首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Freeze-tolerance and some of the underlying biochemical defence mechanisms in the earthworm Dendrobaena octaedra was investigated. Survival after slow cooling to -2 degrees C, -4 degrees C, or -6 degrees C was analysed in D. octaedra from three geographic regions representing large differences in winter temperature (Denmark, Finland and Greenland). A large variation in freeze-tolerance between the three populations of D. octaedra was found. Earthworms from the northern populations (Finland and Greenland) tolerated lower temperatures (-6 degrees C) than earthworms from the Danish population (poor survival at -4 degrees C and -2 degrees C). In the Finnish population, freezing led to the production of high concentrations of glucose, which reached values much higher than controls (94 mg g(-1) vs. 2 mg g(-1) dry weight). Other potential cryoprotectants were not elevated after freezing. The Danish and Greenlandic populations had substantially lower mean glucose levels after freezing than the Finnish population (about 15 mg g(-1)). Danish earthworms rapidly frozen did not accumulate glucose, and did not survive freezing at -2 degrees C. Danish earthworms exposed to osmotic stress in Ringer's solutions, containing different concentrations of glycerol, showed significantly elevated glucose levels, but did not survive rapid freezing. It was determined if freezing had an influence on the reproduction of the earthworms. After warming to summer temperatures (15 degrees C), survivors of freezing produced viable cocoons. In a field experiment it was tested if natural acclimatization during autumn and winter months had an effect on freeze-tolerance in the Danish population. There was a significant increase of post-freeze survival during this period. The results of the freezing experiments are discussed in relation to the general ecology of D. octaedra.  相似文献   

2.
Dendrobaena octaedra is a freeze tolerant earthworm widely distributed in boreal regions. Specimens collected in Sweden were cold acclimated and then frozen at -7 degrees C to examine the influence of body mass on survival of freezing. Results showed that survival was negatively correlated to body mass. Glycogen content of the worms was variable and seemed to decrease with increasing body mass consistent with the hypothesis that freeze survival is dependent on the ability to rapidly break down glycogen and accumulate high concentrations of glucose. The results suggest that large worms (subadults and adults) invest energy in production of cocoons at the expense of glycogen storage for cryoprotectant production, whereas juvenile worms increase their survival chances by investing energy in glycogen storage at the expense of growth as a preparation for winter.  相似文献   

3.
The freeze-tolerant earthworm Dendrobaena octaedra is found in most of the European forest and tundra, Siberia, North America and Greenland where it over-winters in the top soil and encounters winter frost. In response to freezing this earthworm rapidly synthesises glucose which acts as a cryoprotectant. Frost tolerance varies extensively between geographical populations, and of the populations studied so far, the Finnish worms are most and the Danish worms least frost tolerant. Little is known about the determining factors for glucose synthesis and this study therefore investigated possible roles of acclimation and the cues for synthesis of glucose, in Finnish and Danish worms. The Finnish population had significantly larger glycogen reserves than the Danish during acclimation and in all worms, glucose synthesis was the result of an almost stoichemical reduction in glycogen stores. Maximum glucose levels were reached after the onset of freezing and were significantly higher in Finnish worms where the sugar accounted for as much as 5% of the fresh weight. On average, both the total glycogen phosphorylase activity and the active enzyme pool increased during acclimation in the Finnish but not the Danish populations. However, the increase in this enzyme was only significant during the freezing process. In this study, we show contrary to previous theory that glucose synthesis is initiated before the onset of freezing and that in this species, cryoprotectant synthesis is sensitive to very small temperature changes below 0 degrees C without the presence of ice.  相似文献   

4.
To investigate the freeze tolerance of the European common lizard, Lacerta vivipara, we froze 17 individuals to body temperatures as low as -4 degrees C under controlled laboratory conditions. The data show that this species tolerates the freezing of 50% of total body water and can survive freezing exposures of at least 24-h duration. Currently, this represents the best known development of freeze tolerance among squamate reptiles. Freezing stimulated a significant increase in blood glucose levels (16.15+/- 1.73 micromol x ml(-1) for controls versus 25.06 +/- 2.92 micromol x ml(-1) after thawing) but this increase had no significant effect on serum osmolality which was unchanged between control and freeze-exposed lizards (506.0 +/- 23.8 mosmol x l(-1) versus 501.0 +/- 25.3 mosmol x l(-1), respectively). Tests that assessed the possible presence of antifreeze proteins in lizard blood were negative. Recovery at 5 degrees C after freezing was assessed by measurements of the mean time for the return of breathing (5.9 +/- 0.5 h) and of the righting reflex (44.8 +/- 4.5 h). Because this species hibernates in wet substrates inoculative freezing may frequently occur in nature and the substantial freeze tolerance of this lizard should play a key role in its winter survival.  相似文献   

