首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Translation initiation is governed by a limited number of mRNA sequence motifs within the translation initiation region (TIR). In bacteria and bacteriophages, one of the most important determinants is a Shine-Dalgarno (SD) sequence that base pairs with the anti-SD sequence GAUCACCUCCUUA localized in the 3′ end of 16S rRNA. This work assesses a diversity of TIR features in phage T4, focusing on the SD sequence, its spacing to the start codon and relationship to gene expression and essentiality patterns. Analysis shows that GAGG is predominant of all core SD motifs in T4 and its related phages, particularly in early genes. Possible implication of the RegB activity is discussed.  相似文献   

2.
Secondary structure of the mRNA in the translational initiation region is an important determinant of translation efficiency. However, the secondary structures that enhance or facilitate translation initiation are rare. We have previously proposed that such structure may exist in the case of bacteriophage T4 gene 25 translational initiation region, which contains three potential Shine-Dalgarno sequences (SD1, SD2, and SD3) with a spacing of 8, 17, and 27 nucleotides from the initiation codon of this gene, respectively. We now present results that clearly demonstrate the existence of a hairpin structure that includes SD1 and SD2 sequences and brings the SD3, the most typical of these Shine-Dalgarno sequences, to a favourable spacing with the initiation codon of gene 25.Using a phage T7 expression system, we show that mutations that prevent the formation of hairpin structure or eliminate the SD3 sequence result in a decreased level of gp25 synthesis. Double mutation in base-pair V restores the level of gene 25 expression that was decreased by either of the two mutations (C-to-G and G-to-C) alone, as predicted by an effect attributable to mRNA secondary structure. We introduced the mutations into the bacteriophage T4 by plasmid-phage recombination. Changes in the plaque and burst sizes of T4 mutants, carrying single and double mutations in the translational initiation region of gene 25, strongly suggest that the predicted mRNA secondary structure controls (enhances) the level of gene 25 expression in vivo. Hybridization of total cellular RNA with a gene 25 specific probe indicated that secondary structure or mutations in the translational initiation region do not notably affect the 25 mRNA stability. Immunoblot analysis of gp25 in Escherichia coli cells infected by T4 mutants showed that mRNA secondary structure increases the level of gp25 synthesis by three- to fourfold. Since the secondary structure increases the level of gp25 synthesis and does not affect mRNA stability, we conclude that this structure enhances translation initiation. We discuss some features of two secondary structures in the translational initiation regions of T4 genes 25 and 38.  相似文献   

3.
RNA stem-loop enhanced expression of previously non-expressible genes   总被引:1,自引:0,他引:1  
The key step in bacterial translation is formation of the pre-initiation complex. This requires initial contacts between mRNA, fMet-tRNA and the 30S subunit of the ribosome, steps that limit the initiation of translation. Here we report a method for improving translational initiation, which allows expression of several previously non-expressible genes. This method has potential applications in heterologous protein synthesis and high-throughput expression systems. We introduced a synthetic RNA stem-loop (stem length, 7 bp; DeltaG(0) = -9.9 kcal/mol) in front of various gene sequences. In each case, the stem-loop was inserted 15 nt downstream from the start codon. Insertion of the stem-loop allowed in vitro expression of five previously non-expressible genes and enhanced the expression of all other genes investigated. Analysis of the RNA structure proved that the stem-loop was formed in vitro, and demonstrated that stabilization of the ribosome binding site is due to stem-loop introduction. By theoretical RNA structure analysis we showed that the inserted RNA stem-loop suppresses long-range interactions between the translation initiation domain and gene-specific mRNA sequences. Thus the inserted RNA stem-loop supports the formation of a separate translational initiation domain, which is more accessible to ribosome binding.  相似文献   

4.
Summary A gene for endoglucanase ofBacillus subtilis has been inserted into a Bacillus expression plasmid containing a strong BJ27 promoter and a synthetic ribosome binding site. Secondary structure analysis of mRNA showed the presence of a strong hairpin loop burying the SD sequence and the initiation codon. Alteration of secondary structure at this site by deletion analysis revealed a correlation between endoglucanase expression and accessibility of the ribosome binding site. Elimination of secondary structures increased endoglucanase expression over five-fold to a level at which endoglucanase occupied 60% of total protein which was secreted into culture medium.  相似文献   

