首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of pH, ionic strength, anion species, and antibody concentration on the adsorption equilibrium between immobilized antibodies and antigens were studied by use of anti-BSA, anti-HSA, anti-BlgG, and monoclonal anti-HSA coupled to Sepharose 4B. The polyclonal antibodies possessed average binding affinities of the order of 10(8)M(-1), and the heterogeneity was accounted for by assuming a normal distribution of the free energy of antibody-antigen combination. The monoclonal antibody, on the other hand, showed a homogeneous affinity of the Langmuir type. Bound antigens could be eluted by lowering pH or adding a chaotropic anion, and their purity was very high. The antibody ligand was sufficiently stable for repeated use.  相似文献   

2.
A monoclonal antibody to the small subunit common to both mu- and m-calpains can be used in an immunoaffinity column to purify either mu- or m-calpain in a proteolytically active form. Extracts in 150 mM NaCl, pH 7.5, are loaded onto a column containing the anti-28-kDa antibody; the column is washed with 500 mM NaCl, pH 7.5, and the bound calpain is eluted with 150 mM NaCl, 50 mM Tris-HCl, pH 9.5, and 1 mM EDTA. These elution conditions do not affect the proteolytic activity of either mu- or m-calpain. It is most efficient to reduce the volume and to remove any proteolytic activity from crude extracts by using successive phenyl Sepharose and ion-exchange columns before loading onto the immunoaffinity column. The column purifies m-calpain more effectively than mu-calpain; m-calpain is greater than 90% pure after a single pass through this column, whereas mu-calpain can be purified to >70% purity. The epitope for the monoclonal antibody is between amino acids 92 and 104 (numbers for human calpain) in the 28-kDa subunit. Evidently, this area is shielded in the calpain molecule in a way that affects binding of the antibody to the native molecule.  相似文献   

3.
We have developed idiotype-anti-idiotype monoclonal antibodies that provide evidence for rabies virus binding to the acetylcholine receptor (AChR). Hybridoma cell lines 7.12 and 7.25 resulted after fusion of NS-1 myeloma cells with spleen cells from a BALB/c mouse immunized with rabies virus strain CVS. Antibody 7.12 reacted with viral glycoprotein and neutralized virus infectivity in vivo. It also neutralized infectivity in vitro when PC12 cells, which express neuronal AChR, but not CER cells or neuroblastoma cells (clone N18), which have no AChR, were used. Antibody 7.25 reacted with nucleocapsid protein. Anti-idiotypic monoclonal antibody B9 was produced from fusion of NS-1 cells with spleen cells from a mouse immunized with 7.12 Fab. In an enzyme-linked immunosorbent assay and immunoprecipitation, B9 reacted with 7.12, polyclonal rabies virus immune dog serum, and purified AChR. The binding of B9 to 7.12 and immune dog serum was inhibited by AChR. B9 also inhibited the binding of 7.12 to rabies virus both in vitro and in vivo. Indirect immunofluorescence revealed that B9 reacted at neuromuscular junctions of mouse tissue. B9 also reacted in indirect immunofluorescence with distinct neurons in mouse and monkey brain tissue as well as with PC12 cells. B9 staining of neuronal elements in brain tissue of rabies virus-infected mice was greatly reduced. Rabies virus inhibited the binding of B9 to PC12 cells. Mice immunized with B9 developed low-titer rabies virus-neutralizing antibody. These mice were protected from lethal intramuscular rabies virus challenge. In contrast, anti-idiotypic antibody raised against nucleocapsid antibody 7.25 did not react with AChR.  相似文献   