5.
The freeze tolerance and accumulation of cryoprotectants was investigated in three geographically different populations of the enchytraeid Enchytraeus albidus (Oligochaeta). E. albidus is widely distributed from the high Arctic to temperate Western Europe. Our results show that E. albidus is freeze tolerant, with freeze tolerance varying extensively between Greenlandic and European populations. Two populations from sub Arctic (Nuuk) and high Arctic Greenland (Zackenberg) survived freezing at −15 °C, whereas only 30% of a German population survived this temperature. When frozen, E. albidus responded by catabolising glycogen to glucose, which likely acted as a cryoprotectant. The average glucose concentrations were similar in the three populations when worms were frozen at −2 °C, approximately 50 μg glucose mg−1 tissue dry weight (DW). At −14 °C the glucose concentrations increased to between 110 and 170 μg mg−1 DW in worms from Greenland. The average glycogen content of worms from Zackenberg and Nuuk were about 300 μg mg−1 DW, but only 230 μg mg−1 DW in worms from Germany showing that not all glycogen was catabolised during the experiment. Nuclear magnetic resonance spectrometry (NMR) was used to screen for other putative cryoprotectants. Proline, glutamine and alanine were up regulated in frozen worms at −2 °C but only in relatively small concentrations suggesting that they were of little significance for freeze survival. The present study confirms earlier reports that freeze tolerant enchytraeids, like other freeze tolerant oligochaete earthworms, accumulate high concentrations of glucose as a primary cryoprotectant.  相似文献   

6.
Earthworm cocoons are mostly found in the uppermost soil layers and are therefore often exposed to low temperatures during winter. In the present study, cocoons of five taxa of earthworms were investigated for their tolerance to freezing, melting points of cocoon fluids and dehydration of cocoons when exposed to a frozen environment. Embryos of the taxa investigated were freeze intolerant. The melting points of fully hydrated cocoon fluids were high (above –0.3°C) and thermal hysteresis factors were absent. Exposure to a frozen environment caused the cocoons to dehydrate drastically and dehydrated cocoons showed significantly lower super-cooling points than fully hydrated cocoons, reducing the risk of freezing for dehydrated cocoons. It is proposed therefore that the cold-hardiness strategy of the earthworm cocoons is based on dehydration upon exposure to subzero temperatures in the frozen environment. Cocoons of three surface-dwelling taxa, Dendrobaena octaedra, Dendrodrilus rubidus tenuis and Dendrodrilus rubidus norvegicus had lower supercooling points and survived frost exposure better than cocoons of two deeper-dwelling taxa, Aporrectodea caliginosa and Allolobophora chlorotica. One of the investigated taxa, D. r. norvegicus, was collected from a cold alpine habitat. However, it was not more cold hardy than the closely related D. r. tenuis collected from a lowland temperate habitat. D. octaedra was the most cold hardy taxon, its cocoons being able to withstand –8°C for 3 months and –13.5°C for 2 weeks in frozen soil.Abbreviations dw dry weight - fw fresh weight - SCP supercooling point  相似文献   

