首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The monoamine transporter of chromaffin granule membrane has two distinct high-affinity binding sites for tetrabenazine and reserpine, which can be assayed by [3H]dihydrotetrabenazine and [3H]reserpine binding, respectively. The functional molecular mass of the components bearing these sites has been investigated by the radiation inactivation technique. The decline of [3H]dihydrotetrabenazine binding activity with increasing radiation doses followed a single exponential, from which a functional molecular mass of 68 kDa was derived for tetrabenazine binding sites. [3H]Reserpine binding activity declined in a more complex way; however, under conditions where high-affinity reserpine binding sites were specifically assayed, the decline was also exponential, corresponding to a functional molecular mass of 37 kDa for these sites. The figures obtained for high-affinity tetrabenazine and reserpine binding sites are consistent with previous values obtained by photoaffinity of tetrabenazine and serotonin binding sites, respectively. It is thus concluded that the monoamine transporter has an oligomeric structure. By the radiation inactivation technique, cytochrome b561 and dopamine beta-hydroxylase have functional molecular masses of 25 and 123 kDa, respectively. The latter value might be attributed to the dimeric form of the enzyme.  相似文献   

2.
The amine transporter from bovine chromaffin granules has been purified in a functional state. Two isoforms with different pI values have been separated and shown to be active. One with an unusually acidic pI (approximately 3.5) has been shown to be a glycoprotein with an apparent Mr of 80,000. The purified polypeptide catalyzes transport of serotonin upon reconstitution with an apparent Km of 2 microM and a Vmax of 140 nmol/mg/min, 150-200-fold higher than the one determined in the native system. Transport is inhibited by reserpine and tetrabenazine, ligands which bind to two distinct sites on the transporter. These findings suggest that the binding sites for both drugs reside on a single polypeptide. The reconstituted purified transporter binds [3H]reserpine with a biphasic kinetic behavior, KD values of 0.3 and 30 nM and Bmax of 310 and 4200 pmol/mg protein, respectively. In addition, binding of [3H]reserpine is accelerated upon imposition of a pH gradient across the proteoliposome. From these findings it is evident that a single polypeptide catalyzes the various functions of the transporter.  相似文献   

3.
The energetics of reserpine binding to the bovine adrenal biogenic amine transporter suggest that H+ ion translocation converts the transporter to a form which binds reserpine essentially irreversibly. Reserpine binding to bovine adrenal chromaffin granule membrane vesicles is accelerated by generation of a transmembrane pH difference (delta pH) (interior acid) or electrical potential (delta psi) (interior positive). Both components of the electrochemical H+ potential (delta mu H+) must be dissipated to block reserpine binding, and generation of either one stimulates the binding rate. Reserpine binding is less dependent than amine transport on the delta pH, suggesting that translocation of fewer H+ ions is required to expose the high-affinity site than are required for net transport. Bound reserpine dissociates very slowly, if at all, from the transporter. Binding is stable to 1% cholate, 1.5% Triton X-100, 1 M SCN-, and 8 M urea, but sodium dodecyl sulfate (0.035%) and high temperatures (100 degrees C) released bound reserpine, indicating that binding is noncovalent. The results raise the possibility that the transporter, by translocating one H+ ion outward down its concentration gradient, is converted to a form that can either transport a neutral substrate molecule inward or occlude reserpine in a dead-end complex.  相似文献   

4.
The monoamine transporter of dopamine (DA), noradrenaline, and 5-hydroxytryptamine synaptic vesicles was assayed in rat and human brain homogenates by in vitro binding of [3H]dihydrotetrabenazine. [3H]Reserpine, a second ligand of the vesicular monoamine transporter, could not be used. [3H]Dihydrotetrabenazine binding in rat brain was stable after 72 h at 22 degrees C postmortem. In major human brain regions, [3H]dihydrotetrabenazine binding was specific and saturable (KD, 2.7 nM). Displacement constants by substrates or inhibitors of vesicular monoamine uptake, and regional distribution in human brain were similar to those found in rodents. The highest densities of binding sites were observed in caudate nucleus, putamen, and accumbens nucleus. In caudate nucleus and in putamen from normal human subjects, [3H]dihydrotetrabenazine binding and homovanillic acid concentration were significantly or nearly significantly correlated. A weaker correlation was found between [3H]dihydrotetrabenazine binding and DA, in association with a higher variability of DA. [3H]Dihydrotetrabenazine binding in caudate nucleus and in putamen decreased significantly with age, unlike DA and homovanillic acid concentrations. The results establish [3H]dihydrotetrabenazine as a presynaptic monoaminergic ligand of interest for studies on postmortem human brain.  相似文献   

