首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study I describe the ultrastructural distribution of myosin in cortical and subcortical areas of antibody-labelled, quick-frozen fibroblasts. In many cells myosin was present in small variably spaced and sized (0.23-0.39 micron long), nonaligned patches, while in other cells much larger periodically spaced patches of more uniform length (0.27 micron) were found. In all regions of the cytoskeleton myosin was found, primarily on linear bundles of actin filaments running parallel to the cell's long axis. Myosin was absent from single actin filaments, actin filaments perpendicular to actin bundles aligned with the cell's long axis, and actin filaments, such as geodome vertices and parts of the cortex, which had a complex interwoven appearance. These data indicate that in motile non-muscle cells myosin exerts force only in a unidirectional manner. Recognisable myosin filaments were never observed even in cells incubated either in N-ethylmaleimide or sodium azide. The presence of myosin in, and almost to the very edge of, the cortex suggests that the cellular control of actomyosin based movement is direct and over short-range distances. Large numbers of small cross-linking filaments were found in association with cortical and subcortical actin. Their relationship to myosin and overall actin geometry is discussed.  相似文献   

2.
The turnover of myosin and actin in both muscle and non-muscle cells in culture was investigated. By the double-label criterion, myosin and actin were coordinately synthesized and degraded in replicating, mononucleated fibroblasts, chondrocytes, BUdR-suppressed myogenic cells, and in post-mitotic, multinucleated myotubes. Myosin and actin were among the most stable proteins in each cell type. In single label ‘pulse-chase’ experiments, the half-lives of myosin and actin in all replicating, mononucleated cells were 2.5–3 days; in myotubes, however, they were approx. 6 days. Myosin and actin labelled in replicating presumptive myoblasts and chased until the cells ceased replicating and fused into multinucleated myotubes retained the degradation rate of 3 days; this differed from Jhe rate of 6 days shown for myosin and actin newly-synthesized in post-mitotic myotubes. The type of myosin synthesized in the mother presumptive myoblast, then, is transmitted to the postmitotic daughters. This myosin, however, is more rapidly degraded than the definitive myosin that is synthesized in the myotube.  相似文献   

3.
Myosin Va, an actin-based motor protein that transports intracellular cargos, can bundle actin in vitro. Whether myosin Va regulates cellular actin dynamics or cell migration remains unclear. To address this, we compared Chinese Hamster Ovary (CHO) cells that stably express GFP fused to either full length mouse myosin Va (GFP-M5) or heavy meromyosin Va (GFP-M5Delta). GFP-M5 and GFP-M5Delta co-immunoprecipitate with CHO myosin Va and serve as overexpression of wild-type and dominant negative mutants of myosin Va. Compared to non-expressing control cells, GFP-M5-overexpressing cells have peripheral endocytic vesicles, spread slowly after plating, as well as produce robust interior actin stress fibers, myosin II bundles, and focal adhesions. However, these cells display normal cell migration and lamellipodial dynamics. In contrast, GFP-M5Delta-expressing cells have perinuclear endocytic vesicles, produce thin interior actin and myosin bundles and contain no interior focal adhesions. In addition, these cells spread rapidly, migrate slowly and display reduced lamellipodial dynamics. Similarly, neurite outgrowth is compromised in neurons cultured from transgenic Drosophila that express M5Delta-dsRed and in neurons cultured from Drosophila that produce a tailless version of endogenous myosin V. Together, these data suggest that myosin Va overexpression induces actin bundles in vivo whereas the tailless version fails to bundle actin and disrupts cell motility.  相似文献   

4.
Mouse trophoblast is an invasive tissue that undergoes conversion to a noninvasive state during normal development. We examined the distribution of actin and myosin during trophoblast development in vitro with double label fluorescence microscopy using fluoresceinated subfragment-1 of myosin to identify actin and indirect immunofluorescence with rhodamine-conjugated antibody to detect myosin. During the outgrowth stage trophoblast spread as a sheet by active movement of the marginal cells. These cells exhibited different patterns of actin and myosin distribution in connection with lamellar extension and fiber formation. Marginal and submarginal cells were packed with overlapping layers of actin fibers, some of which were organized into a lattice that extended throughout the trophoblast. The cytoskeletal function of the fibers appeared to involve maintenance of the cells in a coherent sheet. Cessation of trophoblast spreading was associated with conversion of the cell sheet into a cell network. Cells stained more densely for actin and myosin and contained distinctive actomyosin condensations in the cortex and the cytoplasm. At the same time there was disorganization and then loss of the actin fiber system. These changes in actin and myosin distribution may be associated with mechanisms that control invasiveness by limiting trophoblast expansion.  相似文献   