7.
We examined seasonal changes in freeze tolerance and the susceptibility of larvae of the gall fly, Eurosta solidaginis to inoculative freezing within the goldenrod gall (Solidago sp.). In late September, when the water content of the galls was high (approximately 55%), more than half of the larvae froze within their galls when held at -2.5 degrees C for 24 h, and nearly all larvae froze at -4 or -6 degrees C. At this time, most larvae survived freezing at > or = -4 degrees C. By October plants had senesced, and their water content had decreased to 33%. Correspondingly, the number of larvae that froze by inoculation at -4 and -6 degrees C also decreased, however the proportion of larvae that survived freezing increased markedly. Gall water content reached its lowest value (10%) in November, when few larvae froze during exposure to subzero temperatures > or = -6 degrees C. In winter, rain and melting snow transiently increased gall water content to values as high as 64% causing many larvae to freeze when exposed to temperatures as high as -4 degrees C. However, in the absence of precipitation, gall tissues dried and, as before, larvae were not likely to freeze by inoculation. Consequently, in nature larvae freeze earlier in the autumn and/or at higher temperatures than would be predicted based on the temperature of crystallization (T(c)) of isolated larvae. However, even in early September when environmental temperatures are relatively high, larvae exhibited limited levels of freezing tolerance sufficient to protect them if they did freeze.  相似文献   

8.
Mechanistic bases for freezing tolerance in anurans have been well-studied only in wood frogs, Rana sylvatica, so comprehensive explanations for the mechanisms and evolution of freezing tolerance in anurans are lacking. We measured crystallization temperatures, freezing tolerance/intolerance, and tissue glucose and glycogen phosphorylase activities in frozen and unfrozen winter-acclimated Pseudacris triseriata, Bufo cognatus and B. woodhousei. Freezing occurred at higher subzero temperatures on wet substrate than on dry substrate in all species, indicating susceptibility to inoculative freezing. P. triseriata was freeze-tolerant, but survival was dependent on the level of supercooling prior to freezing. All Bufo were freezing intolerant, regardless of crystallization temperature. Glucose was significantly elevated by freezing in both liver (35-fold) and leg muscle (22-fold) in winter P. triseriata, but only liver glucose was significantly elevated in B. cognatus. However, freezing did not alter glycogen phosphorylase activity in either species. Liver phosphorylase activity was significantly higher in P. triseriata than in B. cognatus, suggesting that capacity for mobilizing glucose from liver glycogen is associated with freezing tolerance. Summer measurements of liver phosphorylase activity, however, did not differ between species. Thus, P. triseriata, but not B. cognatus, exhibited winter increment of liver phosphorylase activity that is correlated with the development of freezing tolerance.Abbreviation T b body temperature - T c crystallization temperature - T r rebound temperature - T eq equilibrium temperature  相似文献   

9.
The effect of thermal acclimation on trehalose accumulation and the acquisition of thermotolerance was studied in three species of entomopathogenic nematodes adapted to either cold or warm temperatures. All three Steinernema species accumulated trehalose when acclimated at either 5 or 35 degrees C, but the amount of trehalose accumulation differed by species and temperature. The trehalose content of the cold adapted Steinernema feltiae increased by 350 and 182%, of intermediate Steinernema carpocapsae by 146 and 122% and of warm adapted Steinernema riobrave by 30 and 87% over the initial level (18.25, 27.24 and 23.97 microg trehalose/mg dry weight, respectively) during acclimation at 5 and 35 degrees C, respectively. Warm and cold acclimation enhanced heat (40 degrees C for 8h) and freezing (-20 degrees C for 4h) tolerance of S. carpocapsae and the enhanced tolerance was positively correlated with the increased trehalose levels. Warm and cold acclimation also enhanced heat but not freezing tolerance of S. feltiae and the enhanced heat tolerance was positively correlated with the increased trehalose levels. In contrast, warm and cold acclimation enhanced the freezing but not heat tolerance of S. riobrave, and increased freezing tolerance of only warm acclimated S. riobrave was positively correlated with the increased trehalose levels. The effect of acclimation on maintenance of original virulence by either heat or freeze stressed nematodes against the wax moth Galleria mellonella larvae was temperature dependent and differed among species. During freezing stress, both cold and warm acclimated S. carpocapsae (84%) and during heat stress, only warm acclimated S. carpocapsae (95%) maintained significantly higher original virulence than the non-acclimated (36 and 47%, respectively) nematodes. Both cold and warm acclimated S. feltiae maintained significantly higher original virulence (69%) than the non-acclimated S. feltiae (0%) during heat but not freezing stress. In contrast, both warm and cold acclimated S. riobrave maintained significantly higher virulence (41%) than the non-acclimated (14%) nematodes during freezing, but not during heat stress. Our data indicate that trehalose accumulation is not only a cold associated phenomenon but is a general response of nematodes to thermal stress. However, the extent of enhanced thermal stress tolerance conferred by the accumulated trehalose differs with nematode species.  相似文献   