5.
Characterization of the catecholamine transporter in chromaffin granule membranes has been hampered by the lack of a radioligand with high specific activity which binds selectively to the carrier with high affinity. We report here the identification of a high affinity binding site for [3H]reserpine on chromaffin granule membranes isolated from bovine adrenal gland which has the characteristics expected of the catecholamine transporter. [3H]Reserpine bound predominately to a high affinity site with a Kd for [3H]reserpine of 9 nM and a binding site density of 7.8 pmol/mg of protein. Comparison of the characteristics of the high affinity reserpine binding site to the characteristics of catecholamine transport indicated that (a) the Ki and rank order of potency for inhibition of [3H]reserpine binding by various biogenic amines was similar to their Ki for inhibition of catecholamine transport (b) both the inhibition of (-)-[3H]norepinephrine transport and inhibition of [3H]reserpine binding showed similar stereo-specificity, and (c) Kd for binding of reserpine to chromaffin granule membranes was similar to the Ki for reserpine inhibition of catecholamine transport. These results demonstrate that the high affinity binding site for [3H]reserpine on chromaffin granule membranes is associated with the catecholamine transporter.  相似文献   

6.
Reserpine, a competitive inhibitor of catecholamine transport into adrenal medullary chromaffin vesicles, consists of a trimethoxybenzoyl group esterified to an alkaloid ring system. Reserpine inhibits norepinephrine transport with a Ki of approximately 1 nM and binds to chromaffin-vesicle membranes with a KD of about the same value. Methyl reserpate and reserpinediol, derivatives that incorporate the alkaloid ring system, also competitively inhibit norepinephrine transport into chromaffin vesicles with Ki values of 38 +/- 10 nM and 440 +/- 240 nM, respectively. Similar concentrations inhibit [3H]reserpine binding to chromaffin-vesicle membranes. 3,4,5-Trimethoxybenzyl alcohol and 3,4,5-trimethoxybenzoic acid, derivatives of the other part of the reserpine molecule, do not inhibit either norepinephrine transport or [3H]reserpine binding at concentrations up to 100 microM. Moreover, trimethoxybenzyl alcohol does not potentiate the inhibitory action of methyl reserpate. Therefore, the amine binding site of the catecholamine transporter appears to bind the alkaloid ring system of reserpine rather than the trimethoxybenzoyl moiety. The more potent inhibitors are more hydrophobic compounds, suggesting that the reserpine binding site is hydrophobic.  相似文献   

7.
The binding of [3H]dihydrotetrabenazine ([3H]TBZOH), a specific ligand of the reserpine-sensitive monoamine transporter in brain and adrenal medulla storage vesicles, has been measured in cultured sympathetic neurons from newborn rat in relation to their neurotransmitter phenotype. As shown previously, neurons cultured in the absence of muscle-conditioned medium displayed high activities in catecholamine synthesizing enzymes and low levels of choline acetyltransferase, and neurons cultured in conditioned medium displayed the reverse pattern (J. P. Swerts, A. Le Van Thai, A. Vigny, and M. J. Weber, Dev. Biol. 100, 1-11, 1983). The density of [3H]TBZOH binding sites as well as their subcellular distribution were identical in both types of cultures. Two other structures rich in choline acetyltransferase, the electric organ of Torpedo and the ciliary ganglion of the chick embryo did not contain measurable amounts of [3H]TBZOH binding sites, suggesting that the monoamine transporter is not an ubiquitous component of cholinergic synaptic vesicles. These data suggest that the synthesis of the monoamine transporter in sympathetic neurons is not coregulated with the syntheses of the three norpinephrine synthesizing enzymes. It is proposed that the same population of synaptic vesicles can accumulate acetylcholine or catecholamine, depending only upon which neurotransmitter synthesizing enzymes are expressed by sympathetic neurons.  相似文献   

