of recruiting to a suitable habitat in the Ophiothrix fragilis beds of the North Sea.  相似文献   

8.
The relationship between the development ofCoccinella septempunctata brucki Mulsant (Coleoptera: Coccinellidae) and its parasitoid,Perilitus coccinellae (Schrank) (Hymenoptera: Braconidae) was studied at two photoperiods (L 16:D8 and L 12: D12) at 26°C. The development ofP. coccinellae is well synchronized with the physiological state of the host,C. septempunctata, which can be parasitized not only as adult but also as larva or pupa. The parasitoid larva completed larval development within 19 days in a non-diapausing host, while in diapausing adults as well as in pupae held at diapause-averting conditions, the parasitoid larva ceased growth at the first instar. Growth was resumed when diapause of the host terminated or by the emergence of the adult host from the pupa. About 550 spheric cells, teratocytes, were liberated into the host hemocoel when the parasitoid egg hatched. The teratocytes increased in size in the active host, while their development was arrested in the diapausing host. Application of methoprene caused diapause termination of both host and parasitoid larva. The results indicate that the development of the larva ofP. coccinellae depends on the physiological conditions of the host,C. septempunctata brucki. The host-parasite relation thus represents an ‘endogenous synchronization’ in the sense of Schoonhoven's definition.  相似文献   

9.
Amphibian larvae vary tremendously in size at metamorphosis and length of larval period. We raised pond-dwelling four-toed salamander (Hemidactylium scutatum) larvae to test two models that predict a larva’s age and size at metamorphosis. The Wilbur-Collins model proposes that the developmental rate of a larva responds to changes in growth rate in an adaptive manner throughout the larval period, and that metamorphosis can be initiated after a minimum size has been reached. The Leips-Travis or fixed-rate model states that developmental rate is set early in the larval period, perhaps by early growth rate or food availability and their positive correlation with developmental rate, and that changes in growth rate during the larval period affect size at metamorphosis, but have no effect on the age of an individual at metamorphosis. A modified version of the Wilbur-Collins model suggests that a larva’s developmental rate becomes fixed about two-thirds of the way through the larval period, with changes in growth rate after that point only affecting size at metamorphosis. Larvae were raised on eight different feeding regimes which created two constant and six variable growth histories. Growth history did significantly affect size at metamorphosis. However, an a posteriori statistical test revealed a group of seven and an overlapping group of six treatments with indistinguishable lengths of larval period, indicating a general picture of a fixed developmental rate regardless of growth history. This result is unique among similar studies on invertebrates, fish, and frogs. There was no association between early growth or food level and development rates. Neither the Wilbur-Collins nor the Leips-Travis fixed-rate models were supported. The invariable developmental rate of Hemidactylium and recent osteological evidence from the literature suggest that larvae begin the process of metamorphosis as soon as they hatch, probably a trait selected for by strong predation pressure in the aquatic environment. A variety of different approaches (ecological, developmental, phylogenetic) are necessary to fully evaluate the adaptive nature of the timing of transitions between life cycle stages. Received: 3 June 1999 / Accepted: 18 March 2000  相似文献   

10.
Summer flounder, Paralichthys dentatus L., show variance in total length as they progress through larval development and metamorphosis, both in commercial aquaculture hatcheries and in research facilities. This variance leads to serious problems with cannibalism after settlement, if the fish are not ‘graded’ (i.e. separated by size), a labor‐intensive process. In order to document the magnitude of this variation and to try to understand the basis for it, we conducted a series of experiments during (a) the larval period and (b) the process of metamorphosis. The larval experiments were done on fish reared individually in small bowls and repeatedly measured during their development. The metamorphosis experiments were done on fish reared either communally or individually and repeatedly examined to determine the relationships between age, growth and stage of development. There was no relationship between size of larvae at 8 or 9 days after hatch (DAH) and their subsequent size at 30 DAH. During two larval trials, significant events occurred around 20–22 DAH: increased variability in size among offspring from one set of parents, and increased growth without increased variability among offspring from another set of parents. These findings suggest that selective breeding of this species might be a way of reducing size variability. During the metamorphosis trials, we found that rates of development and absolute growth in summer flounder are positively correlated.  相似文献   