4.
We have examined the relationship of acetylcholine receptors (AChR) to the Mr 43,000 receptor-associated protein (43K) in the AChR clusters of cultured rat myotubes. Indirect immunofluorescence revealed that the 43K protein was concentrated at the AChR domains of the receptor clusters in intact rat myotubes, in myotube fragments, and in clusters that had been purified approximately 100-fold by extraction with saponin. The association of the 43K protein with clustered AChR was not affected by buffers of high or low ionic strength, by alkaline pHs up to 10, or by chymotrypsin at 10 micrograms/ml. However, the 43K protein was removed from clusters with lithium diiodosalicylate or at alkaline pH (greater than 10). Upon extraction of 43K, several changes were observed in the AChR population. Receptors redistributed in the plane of the muscle membrane in alkali-extracted samples. The number of binding sites accessible to an anti-AChR monoclonal antibody directed against cytoplasmic epitopes (88B) doubled. Receptors became more susceptible to digestion by chymotrypsin, which destroyed the binding sites for the 88B antibody only after 43K was extracted. These results suggest that in isolated AChR clusters the 43K protein covers part of the cytoplasmic domain of AChR and may contribute to the unique distribution of this membrane protein.  相似文献   

5.
Using defatted and SH-blocked bovine serum albumin (BSA), measurements of differential scanning calorimetry (d.s.c.) have been made mainly in NaSCN solution. BSA undergoes a heat-induced conformational transition in a particular range of pH and ionic strength and is separated into two thermally independent units, each of which has different thermostability in acidic and alkaline pH regions. Comparisons were made of the pH dependencies of the enthalpy of thermal denaturation (ΔH) and the temperature of thermal denaturation (Td) in 0.01 NaSCN with those in 0.01 NaCl. It has been found that the stabilizing effect of NaSCN on BSA is larger than that of NaCl at pH 3.5–8, and that the heat-induced transition occurs by the electrostatic repulsive forces among the positively charged amino acid residues in a segment Arg 184–Arg 216 containing Trp 212 and the primary binding sites of anions. At ionic strength 0.01, the relative effectiveness of anions in suppressing the heat-induced transition and increasing the thermostability of BSA follows the order ClO4 − SCN > I > SO42− > Br > Cl. At ionic strength 0.1, the heat-induced transition is suppressed in all the salt solutions, and a Td increase follows the order ClO4 SCN > I > Br > Cl SO42−. Thus, the highly chaotropic ions thermostabilize BSA more markedly than kosmotropic ions in the low and moderate salt concentrations. In contrast, chaotropic ions destabilize BSA and kosmotropic ions stabilize BSA at the higher concentrations. An adequate amount of NaCl or NaSCN prevents the destruction of the environment of the binding site in the segment containing Trp 212 in 4 urea solution at pH 7.0.  相似文献   

6.
Large quantities of correctly folded, pure alpha(2)-adrenergic receptor protein are needed for structural analysis. We report here the first efficient method to purify human alpha(2)-adrenergic receptor subtype C2 to homogeneity from recombinant yeast Saccharomyces cerevisiae by one-step purification using a monoclonal antibody column (specific for alpha(2)C2). We show that the adrenoceptor antagonist phentolamine stabilized the receptor during purification. We used a very effective chaotropic agent, NaSCN, to elute the receptor from the immunoaffinity column with an overall yield of 34% before reconstitution. Ligand binding of detergent-solubilized, immunoaffinity-purified receptors could not be demonstrated, but partial recovery of ligand binding activity was achieved when purified receptors were reconstituted into phospholipid vesicles. The reconstituted receptors still bound radioligand after storage on ice for 4 weeks. This purification procedure can be easily scaled-up and thus demonstrates the utility of a monoclonal antibody column and NaSCN elution to purify large quantities of G-protein-coupled receptors.  相似文献   