8.
B Gasnier  D Scherman  J P Henry 《Biochemistry》1985,24(5):1239-1244
The monoamine carrier of bovine chromaffin granule membrane catalyzes a H+/neutral amine antiport. Dicyclohexylcarbodiimide (DCCD) inhibits this carrier in a time- and concentration -dependent manner as shown by the following evidence: it inhibits the carrier-mediated pH gradient driven monoamine uptake without collapsing the pH gradient; it affects the binding of the specific inhibitors [2-3H]dihydrotetrabenazine and [3H]reserpine. The DCCD inhibition of the carrier occurs in the same concentration range as that of the ATP-dependent H+ translocase. Saturation isotherms of [2-3H]dihydrotetrabenazine binding indicate that DCCD decreases the number of binding sites without any change of the equilibrium dissociation constant. Kinetic studies of DCCD inactivation indicate that the modification of only one amino acid residue is responsible for the inhibition. Preincubation of the membranes with tetrabenazine protects the carrier against inactivation by DCCD: in this case, [2-3H] dihydrotetrabenazine binding and pH gradient driven monoamine uptake are restored after washing out of DCCD and tetrabenazine. We suggest the existence in the monoamine carrier of a carboxylic acid involved in H+ translocation, similar to those demonstrated not only in F0-F1 ATPases but also in cytochrome c oxidase, mitochondrial cytochrome b-c1 complex, and nucleotide transhydrogenase. Protonation-deprotonation of this group would affect the binding of [2-3H]dihydrotetrabenazine by the carrier.  相似文献   

9.
1. Catecholamines are transported into chromaffin granules via a carrier-mediated, active-transport process which is inhibited by micromolar concentrations of the sulfhydryl reagent, N-ethylmaleimide (NEM). Reserpine is a very potent, competitive inhibitor of the catecholamine transporter and can be used to investigate the characteristics of the catecholamine transporter. 2. The purpose of this study was to determine whether [3H]reserpine binding to the catecholamine transporter present in chromaffin granule membranes isolated from bovine adrenal glands was also inhibited by NEM and, if so, whether this was a direct or an indirect effect of NEM on the catecholamine transporter. 3. Both [3H]norepinephrine transport into and [3H]reserpine binding to the chromaffin granule ghosts isolated from bovine adrenal glands are inhibited by NEM, with IC50 values of 0.63 +/- 0.02 and 2.8 +/- 0.66 microM, respectively. 4. Mg and ATP protected both the [3H]norepinephrine transport into the ghosts and the [3H]reserpine binding to the transporter from inhibition by NEM, shifting the IC50 values to 260 +/- 43 and 120 +/- 29 microM, respectively. 5. NEM inhibition of the catecholamine transport and reserpine binding appears to be due to an action on the proton translocator associated with the Mg ATPase enzyme rather than a direct action on the catecholamine transporter since (a) the concentration of NEM required to inhibit formation of a membrane potential is similar to that required to inhibit [3H]norepinephrine transport into and [3H]reserpine binding to the ghosts and (b) Mg and ATP protected the proton translocation and [3H]norepinephrine transport into the ghosts, and [3H]reserpine binding to the ghosts, from inhibition by NEM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
[3H]Dihydrotetrabenazine bound to a single class of binding sites in bovine striatal synaptic vesicles with an apparent dissociation constant of 3-9 nM. This is comparable to the inhibitory potency of dihydrotetrabenazine in catecholamine transport assays. In contrast to these results, [3H]dihydrotetrabenazine bound to at least two classes of sites in all other subsynaptic fractions investigated. The higher affinity class of sites was comparable in affinity to that of synaptic vesicles, whereas the lower affinity sites exhibited an apparent dissociation constant of 95-400 nM. Higher affinity sites were most abundant in the synaptic vesicle fraction, and little higher affinity binding was observed in mitochondrial and myelin fractions, or in highly purified synaptic plasma membranes. Lower affinity binding was not enriched in any subsynaptic fraction and was the only class of binding sites detected in homogenates of liver and diaphragm. The distribution of the presynaptic vesicle marker synaptophysin corresponded with that of higher affinity but not lower affinity binding. These results are consistent with the expectation that the higher affinity sites are associated primarily with synaptic vesicles and other neuronal entities that are in communication with these organelles.  相似文献   