5.
H Chen  M Bjerknes  R Kumar    E Jay 《Nucleic acids research》1994,22(23):4953-4957
The prokaryotic mRNA ribosome binding site (RBS) usually contains part or all of a polypurine domain UAAGGAGGU known as the Shine-Dalgarno (SD) sequence found just 5' to the translation initiation codon. It is now clear that the SD sequence is important for identification of the translation initiation site on the mRNA by the ribosome, and that as a result, the spacing between the SD and the initiation codon strongly affects translational efficiency (1). It is not as clear, however, whether there is a unique optimal spacing. Complications involving the definition of the spacing as well as secondary structures have obscured matters. We thus undertook a systematic study by inserting two series of synthetic RBSs of varying spacing and SD sequence into a plasmid vector containing the chloramphenicol acetyltransferase gene. Care was taken not to introduce any secondary structure. Measurements of protein expression demonstrated an optimal aligned spacing of 5 nt for both series. Since aligned spacing corresponds naturally to the spacing between the 3'-end of the 16S rRNA and the P-site, we conclude that there is a unique optimal aligned SD-AUG spacing in the absence of other complicating issues.  相似文献   

6.
The expression of the gene encoding Escherichia coli threonyl-tRNA synthetase (ThrRS) is negatively autoregulated at the translational level. ThrRS binds to its own mRNA leader, which consists of four structural and functional domains: the Shine–Dalgarno (SD) sequence and the initiation codon region (domain 1); two upstream hairpins (domains 2 and 4) connected by a single-stranded region (domain 3). Using a combination of in vivo and in vitro approaches, we show here that the ribosome binds to thrS mRNA at two non-contiguous sites: region −12 to +16 comprising the SD sequence and the AUG codon and, unexpectedly, an upstream single-stranded sequence in domain 3. These two regions are brought into close proximity by a 38-nucleotide-long hairpin structure (domain 2). This domain, although adjacent to the 5' edge of the SD sequence, does not inhibit ribosome binding as long as the single-stranded region of domain 3 is present. A stretch of unpaired nucleotides in domain 3, but not a specific sequence, is required for efficient translation. As the repressor and the ribosome bind to interspersed domains, the competition between ThrRS and ribosome for thrS mRNA binding can be explained by steric hindrance.  相似文献   

7.
Expression of the plasmid gene cat-86 is induced in Bacillus subtilis by two antibiotics, chloramphenicol and the nucleoside antibiotic amicetin. We proposed that induction by either drug causes the destabilization of a stem-loop structure in cat-86 mRNA that sequesters the ribosome-binding site for the cat coding sequence. The destabilization event frees the ribosome-binding site, permitting the initiation of translation of cat-86 mRNA. cat-86 induction is due to the stalling of a ribosome in a leader region of cat-86 mRNA, which is located 5' to the RNA stem-loop structure. A stalled ribosome that is active in cat-86 induction has its aminoacyl site occupied by leader codon 6. To test the hypothesis that a leader site 5' to codon 6 permits a ribosome to stall in the presence of an inducing antibiotic, we inserted an extra codon between leader codons 5 and 6. This insertion blocked induction, which was then restored by the deletion of leader codon 6. Thus, induction seems to require the maintenance of a precise spatial relationship between an upstream leader site(s) and leader codon 6. Mutations in the ribosome-binding site for the cat-86 leader, RBS-2, which decreased its strength of binding to 16S rRNA, prevented induction. In contrast, mutations that significantly altered the sequence of RBS-2 but increased its strength of binding to 16S rRNA did not block induction by either chloramphenicol or amicetin. We therefore suspected that the proposed leader site that permitted drug-mediated stalling was located between RBS-2 and leader codon 6. This region of the cat-86 leader contains an eight-nucleotide sequence (conserved region I) that is largely conserved among all known cat leaders. The codon immediately 5' to conserved region I differs, however, between amicetin-inducible and amicetin-noninducible cat genes. In amicetin-inducible cat genes such as cat-86, the codon 5' to conserved region I is a valine codon, GTG. The same codon in amicetin-noninducible cat genes is a lysine codon, either AAA or AAG. When the GTG codon immediately 5' to conserved region I in cat-86 was changed to AAA, amicetin was no longer active in cat-86 induction, but chloramphenicol induction was unaffected by the mutation. The potential role of the GTG codon in amicetin induction is discussed.  相似文献   

8.
Efficient expression in Escherichia coli (E. coli) of the human interferon-beta gene (IFN-beta) gene and of a chemically synthesized IFN-beta gene variant (506 base pairs; synIFN-beta) adapted to the E. coli codon usage, both fused to the E. coli atpE ribosome-binding site, is controlled either by primary sequence or by mRNA secondary-structure in the translational initiation region. High level expression of the natural human atpE/IFN-beta gene fusion is governed by the nucleotide composition preceding the initiator codon AUG. A single U----C exchange in the -2 or -1 position preceding the initiator codon AUG reduces the translational efficiency from 18% of total cellular protein to only 8% or 4%, respectively, while both U----C substitutions reduce IFN-beta expression below 1%. These sequence alterations interfere with efficient ribosome binding as revealed by toeprinting. They provide further evidence for the influence of the anticodon-flanking regions of tRNA(fMet) upon the initiation rate of translation. In contrast, translation of the synthetic variant atpE/synIFN-beta gene fusion is controlled by a moderately stable stem-loop structure (delta G = -4 kcal/mol; 37 degrees C) located within the coding region and overlapping the 30 S ribosomal subunit attachment site. That the stability of the hairpin interferes with the initiation of translation is inferred from site-directed mutagenesis and toeprint analyses. mRNA half-life in these variants is positively correlated with the rate of translation and involves two major endonucleolytic cleavage site 5'-upstream of the Shine-Dalgarno region.  相似文献   