7.
The limited life of immunoadsorbents used for the large-scale purification of biological macromolecules poses a significant limitation to the more widespread application of this technology. In this study, the binding activity of a monoclonal antibody (MAb) to bovine serum albumin (BSA) was measured as a function of pH, ionic strength, and varying concentrations of KSCN, ethylene glycol, or DMSO. Low pH (2.5) and 3 M KSCN each reduced the antibody binding constant below 6 x 10(5) L/mol, meeting criteria derived from a simple chromatographic model for identifying effective eluents. A panel of six MAb to BSA was exposed repeatedly to adsorption conditions and the two eluents. Four MAb lost less than 50% of their initial binding capacity over 100 cycles. The other two lost 75% of their initial capacity. One MAb was stable when exposed to low pH but lost binding capacity with KSCN. In all cases, the equilibrium constant was unchanged. The loss of capacity was also shown to be a strong function of antibody loading: at 14.5 mg/mL, 98% of the initial binding capacity of one MAb was lost within 40 cycles, versus 75% loss at 1 mg/mL. Antibody leakage and nonspecific adsorption of contaminants were not responsible for significant loss of antibody activity over time.  相似文献   

8.
N Fornstedt 《FEBS letters》1984,177(2):195-199
An analytical affinity chromatography assay has been developed for the investigation of the dissociation of antigen-antibody complexes. Albumin-coupled Sepharose 4B and anti-albumin has been used as a model system. At extremely low or high pH, in the presence of highly concentrated chaotropic ions at pH 7 or by elution with 100% ethylene glycol after pretreating with high pH buffer, most of the bondings could be ruptured. The latter two-step desorption procedure provides recovery of intact antibody with high yield. The technique was also utilized for the preparation of antibody against human growth hormone.  相似文献   

9.
Binding of hyaluronan (HA) to lysozyme immobilized on Sepharose-6B was investigated as a function of pH and NaCl concentration. High affinity binding (Kd = 1.0-2.0 x 10(-8) M) was observed at pH 7.5 and at 10-50 mM NaCl; the number of moles of HA bound to lysozyme was twice as high at 30 mM NaCl as at 10 mM. No specific binding was observed at and above 100 mM NaCl. Binding was suppressed in the presence of chaotropic agents such as guanidinium chloride and urea. These results suggest that binding between HA and lysozyme can occur in the extracellular matrix where an electrolyte concentration as low as 50 mM could be expected due to ionic exclusion by the highly negative charge concentration arising from the polyanions present.  相似文献   

10.
Myasthenia gravis is a neuromuscular disorder caused by an antibody-mediated autoimmune response to the muscle-type nicotinic acetylcholine receptor (AChR). The majority of monoclonal antibodies (mAbs) produced in rats immunized with intact AChR compete with each other for binding to an area of the alpha-subunit called the main immunogenic region (MIR). The availability of a complex between the AChR and Fab198 (Fab fragment of the anti-MIR mAb198) would help understand how the antigen and antibody interact and in designing improved antibody fragments that protect against the destructive activity of myasthenic antibodies. In the present study, we modeled the Torpedo AChR/Fab198 complex, based primarily on the recent 4A resolution structure of the Torpedo AChR. In order to computationally dock the two structures, we used the ZDOCK software. The total accessible surface area change of the complex compared to those of experimentally determined antigen-antibody complexes indicates an intermediate size contact surface. CDRs H3 and L3 seem to contribute most to the binding, while L2 seems to contribute least. These data suggest mutagenesis experiments aimed at validating the model and improving the binding affinity of Fab198 for the AChR.  相似文献   