5.
The spatial distribution of cytoplasmic actin and myosin in 1. normal locomoting, 2. immobilized, and 3. pinocytosing Amoeba proteus was demonstrated by indirect immunofluorescence microscopy. In orthotactic and polytactic cells fixed during normal locomotion actin is mainly located in a cortical layer delineating the granuloplasm from the peripheral hyaloplasm. In cell areas lacking a hyaloplasmic sheet the actin layer immediately borders the plasma membrane. The amount of actin within the continuous layer seems to increase from the advancing front to the middle cell region and to decrease again toward the uroid. The distribution of myosin is largely congruent to the display of actin, with the exception that the myosin-based fluorescence of the cortical layer gradually increases from the front to the uroid. A considerable amount of actin and myosin is also distributed around the nucleus and the contractile vacuole. In immobilized cells contracted by the external application of 10(-4)M procaine hydrochloride the cortical layer distinctly increases in thickness. In contrast to normal locomoting cells actin and myosin show a uniform distribution within the cell cortex along the entire surface. In pinocytosing cells, up to three cortical layers conspicuously rich in actin are produced during the process of channel formation. One of these layers is located in close proximity to the plasma membrane of the pinocytotic channels and the vacuoles. The immunocytochemical results are discussed with respect to earlier observations on the distribution of actin and myosin in Amoeba proteus as obtained by other methods.  相似文献   

6.
《The Journal of cell biology》1995,131(4):989-1002
The morphogenesis of myosin II structures in active lamella undergoing net protrusion was analyzed by correlative fluorescence and electron microscopy. In rat embryo fibroblasts (REF 52) microinjected with tetramethylrhodamine-myosin II, nascent myosin spots formed close to the active edge during periods of retraction and then elongated into wavy ribbons of uniform width. The spots and ribbons initially behaved as distinct structural entities but subsequently aligned with each other in a sarcomeric-like pattern. Electron microscopy established that the spots and ribbons consisted of bipolar minifilaments associated with each other at their head-containing ends and arranged in a single row in an "open" zig-zag conformation or as a "closed" parallel stack. Ribbons also contacted each other in a nonsarcomeric, network-like arrangement as described previously (Verkhovsky and Borisy, 1993. J. Cell Biol. 123:637-652). Myosin ribbons were particularly pronounced in REF 52 cells, but small ribbons and networks were found also in a range of other mammalian cells. At the edge of the cell, individual spots and open ribbons were associated with relatively disordered actin filaments. Further from the edge, myosin filament alignment increased in parallel with the development of actin bundles. In actin bundles, the actin cross-linking protein, alpha-actinin, was excluded from sites of myosin localization but concentrated in paired sites flanking each myosin ribbon, suggesting that myosin filament association may initiate a pathway for the formation of actin filament bundles. We propose that zig-zag assemblies of myosin II filaments induce the formation of actin bundles by pulling on an actin filament network and that co-alignment of actin and myosin filaments proceeds via folding of myosin II filament assemblies in an accordion-like fashion.  相似文献   

7.
Summary Myosin and actin were localized by indirect immunofluorescence microscopy using specific antibodies prepared in rabbits against highly purified gizzard myosin and actin. A strong fluorescence staining with both antibodies was observed in rat corneal epithelial cells, anterior lens epithelial cells, rod inner segments, and in rat and frog pigment epithelial cells. The immunohistochemical localization of myosin in corneal epithelial cells was further supported by the electrophoretic and immunological identification of smooth muscle type myosin heavy chain in pure corneal epithelial abrasions. Electron-microscopic observations revealed a clear correlation between staining with actin antibodies and the presence of numerous thin cytoplasmic filaments (50–80 Å in diameter). The functional and biochemical nature of 90–110 Å filaments occurring in corneal and lens epithelial cells, as well as the ultrastructural localization of myosin in ocular nonmuscle cells under study remains obscure.  相似文献   