10.
For nearly three centuries the area around Gusum, in south-east Sweden, has been highly polluted with copper. An earlier study in this area showed that populations of the freeze-tolerant earthworm Dendrobaena octaedra were genetically adapted to copper. Apparently, no life-history costs to reproduction or growth were imposed by this adaptation. In the present paper we therefore investigated how laboratory raised F1-generations of these populations coped when exposed to increased copper concentrations in the soil and to sub-zero temperatures. We found that D. octaedra from polluted sites accumulated the same amount of copper as reference worms. Furthermore, earthworms from polluted sites survived equally to reference worms when exposed to freezing temperatures (-8 or -12°C). However, when simultaneously exposed to the lowest temperature and copper, the worms from polluted sites survived significantly better than reference worms. The overall conclusion of this study is that worms from polluted sites seem to be better at handling copper and accrue no costs in terms of reduced cold tolerance in connection to genetic adaptation in these populations.  相似文献   

11.
We have investigated the lipid chemistry during cold acclimation in the freeze tolerant earthworm Dendrobaena octaedra. The dominant phospholipid fatty acids (PLFA) of D. octaedra were 20:4, 20:5 and 20:1 (50% of total PLFA) followed by 18:0, 18:1 and 18:2omega6,9 (25% of total PLFA). The ability to tolerate freezing in this species was acquired after acclimation at low temperature for 2-4 weeks. During this period one particular membrane PLFA, 18:2omega6,9, increased significantly and there was a good correlation between the proportion of this PLFA and the survival of freezing. The composition of neutral lipid fatty acids (NLFA), most likely representing storage lipids (triacylglycerides), also changed during cold acclimation so that the overall degree of unsaturation increased. Using a common-garden experiment approach, we compared lipid composition of three genetically different populations (Denmark, Finland and Greenland) that differed in their freeze tolerance. Inter-populational differences and differences due to cold acclimation in overall fatty acid composition were evident in both PLFAs and NLFAs. Specifically, the PLFAs, 20:4 and 20:5, were considerably more represented in worms from Greenland, and this contributed to a higher UI of PLFAs in this population.  相似文献   

12.
Considerable study has focused on the physiological adaptations for freeze tolerance in the wood frog, Rana sylvatica, a northern species that overwinters within the frost zone, but little attention has been paid to the associated costs to organismal performance. Here we report that freezing causes transient impairment of locomotor endurance and adverse changes in exercise physiology that persist for at least 96 h. Wood frogs frozen at -2 degrees C for 36 h exhibited normal behaviors and hydro-osmotic status and near-normal metabolite (glycogen, glucose, and lactate) levels within 24 h after thawing began. However, when exercised to exhaustion on a treadmill, these frogs showed a 40% reduction in endurance as compared to sham-treated (unfrozen) controls, a reduction that persisted for at least 96 h. Previously frozen frogs exhibited higher rates of lactate accumulation during exercise than controls, suggesting that prior freezing forces greater reliance on the glycolytic pathways of energy production to support exercise. Given that this species breeds in late winter, when subzero temperatures are common, freezing may result in reduced fitness by hampering their ability to reach the pond, avoid predators, and successfully obtain mates.  相似文献   

13.
14.
The lizard Lacerta vivipara has allopatric oviparous and viviparous populations. The cold hardiness strategy of L. vivipara has previously been studied in viviparous populations, but never in oviparous ones. The present study reveals that both the oviparous and viviparous individuals of this species are able to survive in a supercooled state at -3 degrees C for at least one week when kept on dry substrates. The mean crystallisation temperatures of the body, around -4 degrees C on dry substrata and -2 degrees C on wet substrata, do not differ between oviparous and viviparous individuals. All the individuals are able to tolerate up to 48-50% of their body fluid converted into ice, but only viviparous individuals were able to stabilize their body ice content at 48%, and hence were able to survive even when frozen at -3 degrees C for times of up 24 hours. Ice contents higher than 51% have been constantly found lethal for oviparous individuals. This suggests that, in L. vivipara, the evolution towards a higher degree of freezing tolerance could parallel the evolution of the viviparous reproductive mode, a feature believed to be strongly selected under cold climatic conditions. This is the first report, among reptiles, of an intraspecific variation regarding the freeze tolerance capacities.  相似文献   