11.
Summary We have developed a murine hybridoma cell line that is stable in secreting a monoclonal antibody (hDBP-1) directed against the group-specific component (Gc) molecule. The hDBP-1 is monospecific for Gc and does not crossreact with human albumin, which has 23% of its amino acid residues identical with vitamin-D-binding protein (DBP). The subclass of the antibody is IgG1 for the heavy chain, the light chain being of the kappa type. Isoelectric focusing discloses four major bands for the hDBP-1 with isoelectric points between pH 6.5 and 7.8. Binding to the antigen at different pH values was determined: there is high affinity in the physiological range and no binding at pH 3.5 and lower. In the presence of high salt concentrations, binding was reduced to about 50% at 1.5 M NaCl. The hDBP-1 recognizes the common human Gc types and the Gc of all apes and old world monkeys. No reaction was observed with the Gc of other mammals such as horses, cattle, rats, rabbits, sheep, goats and pigs. By testing hDBP-1 against 77 of the more than 120 known rare human Gc variants, it could be shown that this monoclonal antibody cannot recognize seven of these rare variants and can only poorly recognize nine. The binding site of hDBP-1 to Gc is not related to the binding site of Gc with G-actin: it recognizes Gc, the binary complex between Gc and G-actin, as well as the ternary complex between Gc, G-actin and DNase I. Competition assays with vitamin D3 and Gc in enzyme-linked immunosorbent assay indicate that the epitope of hDBP-1 on the Gc molecule may be related to the vitamin-D3-binding site.  相似文献   

12.
The amidase activity of human alpha-thrombin has been studied at steady state in the pH range 6-10, as a function of NaCl concentration from 1 mM to 1 M and temperature from 10 to 40 degrees C. The Michaelis-Menten constant, Km, shows a bell-shaped dependence over this pH range with a minimum around pH 7.5 in the presence of 0.1 M NaCl at 25 degrees C. The catalytic constant, kcat, also has a bell-shaped pH dependence with multiple inflection points that are more evident at low NaCl concentrations and a maximum around pH 8.2 in the presence of 0.1 M NaCl at 25 degrees C. A detailed analysis of the results in terms of a general linkage scheme has allowed a thorough characterization of the linkage between proton and substrate binding and its dependence on NaCl concentration, as well as the relevant entropic and enthalpic contributions to binding and catalytic events. Formulation of detailed partition functions for each enzyme intermediate involved in the catalytic cycle suggests that (at least) three groups are responsible for the control of thrombin amidase activity as a function of pH. One group is to be identified with the active site His, due to its pK values in the free enzyme and the adduct and its enthalpy of ionization. The effect of NaCl concentration on amidase activity seems to be extremely specific. Comparative steady-state measurements carried out in the presence of NaCl, NaBr, NaI, KCl, and MgCl2 show that human alpha-thrombin is capable of discriminating among different cations and anions. This suggests that small ions participate as allosteric effectors in the regulation of thrombin activity. The linkage with NaCl is strongly pH dependent and increases with decreasing pH. The present results provide information on the basic aspects of human alpha-thrombin activity and regulation and enable a rigorous thermodynamic approach to other important regulatory interactions in human alpha-thrombin and its structurally perturbed derivatives.  相似文献   

13.
Halophilic enzymes have been established for their stability and catalytic abilities under harsh operational conditions. These have been documented to withstand denaturation at high temperature, pH, organic solvents, and chaotropic agents. However, this stability is modulated by salt. The present study targets an important aspect in understanding protein–urea/GdmCl interactions using proteases from halophilic Bacillus sp. EMB9 and non-halophilic subtilisin (Carlsberg) from Bacillus licheniformis as model systems. While, halophilic protease containing 1 % (w/v) NaCl (0.17 M) retained full activity towards urea (8 M), non-halophilic protease lost about 90 % activity under similar conditions. The secondary and tertiary structure were lost in non-halophilic but preserved for halophilic protein. This effect could be due to the possible charge screening and shielding of the protein surface by Ca2+ and Na+ ions rendering it stable against denaturation. The dialyzed halophilic protease almost behaved like the non-halophilic counterpart. Incorporation of NaCl (up to 5 %, w/v or 0.85 M) in dialyzed EMB9 protease containing urea/GdmCl, not only helped regain of proteolytic activity but also evaded denaturing action. Deciphering the basis of this salt modulated stability amidst a denaturing milieu will provide guidelines and templates for engineering stable proteins/enzymes for biotechnological applications.  相似文献   