8.
Equatorial organization of myosin II and actin has been recognized as a universal event in cytokinesis of animal cells. Current models for the formation of equatorial cortex favor either directional cortical transport toward the equator or localized de novo assembly. However, this process has never been analyzed directly in dividing mammalian cells at a high resolution. Here we applied total internal reflection fluorescence microscope (TIRF-M), coupled with spatial temporal image correlation spectroscopy (STICS) and a new analytical approach termed temporal differential microscopy (TDM), to image the dynamics of myosin II and actin during the assembly of equatorial cortex. Our results indicated distinct and at least partially independent mechanisms for the early equatorial recruitment of myosin and actin filaments. Cortical myosin showed no detectable directional flow during early cytokinesis. In addition to equatorial assembly, we showed that localized inhibition of disassembly contributed to the formation of the equatorial myosin band. In contrast to myosin, actin filaments underwent a striking flux toward the equator. Myosin motor activity was required for the actin flux, but not for actin concentration in the furrow, suggesting that there was a flux-independent, de novo mechanism for actin recruitment along the equator. Our results indicate that cytokinesis involves signals that regulate both assembly and disassembly activities and argue against mechanisms that are coupled to global cortical movements.  相似文献   

9.
Kinetic adaptation of muscle and non-muscle myosins plays a central role in defining the unique cellular functions of these molecular motor enzymes. The unconventional vertebrate class VII myosin, myosin VIIb, is highly expressed in polarized cells and localizes to highly ordered actin filament bundles such as those found in the microvilli of the intestinal brush border and kidney. We have cloned mouse myosin VIIb from a cDNA library, expressed and purified the catalytic motor domain, and characterized its actin-activated ATPase cycle using quantitative equilibrium and kinetic methods. The myosin VIIb steady-state ATPase activity is slow (approximately 1 s(-1)), activated by very low actin filament concentrations (K(ATPase) approximately 0.7 microm), and limited by ADP release from actomyosin. The slow ADP dissociation rate constant generates a long lifetime of the strong binding actomyosin.ADP states. ADP and actin binding is uncoupled, which enables myosin VIIb to remain strongly bound to actin and ADP at very low actin concentrations. In the presence of 2 mm ATP and 2 microm actin, the duty ratio of myosin VIIb is approximately 0.8. The enzymatic properties of actomyosin VIIb are suited for generating and maintaining tension and favor a role for myosin VIIb in anchoring membrane surface receptors to the actin cytoskeleton. Given the high conservation of vertebrate class VII myosins, deafness phenotypes arising from disruption of normal myosin VIIa function are likely to reflect a loss of tension in the stereocilia of inner ear hair cells.  相似文献   

10.
We documented the activity of cultured cells on time-lapse videotapes and then stained these identified cells with antibodies to actin and myosin. This experimental approach enabled us to directly correlate cellular activity with the distribution of cytoplasmic actin and myosin. When trypsinized HeLa cells spread onto a glass surface, the cortical cytoplasm was the most actively motile and random, bleb-like extensions (0.5-4.0 micrometer wide, 2-5 micrometer long) occurred over the entire surface until the cells started to spread. During spreading, ruffling membranes were found at the cell perimeter. The actin staining was found alone in the surface blebs and ruffles and together with myosin staining in the cortical cytoplasm at the bases of the blebs and ruffles. In well-spread, stationary HeLa cells most of the actin and myosin was found in stress fibers but there was also diffuse antiactin fluorescence in areas of motile cytoplasm such as leading lamellae and ruffling membranes. Similarly, all 22 of the rapidly translocating embryonic chick cells had only diffuse actin staining. Between these extremes were slow-moving HeLa cells, which had combinations of diffuse and fibrous antiactin and antimyosin staining. These results suggest that large actomyosin filament bundles are associated with nonmotile cytoplasm and that actively motile cytoplasm has a more diffuse distribution of these proteins.  相似文献   