11.
Allometric growth is a common feature during fish larval development. It has been proposed as a growth strategy to prioritize the development of body segments related to primordial functions like feeding and swimming to increase the probability of survival during this critical period. In the present study we evaluated the allometric growth patterns of body segments associated to swimming and feeding during the larval stages of Pacific red snapper Lutjanus peru. The larvae were kept under intensive culture conditions and sampled every day from hatching until day 33 after hatching. Each larva was classified according to its developmental stage into yolk-sac larva, preflexion larva, flexion larva or postflexion larva, measured and the allometric growth coefficient of different body segments was evaluated using the potential model. Based on the results we can infer the presence of different ontogenetic priorities during the first developmental stages associated with vital functions like swimming during the yolk-sac stage [total length (TL) interval = 2.27–3.005 mm] and feeding during the preflexion stage (TL interval = 3.007–5.60 mm) by promoting the accelerated growth of tail (post anal) and head, respectively. In the flexion stage (TL interval = 5.61–7.62 mm) a change in growth coefficients of most body segments compared to the previous stage was detected, suggesting a shift in growth priorities. Finally, in the postflexion stage (TL interval = 7.60–15.48 mm) a clear tendency to isometry in most body segments was observed, suggesting that growth priorities have been fulfilled and the larvae will initiate with the transformation into a juvenile. These results provide a framework of the larval growth of L. peru in culture conditions which can be useful for comparative studies with other species or in aquaculture to evaluate the changes in larval growth due to new conditions or feeding protocols.  相似文献   

12.
13.
Summary

The larval development of the ophiocomid ophiuroid Ophiomastix venosais described using SEM. The gastrula transforms into a uniformly ciliated early larva which progressively changes into a lecithotrophic late premetamorphic larva with a continuous bilateral ciliated band. This stage is short-lived and equivalent to a highly reduced ophiopluteus. Comparisons between O. venosa and other ophiuroid species whose development has been investigated suggest that, whatever the developmental mode (lecithotrophic or planktotrophic), a pluteus stage always occurs in ophiuroids with planktonic development. Two metamorphic stages were identified, the late metamorphic larva differing from the early one by the closure of the larval mouth. The appearance of the permanent mouth marks the end of the metamorphosis. The postlarva still possesses remnants of larval features. The transformation of the reduced ophiopluteus into a barrel-shaped metamorphic larva with transverse ciliated bands, a vitellaria larva, is followed. The possible occurrence of a unique type of metamorphic larva in non-brooding ophiuroids is discussed. Verification of this, however, needs further SEM investigations on metamorphic larva from species having “regular” planktotrophic development.  相似文献   

14.
The tissue of glass sponges (Class Hexactinellida) is unique among metazoans in being largely syncytial, a state that arises during early embryogenesis when blastomeres fuse. In addition, hexactinellids are one of only two poriferan groups that already have clearly formed flagellated chambers as larvae. The fate of the larval chambers and of other tissues during metamorphosis is unknown. One species of hexactinellid, Oopsacas minuta, is found in submarine caves in the Mediterranean and is reproductive year round, which facilitates developmental studies; however, describing metamorphosis has been a challenge because the syncytial nature of the tissue makes it difficult to trace the fates using conventional cell tracking markers. We used three‐dimensional models to map the fate of larval tissues of O. minuta through metamorphosis and provide the first detailed account of larval tissue reorganization at metamorphosis of a glass sponge larva. Larvae settle on their anterior swimming pole or on one side. The multiciliated cells that formed a belt around the larva are discarded during the first stage of metamorphosis. We found that larval flagellated chambers are retained throughout metamorphosis and become the kernels of the first pumping chambers of the juvenile sponge. As larvae of O. minuta settle, larval chambers are enlarged by syncytial tissues containing yolk inclusions. Lipid inclusions at the basal attachment site gradually became smaller during the six weeks of our study. In O. minuta, the flagellated chambers that differentiate in the larva become the post‐metamorphic flagellated chambers, which corroborate the view that internalization of these chambers during embryogenesis is a process that resembles gastrulation processes in other animals.  相似文献   

15.
The bilateral symmetry of flounder larvae changes through the process of morphogenesis to produce external asymmetry at metamorphosis. The process is characterized by the lateral migration of one eye and pigmentation at the ocular side. Migration of the left or right eye to produce either dextral or sinistral forms, respectively, is usually fixed within a species. Here we propose a mechanism for the mediation of lateralization by the nodal‐lefty‐pitx2 (NLP) pathway in flounders, in which pitx2, the final left‐right determinant of the NLP pathway, is re‐expressed in the left habenula at pre‐metamorphosis. After the initiation of left‐sided pitx2 re‐expression, the eye commences migration, when the habenulae shift their position on the ventral diencephalon rightwards in sinistral flounder (Paralichthys olivaceus) and leftwards in dextral flounder (Verasper variegatus). In addition, the right habenula increases in size relative to the left habenula in both species. Loss of pitx2 re‐expression induces randomization of eye‐sidedness, manifesting as normal, reversed or bilateral symmetry, with laterality of the structural asymmetry of habenulae being entirely inverted in reversed flounders compared with normal ones. Thus, flounder pitx2 appears to be re‐expressed in the left habenula at metamorphosis to direct eye‐sidedness by lateralizing the morphological asymmetry of the habenulae.  相似文献   