14.
Concurrent osmotic and chaotropic stress make MgCl2-rich brines extremely inhospitable environments. Understanding the limits of life in these brines is essential to the search for extraterrestrial life on contemporary and relict ocean worlds, like Mars, which could host similar environments. We sequenced environmental 16S rRNA genes and quantified microbial activity across a broad range of salinity and chaotropicity at a Mars-analogue salt harvesting facility in Southern California, where seawater is evaporated in a series of ponds ranging from kosmotropic NaCl brines to highly chaotropic MgCl2 brines. Within NaCl brines, we observed a proliferation of specialized halophilic Euryarchaeota, which corresponded closely with the dominant taxa found in salterns around the world. These communities were characterized by very slow growth rates and high biomass accumulation. As salinity and chaotropicity increased, we found that the MgCl2-rich brines eventually exceeded the limits of microbial activity. We found evidence that exogenous genetic material is preserved in these chaotropic brines, producing an unexpected increase in diversity in the presumably sterile MgCl2-saturated brines. Because of their high potential for biomarker preservation, chaotropic brines could therefore serve as repositories of genetic biomarkers from nearby environments (both on Earth and beyond) making them prime targets for future life-detection missions.  相似文献   

15.
1. The 3':5'-cyclic AMP phosphodiesterase in the microsomal fraction of baker's yeast is highly specific for cyclic AMP, and not inhibited by cyclic GMP, cyclic IMP or cyclic UMP. Catalytic activity is abolished by 30 micrometer-EDTA. At 30 degrees C and pH8.1, the Km is 0.17 micrometer, and theophylline is a simple competitive inhibitor with Ki 0.7 micrometer. The pH optimum is about 7.8 at 0.25 micrometer-cyclic AMP, so that over the physiological range of pH in yeast the activity changes in the opposite direction to that of adenylate cyclase [PH optimum about 6.2; Londesborough & Nurminen (1972) Acta Chem. Scand. 26, 3396-3398].2. At pH 7.2, dissociation of the enzyme from dilute microsomal suspensions increased with ionic strength and was almost complete at 0.3 M-KCl. MgCl2 caused more dissociation than did KCl or NaCl at the same ionic strength, but at low KCl concentrations binding required small amounts of free bivalent metal ions. In 0.1 M-KCl the binding decreased between pH 4.7 and 9.3. At pH 7.2 the binding was independent of temperature between 5 and 20 degrees C. These observations suggest that the binding is electrostatic rather than hydrophobic. 3. The proportion of bound activity increased with the concentration of the microsomal fraction, and at 22 mg of protein/ml and pH 7.2 was 70% at I0.18, and 35% at I0.26. Presumably a substantial amount of the enzyme is particle-bound in vivo. 4. At 5 degrees C in 10 mM-potassium phosphate, pH 7.2, the apparent molecular weight of KCl-solubilized enzyme decreased with enzyme concentration from about 200 000 to 40 000. In the presence of 0.5M-KCl, a constant mol.wt. of about 55 000 was observed over a 20-fold range of enzyme concentrations.  相似文献   

16.
Monoclonal cell lines synthesizing antibodies against partially purified acetylcholine receptor from human muscle (H.AChR) were produced. Eleven clones secreted antibodies against H.AChR. Four were obtained in ascitic form. Two of them have been exhaustively studied. Specificity and affinity for H.AChR were demonstrated. Cross-reactivity with mouse AChR was shown but not with torpedo or porcine AChR at the same concentration. Purified IgG injected intravenously provoked an obvious muscular weakness. Inhibition experiments on myasthenia gravis sera binding have demonstrated that monoclonal antibody specificity is directed against an antigenic determinant shared by human and mouse AChR.  相似文献   