11.
The formation of lamellipodia in migrating cells involves dynamic processes that occur in a cyclic manner as the leading edge of a cell slowly advances. We used video-enhanced contrast microscopy (VEC) to monitor the motile behavior of cells to classify protrusions into the temporal stages of initial and established protrusions (Fisher et al.: Cell Motility and the Cytoskeleton 11:235-247, 1988), and to monitor the fixation of cells. Multiple parameter fluorescence imaging methods (DeBiasio et al.: Journal of Cell Biology 105:1613-1622, 1987; Waggoner et al.: Methods in Cell Biology, Vol. 30, Part B, pp. 449-478, 1989) were then used to determine and to map accurately the distributions of actin, myosin and microtubules in specific types of protrusions. Initial protrusions exhibited no substructure as evidenced by VEC and actin was diffusely arranged, while myosin and microtubules were absent. Newly established protrusions contained diffuse actin as well as actin in microspikes. There was a delay in the appearance of myosin into established protrusions relative to the presence of actin. Microtubules were found in established protrusions after myosin was detected, and they were oriented parallel to the direction of migration. Actin and myosin were also localized in fibers transverse to the direction of migration at the base of initial and established protrusions. Image analysis was used to quantify the orientation of actin fibers relative to the leading edge of motile cells. The combined use of VEC, multiple parameter immunofluorescence, and image analysis should have a major impact on defining complex relationships within cells.  相似文献   

12.
Cell spreading is correlated with changes in important cell functions including DNA synthesis, motility, and differentiation. Spreading is accompanied by a complex reorganization of the cytoskeleton that can be related to changes in cell stiffness. While cytoskeletal organization and the resulting cell stiffness have been studied in motile cells such as fibroblasts, less is known of these events in nonmigratory, epithelial cells. Hence, we examined the relationship between cell function, spreading, and stiffness, as measured by atomic force microscopy. Cell stiffness increased with spreading on a high density of fibronectin (1000 ng/cm(2)) but remained low in cells that stayed rounded on a low fibronectin density (1 ng/cm(2)). Disrupting actin or myosin had the same effect of inhibiting spreading, but had different effects on stiffness. Disrupting f-actin assembly lowered both stiffness and spreading, while inhibiting myosin light chain kinase inhibited spreading but increased cell stiffness. However, disrupting either actin or myosin inhibited DNA synthesis. These results demonstrate the relationship between cell stiffness and spreading in hepatocytes. They specifically show that normal actin and myosin function is required for hepatocyte spreading and DNA synthesis and demonstrate opposing effects on cell stiffness upon disruption of actin and myosin.  相似文献   

13.
Chaffey N  Barlow P 《Planta》2002,214(4):526-536
The immunolocalisation of unconventional myosin VIII ('myosin') in the cells of the secondary vascular tissues of angiosperm (Populus tremula L. x P. tremuloides Michx. and Aesculus hippocastanum L.) and gymnosperm (Pinus pinea L.) trees is described for the first time and related to other cytoskeletal elements, as well as to callose. Both myosin and callose are located at the cell plate in dividing cambial cells, whereas actin microfilaments are found alongside the cell plate; actin and tubulin are both associated with the phragmoplast. Myosin and callose also localise to the plasmodesmata-rich pit fields in the walls of living cells, which are particularly abundant within the common walls between ray cells and between ray cells and axial parenchyma cells in the phloem and xylem. In those xylem ray cells that contact developing vessel elements and tracheids, myosin, tubulin, actin and callose are localised at the periphery of developing contact and cross-field pits; the respective antibodies also highlight the bordered pits between vessels and between tracheids. The aperture of the bordered pits, whose diameter diminishes as the over-arching border of these pits develops, also houses myosin, actin and tubulin. Myosin, actin and callose are also found together around the sieve pores of sieve elements and sieve cells. We suggest that an acto-myosin contractile system (a 'plant muscle') is present at the cell plate, the sieve pores, the plasmodesmata within the walls of long-lived parenchyma cells, and at the apertures of bordered pits during their development.  相似文献   