9.
Autogenous regulatory site on the bacteriophage T4 gene 32 messenger RNA   总被引:24,自引:0,他引:24  
We have identified the binding site on the bacteriophage T4 gene 32 mRNA responsible for autogenous translational regulation. We demonstrate that this site is largely unstructured and overlaps the initiation codon of gene 32 as previously predicted. Co-operative binding of gene 32 protein to this site specifically blocks the formation of 30 S-tRNA(fMet)-gene 32 mRNA ternary complexes and initiation of translation. The translational operator is bound co-operatively by gene 32 protein and this binding is facilitated by a nucleation site far upstream from the initiation codon. A similar unstructured mRNA lacking this nucleation site is also bound co-operatively, but only at concentrations of gene 32 protein higher than those needed to repress binding of ribosomes to the gene 32 mRNA. Some sequence-specific interactions may also influence this binding. Comparison of the bacteriophage T2, T4 and T6 gene 32 operator sequences leads us to propose that the nucleation site is a pseudoknot.  相似文献   

10.
11.
Expression of the tet resistance gene from plasmid pBC16 is induced by the antibiotic tetracycline, and induction is independent of the native promoter for the gene. The nucleotide sequence at the 5' end of the tet mRNA (the leader region) is predicted to assume a complex secondary structure that sequesters the ribosome binding site for the tet gene. A spontaneous, constitutively expressed tet gene variant contains a mutation predicted to provide the tet gene with a nonsequestered ribosome binding site. Lastly, comparable levels of tet mRNA can be demonstrated in tetracycline-induced and uninduced cells. These results are consistent with the idea that the pBC16 tet gene is regulated by translation attenuation, a model originally proposed to explain the inducible regulation of the cat and erm genes in gram-positive bacteria. As with inducible cat and erm genes, the pBC16 tet gene is preceded by a translated leader open reading frame consisting of a consensus ribosome binding site and an ATG initiation codon, followed by 19 sense codons and a stop codon. Mutations that block translation of cat and erm leaders prevent gene expression. In contrast, we show that mutations that block translation of the tet leader result in constitutive expression. We provide evidence that translation of the tet leader peptide coding region blocks tet expression by preventing the formation of a secondary-structure complex that would, in the absence of leader translation, expose the tet ribosome binding site. Tetracycline is proposed to induce tet by blocking or slowing leader translation. The results indicate that tet regulation is a variation of the translation attenuation model.  相似文献   

12.
13.
The Shine-Dalgarno (SD+: 5'-AAGGAGG-3') sequence anchors the mRNA by base pairing to the 16S rRNA in the small ribosomal subunit during translation initiation. We have here compared how an SD+ sequence influences gene expression, if located upstream or downstream of an initiation codon. The positive effect of an upstream SD+ is confirmed. A downstream SD+ gives decreased gene expression. This effect is also valid for appropriately modified natural Escherichia coli genes. If an SD+ is placed between two potential initiation codons, initiation takes place predominantly at the second start site. The first start site is activated if the distance between this site and the downstream SD+ is enlarged and/or if the second start site is weakened. Upstream initiation is eliminated if a stable stem-loop structure is placed between this SD+ and the upstream start site. The results suggest that the two start sites compete for ribosomes that bind to an SD+ located between them. A minor positive contribution to upstream initiation resulting from 3' to 5' ribosomal diffusion along the mRNA is suggested. Analysis of the E. coli K12 genome suggests that the SD+ or SD-like sequences are systematically avoided in the early coding region suggesting an evolutionary significance.  相似文献   

14.
牛凝乳酶原基因在大肠杆菌中表达调控的研究   总被引:4,自引:0,他引:4  
Shine-Dalgarno序列与起始密码子之问的距离与组成对凝乳酶原基因表达有明显的影响,可导致其表达水平有15倍之差。SD序列至ATG之间为15bp不利于表达,表达质粒中sD-ATG在7-11bp之间都有可能获得高效表达;但决定因素不是简单的长度,而是RBS附近可能的二级结构即△G的大小、SD序列及ATG中参与配对的碱基数目。将pTLC23中凝乳酶原cDNA3'端端非翻译区插入终止密码子TGA与转录终止子rrnBT1T2之间适当位置可提高凝乳酶原基因的表达,这可能是因为这段序列能形成由53个碱基对和8个碱基组成的稳定的mRNA二级结构,起到转录终止子的作用,而一般认为串联终止子对终止转录更为有效。  相似文献   