17.
Photoaffinity labeling is a powerful tool for the characterization of the molecular basis of ligand binding to acceptor molecules, which provides important insights for mapping the bimolecular interfaces. The autoimmune disease myasthenia gravis is caused by autoantibodies against the acetylcholine receptor (AChR). The majority of the anti-AChR antibodies bind to the "main immunogenic region" (MIR) of the AChR. To identify the contact points between the complementarity determining regions of the anti-MIR antibodies that recognize the MIR contact sites of the AChR, we present here three photoreactive dodecapeptide MIR analogues containing the photolabel p-benzoyl-L-phenylalanine (Bpa) moiety, either in position 1 or 11. The structure of the produced 12-mers was analyzed using two-dimensional (1)H-NMR spectroscopy, whereas their binding to anti-MIR monoclonal antibodies (mAbs) was determined by immunochemical assays. In all cases the modifications resulted in conservation of the beta-turn conformation of the N-terminus, which has been proved essential for antibody recognition and increased anti-MIR binding relative to the MIR decapeptide.  相似文献   

18.
The human class I alcohol dehydrogenase isozyme beta 2 beta 2 was used as the antigen to raise monoclonal antibodies. Altogether seven lines of hybridomas secreting monoclonal antibodies were obtained. None of the antibodies was isozyme specific and all of them exhibited a similar affinity against all isozymes of the human class I ADH. Five out of the seven monoclonal antibodies had no effect on beta 2 beta 2 activity. Antibody G3 acted as a non-competitive inhibitor with a KI of 3 micrograms/ml at pH 7.5. Increasing pH was effective in reducing the level of inhibition. On the other hand, antibody 1D4 exhibited a pH-dependent activation of ADH activity. In the presence of this antibody, the pH optimum of beta 2 beta 2 was shifted from 9 to 8.5 and total activity was increased by 70% at this optimal pH. Kinetic analysis indicates that 1D4 probably acts as a non-competitive activator and may exert its action by interacting with the coenzyme binding site.  相似文献   

19.
Myasthenia gravis (MG) is mainly engendered by autoantibodies directed against acetylcholine receptors (AChRs) located in the postsynaptic muscle cell membrane. Previously, we isolated an RNA aptamer with 2'-amino pyrimidines using in vitro selection techniques that acted as a decoy against both a rat monoclonal antibody called mAb198, which recognizes the main immunogenic region on the AChR, and patient autoantibodies with MG (1). However, low affinity of this RNA to mAb198 relative to that of AChR might limit potential of the RNA as an inhibitor of the autoantibodies. To improve decoy activity of the RNA aptamer against autoantibodies, here we employed in vitro selection methods with RNA libraries containing extra random nucleotides extended to the 3' end of previously selected RNA sequences. RNAs isolated in this study showed significant increases in the binding affinities to mAb198 as well as bioactivities protecting AChRs on human cells from both mAb198 and patient autoantibodies, compared with the previous RNA aptamers. These results have important implications for the development of antigen-specific modulation of autoimmune diseases including MG.  相似文献   

20.
Antigen and antibody from glomerular immune complex deposits in rabbits with experimental bovine serum albumin-(BSA) induced chronic serum sickness (CSS) were quantitated in elutes from kidneys in which a portion of the antigen and antibody had been radiolabeled. The largest quantities of 125I BSA eluted with 1 M roprionic acid at pH 2.7 (86%) and 0.1 M borate buffer at pH 11.25 (80%). However, these buffers yielded less functional anti-BSA antibody than 0.02 M citrate buffer at pH 3.2 (344 mug/g kidney). Citrate buffer-eluted anti-BSA antibody was reactive in immunodiffusion, immunofluorescence, and radiolabeled BSA binding test systems, but complement fixation was impaired relative to chaotropic ion-eluted antibody. It was found that up to 75% of the eluted antibody was lost to further study by recombination with eluted BSA. This could be prevented by fractionation of the dissociated eluate before neutralization. IgG fractionated eluates were successfully fluorescein conjugated or radiolabeled for use as reagents. Elution of cryostat sections of CSS kidney was also studied; BSA, IgG, and complement (C3) eluted in parallel, and sub-microgram quantities of anti-BSA antibody were recovered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号