14.
Sensory neurons from 8- to 11-day chick embryos were cultured on polyornithine-treated coverslips, fixed with glutaraldehyde, and stained for immunofluorescent localization of actin. Actin was distributed in a fibrous form in the growth cones, extending into filopodia and lamellipodial expansions of the growth cone margin. Often, these actin fibers were located at sites of linear adhesions to the glass substratum, as viewed by interference reflection optics. Our antisera to myosin did not recognize myosin in glutaraldehyde-fixed cells, and paraformaldehyde, which preserves the antigenicity of myosin, did not fix embryonic neurons well. Thus, myosin was localized in NGF-stimulated PC12 cells, whose morphology is better preserved by paraformaldehyde. Within the growth cones of PC12 neurites, actin and myosin are distributed into fibrous arrays which resemble the actin fibers seen in the growth cones of sensory neurons. Thus, actomyosin-like contractile forces may be exerted in neurite growth cones. These forces may act in concert with cell-substratum adhesive bonds to move the growth cone across the substratum or move organelles within the growth cone.  相似文献   

15.
The adherens junction (AJ) densely associated with actin filaments is a major cell-cell adhesion structure. To understand the importance of actin filament association in AJ formation, we first analyzed punctate AJs in NRK fibroblasts where one actin cable binds to one AJ structure unit. The accumulation of AJ components such as the cadherin/catenin complex and vinculin, as well as the formation of AJ-associated actin cables depended on Rho activity. Inhibitors for the Rho target, ROCK, which regulates myosin II activity, and for myosin II ATPase prevented the accumulation of AJ components, indicating that myosin II activity is more directly involved than Rho activity. Depletion of myosin II by RNAi showed similar results. The inhibition of myosin II activity in polarized epithelial MTD-1A cells affected the accumulation of vinculin to circumferential AJ (zonula adherens). Furthermore, correct zonula occludens (tight junction) formation along the apicobasal axis that requires cadherin activity was also impaired. Although MDCK cells which are often used as typical epithelial cells do not have a typical zonula adherens, punctate AJs formed dependently on myosin II activity by inducing wound closure in a MDCK cell sheet. These findings suggest that tension generated by actomyosin is essential for correct AJ assembly.  相似文献   

16.
Myosin X is a member of the diverse myosin superfamily that is ubiquitously expressed in various mammalian tissues. Although its association with actin in cells has been shown, little is known about its biochemical and mechanoenzymatic function at the molecular level. We expressed bovine myosin X containing the entire head, neck, and coiled-coil domain and purified bovine myosin X in Sf9 cells. The Mg(2+)-ATPase activity of myosin X was significantly activated by actin with low K(ATP). The actin-activated ATPase activity was reduced at Ca(2+) concentrations above pCa 5 in which 1 mol of calmodulin light chain dissociates from the heavy chain. Myosin X translocates F-actin filaments with the velocity of 0.3 microm/s with the direction toward the barbed end. The actin translocating activity was inhibited at concentrations of Ca(2+) at pCa 6 in which no calmodulin dissociation takes place, suggesting that the calmodulin dissociation is not required for the inhibition of the motility. Unlike class V myosin, which shows a high affinity for F-actin in the presence of ATP, the K(actin) of the myosin X ATPase was much higher than that of myosin V. Consistently nearly all actin dissociated from myosin X in the presence of ATP. ADP did not significantly inhibit the actin-activated ATPase activity of myosin X, suggesting that the ADP release step is not rate-limiting. These results suggest that myosin X is a nonprocessive motor. Consistently myosin X failed to support the actin translocation at low density in an in vitro motility assay where myosin V, a processive motor, supports the actin filament movement.  相似文献   

