首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We have initiated a study to identify host proteins which interact with the regulatory region of the human polyomavirus JC (JCV), which is associated with the demyelinating disease, progressive multifocal leukoencephalopathy. We examined the interaction of nuclear proteins prepared from different cell lines with the JCV regulatory region by DNA binding gel retardation assays. Binding was detected with nuclear extracts prepared from human fetal glial cells, glioma cells, and HeLa cells. Little or no binding was detected with nuclear extracts prepared from human embryonic kidney cells. Competitive binding assays suggest that the nuclear factor(s) which interacted with the JCV regulatory region was different from those which interacted with the regulatory region of the closely related polyomavirus SV40. We found three areas in the JCV regulatory region protected from DNase I digestion: site A, located just upstream from the TATA sequence in the first 98-base pair (bp) repeat; site B, located upstream from the TATA sequence in the second 98-bp repeat; and site C, located just following the second 98-bp repeat. There were some differences in the ability of the nuclear factor(s) from the two brain cell lines and HeLa cells to completely protect the nucleotides within the footprint region. The results from the DNase I protective studies and competitive DNA binding studies with specific oligonucleotides, suggest that nuclear factor-1 or a nuclear factor-1-like factor is interacting with all three sites in the JCV regulatory region. In addition, the results suggest that the nuclear factor which interacts with the JCV regulatory region from human brain cell lines is different from the factor found in HeLa cells.  相似文献   

4.
5.
Retrovirus preintegration complexes (PIC) purified from virus-infected cells are competent for efficient concerted integration of the linear viral DNA ends by integrase (IN) into target DNA (full-site integration). In this report, we have shown that the assembled complexes (intasomes) formed in vitro with linear 3.6-kbp DNA donors possessing 3'-OH-recessed attachment (att) site sequences and avian myeloblastosis virus IN (4 nm) were as competent for full-site integration as isolated retrovirus PIC. The att sites on DNA with 3'-OH-recessed ends were protected by IN in assembled intasomes from DNase I digestion up to approximately 20 bp from the terminus. Several DNA donors containing either normal blunt-ended att sites or different end mutations did not allow assembly of complexes that exhibit the approximately 20-bp DNase I footprint at 14 degrees C. At 50 and 100 mm NaCl, the approximately 20-bp DNase I footprints were produced with wild type (wt) U3 and gain-of-function att site donors for full-site integration as previously observed at 320 mm NaCl. Although the wt U5 att site donors were fully competent for full-site integration at 37 degrees C, the approximately 20-bp DNase I footprint was not observed under a variety of assembly conditions including low NaCl concentrations at 14 degrees C. Under suboptimal assembly conditions for intasomes using U3 att DNA, DNase I probing demonstrated an enhanced cleavage site 9 bp from the end of U3 suggesting that a transient structural intasome intermediate was identified. Using a single nucleotide change at position 7 from the end and a series of small size deletions of wt U3 att site sequences, we determined that sequences upstream of the 11th nucleotide position were not required by IN to produce the approximately 20-bp DNase I footprint and full-site integration. The results suggest the structural organization of IN at the att sites in reconstituted intasomes was similar to that observed in PIC.  相似文献   

6.
7.
8.
9.
10.
11.
12.
Abstract A 1.5-kb XbaI-SacII fragment containing the upstream region of the Trichoderma reesei cellobiohydrolase I gene ( cbh1 ) has been sequenced. The 1.5-kb fragment contains eight 6-bp sites having an identical or similar sequence to the consensus sequence for binding a catabolite repressor, Aspergillus nidulans CreA. Results of binding assays with the maltose-binding protein: :Cre1(10–131) fusion protein (Cre1 is a catabolite repressor of T. reesei ) and the cbhI upstream region revealed that a 504-bp XbaI-NspV fragment (nucleotide position − 1496 to − 993) bearing three 6-bp sites, Al, A2, and A3, and a 356-bp NspV-MunI fragment (nucleotide position −994 to −639) bearing three 6-bp sites, B1, B2, and B3, were shifted in the electrophoretic mobility shift assay. DNase I footprinting experiments showed that the 6-bp sites A2, B1, B2, and B3 were protected from DNase I digestion.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号