11.
M F Isambert  J P Henry 《Biochemistry》1985,24(14):3660-3667
An azido derivative of tetrabenazine, a specific inhibitor of the monoamine carrier of chromaffin granule membranes, has been synthesized. In the dark, this compound, 3H-labeled N-(3-isobutyl-9,10-dimethoxy-1,2,3,4,6,7-hexahydro-11bH-benzo [a]quinolizin-2-yl)-4-[(4-azido-2-nitrophenyl)amino]butanamide+ ++ ([3H]TBA), bound reversibly to purified chromaffin granule membranes. Centrifugation through SP-Sephadex columns was used to separate bound and free [3H]TBA. This technique gave low levels of nonspecific binding and allowed recovery of [3H]TBA-membrane complexes. Scatchard analysis of the data indicated one class of sites with an equilibrium dissociation constant KD of 50 nM and a density of sites of 40-50 pmol/mg of protein, consistent with reported densities of reserpine and dihydrotetrabenazine binding sites. Competition experiments showed that TBA and tetrabenazine bound to the same site. Irradiation at 435 nm of [3H]TBA-membrane mixtures induced some irreversible binding of the probe to membranes. After irreversible binding of TBA, the number of dihydrotetrabenazine binding sites was decreased, indicating that the probe was covalently bound to the monoamine carrier. [3H]TBA-membrane complexes isolated by centrifugation through SP-Sephadex columns were irradiated, and their radioactivity was analyzed by electrophoresis on sodium dodecyl sulfate/polyacrylamide gels. A polypeptide with a molecular weight of 70 000 was labeled. This polypeptide was different from dopamine beta-hydroxylase, and it was not adsorbed on concanavalin A-Sepharose. It is proposed that the monoamine carrier of chromaffin granule membrane has an oligomeric structure, involving a 45K subunit [Gabizon, R., Yetinson, T., & Schuldiner, S. (1982) J. Biol. Chem. 257, 15145] and a 70K subunit.  相似文献   

12.
N,N'-Dicyclohexylcarbodiimide (DCC) has been previously shown to inhibit the amine transporter from chromaffin granules [Gasnier, B., Scherman, D., & Henry, J.P. (1985) Biochemistry 24, 3660-3667]. A study of the mechanism of inhibition is presented together with the demonstration of covalent modification of the protein. DCC inhibits binding of R1 (reserpine) and R2 (tetrabenazine) types of ligands to the transporter as well as transport. Ligands of the R2 type, but not those of the R1 type, protect against inhibition of all the reactions by DCC, i.e., accumulation of serotonin, binding if reserpine (R1 ligand), and binding of ketanserine (R2 ligand). The ability of a given R2 ligand to protect the transporter correlates well with its binding constant. Water-soluble carbodiimides, such as 1-ethyl-3-[3-(diethylamino)propyl]carbodiimide (EDC), do not have any effect on the catalytic activity of the transporter. A fluorescent hydrophobic analogue of DCC, N-cyclohexyl-N'-[4-(dimethylamino)-alpha-naphthyl]carbodiimide (NCD-4), inhibits at about the same concentration range as DCC. [14C]DCC labels several polypeptides in the chromaffin granule membranes. Labeling of a polypeptide with an apparent Mr of 80K is inhibited in the presence of R2 ligands. The labeled polypeptide copurifies with the recently identified and isolated transporter [Stern-Bach, Y., Greenberg-Ofrath, N., Flechner, I., & Schuldiner, S. (1990) J. Biol. Chem. 256, 3961-3966].  相似文献   

13.
M Zucker  A Weizman  M Rehavi 《Life sciences》2001,69(19):2311-2317
The present study indicates that human platelets can be used as an accessible peripheral model not only for the plasma membrane serotonin transporter, but also for the vesicular monoamine transporter. The vesicular monoamine transporter (VMAT2) is responsible for the accumulation of monoamines in the synaptic vesicles. VMAT2 differs from the plasma membrane transporters in its capability to recognize serotonin, histamine, norepinephrine and dopamine with almost the same affinity. Dihydrotetrabenazine (TBZOH) is a very potent inhibitor of VMAT2 that binds with high affinity to this transporter. [3H]TBZOH has been used as a ligand to label VMAT2 in human, bovine and rodent brain. In this study we characterized the pharmacodynamic and pharmacokinetic parameters of [3H]TBZOH binding in human platelets as compared to rat brain. The density (Bmax) and affinity (Kd) of [3H]TBZOH specific binding was assessed by Scatchard analysis. Association and dissociation rate constants (k(on), K(off)) were assessed by kinetic binding studies. In this study high-affinity and saturable binding sites for [3H]TBZOH were demonstrated in human platelets. Both the affinity of [3H]TBZOH to its binding site in platelets (Kd = 3.2+/-0.5 nM) and the kinetic rate constants (K(on) = 2.8 x 10(7) M(-1) min(-1); K(off) = 0.099 min(-1)) were similar to that in rat brain (Kd(striatum) = 1.5 nM; Kd(cerebral cortex) = 1.35 nM; K(on) = 2 x 10(7) M(-1) min(-1); K(off) = 0.069 min(-1)). Only the VMAT2 blockers tetrabenazine and reserpine inhibited [3H]TBZOH specific binding.  相似文献   