15.
Desiccation stress at sub-zero temperatures in polar terrestrial arthropods   总被引:1,自引:0,他引:1  
Cold tolerant polar terrestrial arthropods have evolved a range of survival strategies which enable them to survive the most extreme environmental conditions (cold and drought) they are likely to encounter. Some species are classified as being freeze tolerant but the majority of those found in the Antarctic survive sub-zero temperatures by avoiding freezing by supercooling. For many arthropods, not just polar species, survival of desiccating conditions is equally important to survival of low temperatures. At sub-zero temperatures freeze avoiding arthropods are susceptible to desiccation and may lose water due to a vapour diffusion gradient between their supercooled body fluids and ice in their surroundings. This process ceases once the body fluids are frozen and so is not a problem for freeze tolerant species. This paper compares five polar arthropods, which have evolved different low temperature survival strategies, and the effects of exposure to sub-zero temperatures on their supercooling points (SCP) and water contents. The Antarctic oribatid mite (Alaskozetes antarcticus) reduced its supercooling point temperature from -6 to -30 degrees C, when exposed to decreasing sub-zero temperatures (cooled from 5 to -10 degrees C over 42 days) with little loss of body water during that period. However, Cryptopygus antarcticus, a springtail which occupies similar habitats in the Antarctic, showed a decrease in both water content and supercooling ability when exposed to the same experimental protocol. Both these Antarctic arthropods have evolved a freeze avoiding survival strategy. The Arctic springtail (Onychiurus arcticus), which is also freeze avoiding, dehydrated (from 2.4 to 0.7 g water g(-1) dry weight) at sub-zero temperatures and its SCP was lowered from c. -3 to below -15 degrees C in direct response to temperature (5 to -5.5 degrees C). In contrast, the freeze tolerant larvae of an Arctic fly (Heleomyza borealis) froze at c. -7 degrees C with little change in water content or SCP during further cold exposure and survived frozen to -60 degrees C. The partially freeze tolerant sub-Antarctic beetle Hydromedion sparsutum froze at c. -2 degrees C and is known to survive frozen to -8 degrees C. During the sub-zero temperature treatment, its water content reduced until it froze and then remained constant. The survival strategies of such freeze tolerant and freeze avoiding arthropods are discussed in relation to desiccation at sub-zero temperatures and the evolution of strategies of cold tolerance.  相似文献   

16.
Reptile freeze tolerance: metabolism and gene expression   总被引:5,自引:0,他引:5  
Storey KB 《Cryobiology》2006,52(1):1-16
Terrestrially hibernating reptiles that live in seasonally cold climates need effective strategies of cold hardiness to survive the winter. Use of thermally buffered hibernacula is very important but when exposure to temperatures below 0 degrees C cannot be avoided, either freeze avoidance (supercooling) or freeze tolerance strategies can be employed, sometimes by the same species depending on environmental conditions. Several reptile species display ecologically relevant freeze tolerance, surviving for extended times with 50% or more of their total body water frozen. The use of colligative cryoprotectants by reptiles is poorly developed but metabolic and enzymatic adaptations providing anoxia tolerance and antioxidant defense are important aids to freezing survival. New studies using DNA array screening are examining the role of freeze-responsive gene expression. Three categories of freeze responsive genes have been identified from recent screenings of liver and heart from freeze-exposed (5h post-nucleation at -2.5 degrees C) hatchling painted turtles, Chrysemys picta marginata. These genes encode (a) proteins involved in iron binding, (b) enzymes of antioxidant defense, and (c) serine protease inhibitors. The same genes were up-regulated by anoxia exposure (4 h of N2 gas exposure at 5 degrees C) of the hatchlings which suggests that these defenses for freeze tolerance are aimed at counteracting the injurious effects of the ischemia imposed by plasma freezing.  相似文献   