16.
17.
The developmental sequence of morphological characteristics related to swimming and feeding functions was investigated in hatchery-reared larvae and juveniles ofSebastes schlegeli, a viviparous scorpaenid. The fish were extruded at an early larval stage, when the mean body size was 6.23 mm TL. Fin-ray rudiments became visible at 9.0 mm TL in the dorsal and anal fins, at 8.0 mm TL in the pectoral and pelvic fins and 6.0 mm TL (size at extrusion) in the caudal fin. Completion of segmentation of soft rays in the dorsal and anal fins was attained by 14 mm TL and in all fins by 17 mm TL. Branching of soft rays in the respective fins started and was completed considerably later than the completion of segmentation, as well as ossification of the fin-supports. Morphological transformation from larva to juvenile was apparently completed by about 17 mm TL. Although the completion of basic juvenile structures was attained by transformation at that body size, succeeding morphological changes occurred between 17 mm and 32 mm TL. Newly-extruded larvae possessed one or two teeth on the lower pharyngeal and pharyngobranchials 3 and 4, but lacked premaxillary, dentary, palatine and prevomer teeth. The fish attained full development of gill rakers and gill teeth by 15 mm TL, the upper and lower pharyngeal teeth subsequently developing into a toothplate. Development of the premaxillary, dentary and palatine teeth was completed at about 30 mm TL, by which time loop formation of the digestive canal and the number of pyloric caeca had attained the adult condition. The developmental sequence of swimming and feeding functions during larval and early juvenile periods appeared to proceed from primitive functions to advanced or complex ones, from the ability to produce propulsive force to that of swimming with high maneuverability and from development of the irreducible minimum function of passing food into the stomach to the ability to actively capture prey via passive food acquisition with the gill rakers and gill teeth. The relationship of morphological development to the behavior and feeding activity of artificially-produced hatchlings is also discussed.  相似文献   

18.
Pilidiophora constitutes a clade of nemerteans characterized by a peculiar larval type, the pilidium. A characteristic of this larva is the transitory epidermis in which the juvenile develops from imaginal discs. The primary function of this larval envelope is assumed to be feeding and dispersal. When juvenile development is complete, the larval epidermis is ruptured and swallowed by the juvenile. According to recent cladistic and molecular analyses of the Nemertea, the intracapsular Desor-larva of the sibling species Lineus viridis and L. ruber is thought to have evolved from a pelagic pilidium. The general course of development has been demonstrated to be similar to that of the pilidium, in which the juvenile forms from imaginal discs under the larval epidermis. The two Lineus species, however, differ in their mode of larval feeding: L. ruber being ootrophic and L. viridis being lecithotrophic. In order to elucidate the transition from the planktotrophic pilidum to lecithotrophic development, I studied the early cleavage and metamorphosis from intracapsular Desor-larva to juvenile stages in L. viridis from the island of Sylt, using light microscopical, electron microscopical, and fluorescent staining methods. Due to the specific cleavage pattern with equally sized 1st quartet animal blastomeres and vegetal blastomeres in L. viridis, the larval epidermis later contains a considerable amount of the yolk reserve. During metamorphosis, the larval epidermis is ingested by the juvenile thus displaying behavior similar to that of the pilidium larva. In contrast to the pilidium, the function of the larval epidermis of the Desor-larva has shifted from feeding and dispersal to direct food supply. Thus, the development of L. viridis is a perfect example for strong historical constraints that prevent ancestral larval structures from being lost.  相似文献   

19.
Differential expression of genes is crucial to embryogenesis. The analysis of gene expression requires appropriate references that should be minimally regulated during the embryonic development. To select the most stable genes for gene normalization, the expression profiles of eight commonly used reference genes (ACTB, GAPDH, rpL17, α-Tub, EF1-α, UbcE, B2M, and 18S rRNA) were examined during Japanese flounder (Paralichthys olivaceus) embryonic development using quantitative real-time polymerase chain reaction. It was found that all seven mRNA genes appeared to be developmentally regulated and exhibited significant variation of expression. However, further analyses revealed the stage-specific expression stability. Hence when normalization using these mRNA genes, the differential and stage-related expression should be considered. 18S rRNA gene, on the other hand, showed the most stable expression and could be recommended as a suitable reference gene during all embryonic developmental stages in P. olivaceus. In summary, our results provided not only the appropriate reference gene for embryonic development research in P. olivaceus, but also possible guidance to reference gene selection for embryonic gene expression analyses in other fish species.  相似文献   

20.
The larva of the sand dollar Peronella japonica lacks a mouth and gut, and undergoes metamorphosis into a juvenile sand dollar without feeding. In the present study, it was found that thyroid hormones accelerate the metamorphosis of P. japonica larvae. The contents of thyroid hormones in larvae increased gradually during development. Thiourea and potassium perchlorate, inhibitors of thyroid hormone synthesis, delayed larval metamorphosis and simultaneously repressed an increase in the content of thyroxine in the larval body. These results suggest that the P. japonica larva has a system for synthesis of thyroid hormones that act as factors for inducing metamorphosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号