14.
A mammalian vesicular neurotransmitter transporter has been expressed in the yeast Saccharomyces cerevisiae. The gene encoding the rat vesicular monoamine transporter (rVMAT(1)) was cloned in several expression plasmids. The transporter was expressed at detectable levels only when short sequences using codons favored by S. cerevisiae were fused preceding the start of translation of rVMAT(1). The scarce expression of the wild-type protein was, most likely, due to the fact that part of the N-terminus of the protein is encoded by codons not preferred in S. cerevisiae. Furthermore, low growth temperatures increased rVMAT(1) expression and altered its processing. Whereas at 30 degrees C the protein is not glycosylated, at lower temperatures ( approximately 16 degrees C) half of the expressed transporters undergo core glycosylation. In addition, under these conditions the levels of protein expression significantly increase. Using a functional chimeric protein composed by VMAT and the green fluorescent protein (GFP), it is shown that the punctate pattern of intracellular distribution remains invariable at the different temperatures. Using a similar fusion sequence, the bovine VMAT isoform 2 (bVMAT(2)) was also expressed in yeast. The yeast-expressed bVMAT(2) binds [(3)H]dihydrotetrabenazine ([(3)H]TBZOH) with the same characteristics found in the native protein from bovine chromaffin granules. Dodecyl maltoside-solubilized bVMAT(2) retains the conformation required for [(3)H]TBZOH binding. We exploited the robust binding to follow the transporter during purification assays on a Ni(2+)-chelating column. In this report we describe for the first time the heterologous expression of a neurotransmitter transporter in the yeast S. cerevisiae.  相似文献   

15.
R Suchi  Y Stern-Bach  S Schuldiner 《Biochemistry》1992,31(49):12500-12503
We have characterized the effects of phenylglyoxal and diethyl pyrocarbonate (DEPC) on the catalytic cycle of the amine transporter in chromaffin granule membrane vesicles. Both reagents inhibited transport in a dose-dependent reaction (with IC50 values of 8 and 1 mM, respectively). The inhibition by DEPC was specific for histidyl groups since transport could be restored by treatment with hydroxylamine. Neither phenylglyoxal nor DEPC inhibited binding of either R1- or R2-type ligands, indicating that the inhibition of transport is not due to a direct interaction with either of the known binding sites. Interestingly, however, the acceleration of reserpine binding (an R1 ligand) by a transmembrane H+ gradient is inhibited by both reagents at concentrations identical to those which inhibit transprot. As previously demonstrated, transport of one proton across the transporter is required for this acceleration to take place [Rudnick, G., Steiner-Mordoch, S., Fishkes, H., Stern-Bach, Y., & Schuldiner, S. (1990) Biochemistry 29, 603-608]. Therefore, we suggest that either proton transport or a conformational change induced by proton transport is inhibited by both types of reagents.  相似文献   

16.
H C Fibiger  E G McGeer 《Life sciences》1973,13(11):1565-1571
Recent evidence suggests that dopamine can undergo axoplasmic transport in nigro-neostriatal neurons by binding to amine storage granules. In the present experiments it was demonstrated that reserpine pretreatment (10 mg/kg) 24 hours before stereotaxic injections of 3H-DOPA or 3H-dopamine into the substantia nigra increases the amount of 3H-dopamine transported to the neostriatum by about 300 percent. The activity recovered from the substantia nigra was significantly reduced by reserpine pretreatment however. Stereotaxic injection of 14C-leucine into the substantia nigra indicated that neither fast nor slow axoplasmic transport of protein was influenced by reserpine pretreatment in these same neurons. The increased transport of dopamine appears therefore to be due to a relatively selective action of reserpine. The results suggest that reserpine either (i) increases the binding of dopamine to newly synthesized amine storage granules, (ii) increases the number of newly synthesized amine storage granules, or (iii) accelerates the rate of transport of amine storage granules. In addition, the results support the view that reserpine can increase the membrane permeability of adrenergic neurons to the outward movement of catecholamines.  相似文献   