17.
《Cryobiology》2009,58(3):286-291
The freeze tolerance and accumulation of cryoprotectants was investigated in three geographically different populations of the enchytraeid Enchytraeus albidus (Oligochaeta). E. albidus is widely distributed from the high Arctic to temperate Western Europe. Our results show that E. albidus is freeze tolerant, with freeze tolerance varying extensively between Greenlandic and European populations. Two populations from sub Arctic (Nuuk) and high Arctic Greenland (Zackenberg) survived freezing at −15 °C, whereas only 30% of a German population survived this temperature. When frozen, E. albidus responded by catabolising glycogen to glucose, which likely acted as a cryoprotectant. The average glucose concentrations were similar in the three populations when worms were frozen at −2 °C, approximately 50 μg glucose mg−1 tissue dry weight (DW). At −14 °C the glucose concentrations increased to between 110 and 170 μg mg−1 DW in worms from Greenland. The average glycogen content of worms from Zackenberg and Nuuk were about 300 μg mg−1 DW, but only 230 μg mg−1 DW in worms from Germany showing that not all glycogen was catabolised during the experiment. Nuclear magnetic resonance spectrometry (NMR) was used to screen for other putative cryoprotectants. Proline, glutamine and alanine were up regulated in frozen worms at −2 °C but only in relatively small concentrations suggesting that they were of little significance for freeze survival. The present study confirms earlier reports that freeze tolerant enchytraeids, like other freeze tolerant oligochaete earthworms, accumulate high concentrations of glucose as a primary cryoprotectant.  相似文献   

18.
Cold tolerance and metabolic responses to freezing of three slug species common in Scandinavia (Arion ater, Arion rufus and Arion lusitanicus) are reported. Autumn collected slugs were cold acclimated in the laboratory and subjected to freezing conditions simulating likely winter temperatures in their habitat. Slugs spontaneously froze at about -4 °C when cooled under dry conditions, but freezing of body fluids was readily induced at -1 °C when in contact with external ice crystals. All three species survived freezing for 2 days at -1 °C, and some A. rufus and A. lusitanicus also survived freezing at -2 °C. (1)H NMR spectroscopy revealed that freezing of body fluids resulted in accumulation of lactate, succinate and glucose. Accumulation of lactate and succinate indicates that ATP production occurred via fermentative pathways, which is likely a result of oxygen depletion in frozen tissues. Glucose increased from about 6 to 22 μg/mg dry tissue upon freezing in A. rufus, but less so in A. ater and A. lusitanicus. Glucose may thus act as a cryoprotectant in these slugs, although the concentrations are not as high as reported for other freeze tolerant invertebrates.  相似文献   

19.
20.
Several species of terrestrially hibernating frogs, turtles and insects have developed mechanisms, such as increased plasma glucose, anti-freeze proteins and antioxidant enzymes that resist to freezing, for survival at subzero temperatures. In the present study, we assessed the importance of glucose to cryoresistance of two anuran amphibians: the frog Rana catesbeiana and the toad Bufo paracnemis. Both animals were exposed to -2 degrees C for measurements of plasma glucose levels, liver and muscle glycogen content, haematocrit and red blood cell volume. Frogs survived cold exposure but toads did not. Blood glucose concentration increased from 40.35 +/- 7.25 to 131.87 +/- 20.72 mg/dl (P < 0.01) when the frogs were transferred from 20 to -2 degrees C. Glucose accumulation in response to cold exposition in the frogs was accompanied by a decrease (P < 0.05) in liver glycogen content from 3.94 +/- 0.42 to 1.33 +/- 0.36 mg/100 mg tissue, indicating that liver carbohydrate reserves were probably the primary carbon source of glucose synthesis whereas muscle carbohydrate seems unimportant. In the toads, the cold-induced hyperglycaemia was less (P < 0.05) pronounced (from 27.25 +/- 1.14 to 73.72 +/- 13.50 mg/dl) and no significant change could be measured in liver or muscle glycogen. Cold exposition had no effect on the haematocrit of the frogs but significantly reduced (P < 0.01) the haematocrit of toads from 20.0 +/- 2.1% to 5.8 +/- 1.7% due to a decreased red blood cell volume (from 1532 +/- 63 to 728 +/- 87 mm3). When toads were injected with glucose, blood glucose increased to levels similar to those of frogs and haematocrit did not change, but this failed to make them cryoresistent. In conclusion, the lack of cold-induced glucose catabolism may not be the only mechanism responsible for the freeze intolerance of Bufo paracnemis, a freeze-intolerant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号