15.
A ribosome stalled on a truncated mRNA in the eubacterial cell can be rescued by tmRNA via a process called trans-translation. We demonstrate here that release of truncated mRNAs from stalled ribosomes accelerates significantly already after trans-peptidation following tmRNA binding to the ribosome. However, rapid release of truncated mRNA requires EF-G-dependent translocation of peptidyl-tmRNA from the A to the P site of the ribosome. We show also that the rate of mRNA release before and after peptidyl-tmRNA translocation correlates well with the rate of dissociation of deacylated tRNA, indicating that mRNA is retained on the ribosome mainly through codon:anticodon interaction with tRNA. The rate of mRNA release is reduced for mRNAs with strong Shine-Dalgarno (SD)-like sequences in the vicinity of the truncation site as well as for mRNAs with long 3' extensions downstream from the P-site codon. The reduced rate of release in the former case was due to a persisting SD-anti SD interaction between mRNA and the ribosome.  相似文献   

16.
17.
18.
In Qβ RNA, sequestering the coat gene ribosome binding site in a putatively strong hairpin stem structure eliminated synthesis of coat protein and activated protein synthesis from the much weaker maturation gene initiation site, located 1300 nucleotides upstream. As the stability of a hairpin stem comprising the coat gene Shine–Dalgarno site was incrementally increased, there was a corresponding increase in translation of maturation protein. The effect of the downstream coat gene ribosome binding sequence on maturation gene expression appeared to have occurred only in cis and did not require an AUG start codon or initiation of coat protein synthesis. In all cases, no structural reorganization was predicted to occur within Qβ RNA. Our results suggest that protein synthesis from a relatively weak translational initiation site is greatly influenced by the presence or absence of a stronger ribosome binding site located elsewhere on the same RNA molecule. The data are consistent with a mechanism in which multiple ribosome binding sites compete in cis for translational initiations as a means of regulating protein synthesis on a polycistronic messenger RNA.  相似文献   

19.
During translational initiation in prokaryotes, the 3' end of the 16S rRNA binds to a region just upstream of the initiation codon. The relationship between this Shine-Dalgarno (SD) region and the binding of ribosomes to translation start-points has been well studied, but a unified mathematical connection between the SD, the initiation codon and the spacing between them has been lacking. Using information theory, we constructed a model that treats these three components uniformly by assigning to the SD and the initiation region (IR) conservations in bits of information, and by assigning to the spacing an uncertainty, also in bits. To build the model, we first aligned the SD region by maximizing the information content there. The ease of this process confirmed the existence of the SD pattern within a set of 4122 reviewed and revised Escherichia coli gene starts. This large data set allowed us to show graphically, by sequence logos, that the spacing between the SD and the initiation region affects both the SD site conservation and its pattern. We used the aligned SD, the spacing, and the initiation region to model ribosome binding and to identify gene starts that do not conform to the ribosome binding site model. A total of 569 experimentally proven starts are more conserved (have higher information content) than the full set of revised starts, which probably reflects an experimental bias against the detection of gene products that have inefficient ribosome binding sites. Models were refined cyclically by removing non-conforming weak sites. After this procedure, models derived from either the original or the revised gene start annotation were similar. Therefore, this information theory-based technique provides a method for easily constructing biologically sensible ribosome binding site models. Such models should be useful for refining gene-start predictions of any sequenced bacterial genome.  相似文献   

20.
The initiation of cap-independent translation of poliovirus mRNA occurs as a result of ribosome entry at an internal site(s) within the 5' noncoding region. A series of linker scanning mutations was constructed to define the genetic determinants of RNA-protein interactions that lead to high-fidelity translation of this unusual viral mRNA. The mutations are located within two distinct stem-loop structures in the 5' noncoding region of poliovirus RNA that constitute a major portion of a putative internal ribosome entry site. On the basis of our data derived from genetic and biochemical assays, the stability of one of the stem-loop structures appears to be essential for translation initiation via internal binding of ribosomes. However, the second stem-loop structure may function in a manner that requires base pairing and proper spacing between specific nucleotide sequences. By employing RNA electrophoretic mobility shift assays, an RNA-protein interaction was detected for this latter stem-loop structure that does not occur in RNAs containing mutations which perturb the predicted hairpin structure. Analysis of in vivo-selected virus revertants, in combination with mobility shift assays, suggests that extensive genetic rearrangement can lead to restoration of 5' noncoding region functions, possibly by the repositioning of specific RNA sequence or structure motifs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号