17.
Actin and the light chains of myosin were labeled with fluorescent dyes and injected into interphase PtK2 cells in order to study the changes in distribution of actin and myosin that occurred when the injected cells subsequently entered mitosis and divided. The first changes occurred when stress fibers in prophase cells began to disassemble. During this process, which began in the center of the cell, individual fibers shortened, and in a few fibers, adjacent bands of fluorescent myosin could be seen to move closer together. In most cells, stress fiber disassembly was complete by metaphase, resulting in a diffuse distribution of the fluorescent proteins throughout the cytoplasm with the greatest concentration present in the mitotic spindle. The first evidence of actin and myosin concentration in a cleavage ring occurred at late anaphase, just before furrowing could be detected. Initially, the intensity of fluorescence and the width of the fluorescent ring increased as the ring constricted. In cells with asymmetrically positioned mitotic spindles, both protein concentration and furrowing were first evident in the cortical regions closest to the equator of the mitotic spindle. As cytokinesis progressed in such asymmetrically dividing cells, fluorescent actin and myosin appeared at the opposite side of the cell just before furrowing activity could be seen there. At the end of cytokinesis, myosin and actin were concentrated beneath the membrane of the midbody and subsequently became organized in two rings at either end of the midbody.  相似文献   

18.
Biochemical and ultrastructural studies on isolated nuclear compartments have previously shown actin and myosin to be constituents of interphase nuclei. In the present work, immunocytochemistry, in conjunction with confocal microscopy and ultrastructural immunogold techniques, shows that interphase nuclei of intact dorsal root ganglion neurons and of PC12 cells contain actin and myosin. Nuclear actin was observed to be distributed throughout the nucleoplasm occurring as distinct aggregates. Frequently, prominent actin aggregates were associated with the nucleolar periphery, often near nucleolar satellites. Ultrastructurally, actin was observed to be associated with linear, electrondense structures, putatively identified as chromatin fibers, extending from nucleoli. Use of three antibodies against subclasses of α-actin isoforms revealed that nuclear actin is more closely related to α-sarcomeric actin than to α-smooth muscle actin. Those aggregates associated with the nucleolus were found to be in the polymerized F-actin form, in a small fraction of neurons, as assessed by FITC-phalloidin. A myosin-like antigen was also observed to occur as intranuclear aggregates. Quantitative assays of the distribution of actin and myosin aggregates by nearest neighbour analysis indicated a distribution characterized as uniform and failed to reveal statistically significant associations between any set of aggregates, The evidence presented herein indicates that actin and myosin are constituent proteins of interphase nuclei in situ of both normal mammalian and transformed mammalian cells.  相似文献   

19.
In migrating fibroblasts, rearward movement of the nucleus orients the centrosome toward the leading edge. Nuclear movement results from coupling rearward-moving, dorsal actin cables to the nucleus by linear arrays of nesprin-2G and SUN2, termed transmembrane actin-associated nuclear (TAN) lines. A-type lamins anchor TAN lines, prompting us to test whether emerin, a nuclear membrane protein that interacts with lamins and TAN line proteins, contributes to nuclear movement. In fibroblasts depleted of emerin, nuclei moved nondirectionally or completely failed to move. Consistent with these nuclear movement defects, dorsal actin cable flow was nondirectional in cells lacking emerin. TAN lines formed normally in cells lacking emerin and were coordinated with the erratic nuclear movements, although in 20% of the cases, TAN lines slipped over immobile nuclei. Myosin II drives actin flow, and depletion of myosin IIB, but not myosin IIA, showed similar nondirectional nuclear movement and actin flow as in emerin-depleted cells. Myosin IIB specifically coimmunoprecipitated with emerin, and emerin depletion prevented myosin IIB localization near nuclei. These results show that emerin functions with myosin IIB to polarize actin flow and nuclear movement in fibroblasts, suggesting a novel function for the nuclear envelope in organizing directional actin flow and cytoplasmic polarity.  相似文献   

20.
P19 embryonal carcinoma cells are multipotential stem cells that differentiate into striated muscle as well as some other cell types when aggregated and exposed to dimethyl sulfoxide (DMSO). Immunofluorescence experiments using monospecific antibodies indicated that the majority of muscle cells were mononucleate and contained four myosin isoforms normally found in cardiac muscle; atrial and ventricular myosin heavy chains, ventricular myosin light chain 1, and atrial myosin light chain 2. Northern blot analysis of RNA isolated from differentiating cultures indicated that cardiac actin and skeletal actin mRNAs were expressed at similar levels and with identical kinetics during the differentiation of P19-derived myocytes. These results demonstrate that most of the P19-derived myocytes are of the cardiac type and suggest that they closely resemble the cells of the early embryonic myocardium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号