17.
An iodinated azido derivative of ketanserin, 7-azido-8-[125I]iodoketanserin ( [125I]AZIK), has been used to label the monoamine transporter of bovine chromaffin granule membranes by the technique of photoaffinity labeling. In the dark, this derivative was found to bind reversibly to the membranes, with an equilibrium dissociation constant estimated to be 6 nM at 0 degrees C. As for ketanserin, binding occurred at the tetrabenazine site: (i) [125I]AZIK was displaced efficiently from its binding site by tetrabenazine, ketanserin, and 7-azidoketanserin, whereas serotonin, which is a substrate for the transporter but has a low affinity for tetrabenazine binding site, was a poor displacer; pipamperone and pyrilamine, two antagonists of respectively serotonin S2 and histamine H1 receptors, were inactive. (ii) 7-Azidoketanserin was a competitive inhibitor of [3H]dihydrotetrabenazine binding, and it inhibited the ATP-dependent uptake of serotonin by chromaffin granule ghosts. Irradiation of [125I]AZIK with long-wavelength UV light, followed by electrophoresis on sodium dodecyl sulfate/polyacrylamide gels and autoradiography, revealed irreversible labeling of a membrane component with an apparent molecular weight of 73,000. Tetrabenazine inhibited the labeling of this 73-kDa band in a manner parallel to the binding of [125I]AZIK in the dark. Such a labeling is totally compatible with previous results obtained through photolabeling with a tetrabenazine derivative or by target size analysis. Moreover, preliminary experiments showed that [125I]AZIK can label the tetrabenazine binding sites of various sources including rat striatum, rabbit platelets, human pheochromocytoma, and human adrenal medulla. Therefore, this molecule appears to be an excellent probe to label the monoamine transporter of different amine storage vesicles even without purification.  相似文献   

18.
Tetrabenazine (TBZ) and reserpine are two inhibitors of the catecholamine uptake system of the chromaffin granule membrane. They are structural analogs of the substrates dopamine and serotonin and they inhibit the monoamine transporter, which catalyzes a H+/neutral amine antiport. [3H]Dihydrotetrabenazine ([3H]TBZOH) is bound by chromaffin granule membranes on one class of site (T sites, KD = 3 nM); [3H]reserpine is bound on T sites and a second class of site (R1 sites, KD = 0.7 nM). The two sites are involved in monoamine translocation. The substrates displace the ligands with different efficiency: noradrenaline (Km = 10 microM) displaces reserpine efficiently (EC50 = 30 microM), but TBZOH poorly (EC50 = 2000 microM); m-iodobenzylguanidine, which has recently been shown to be a substrate of the monoamine uptake system (Km = 5 microM), displaces TBZOH efficiently (EC50 = 25 microM), but reserpine inefficiently (EC50 = 300 microM). Since both substrates are translocated by the same transporter, this result confirms the existence of two sites with different properties. T sites are characterized by a linear relationship between the reciprocal of the dissociation constants of various drugs displacing [3H]TBZOH and their partition coefficient in octanol/H2O mixtures. This relationship, which indicates a hydrophobic environment of T sites, does not exist for R1 sites. T sites have been identified by covalent labeling with a derivative of TBZ coupled to an arylazido group. The labeled sites are borne by a 65,000 dalton protein. The kinetics of reserpine binding are accelerated in the presence of ATP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
BACKGROUND/AIM: platelets possess tightly regulated systems for serotonin (5-HT) transport. This study analysed whether the 5-HT transport mediated by the plasma-membrane transporter SERT is regulated by its Tyr-phosphorylation. METHODS: 5-HT transport was determined by filtration techniques, while immunoblotting procedures were adopted for detecting the Tyr-phosphorylation of SERT in human platelet fractions. RESULTS: 5-HT accumulation in platelets pre-treated with reserpine, which prevents the neurotransmitter transport into the dense granules, decreased upon cellular exposure to PP2 and SU6656, two structurally unrelated inhibitors of Src-kinases. By contrast, the protein Tyr-phosphatase inhibitor pervanadate increased the 5-HT accumulation. Anti-SERT immunostaining of the platelet fractions showed a major band displaying an apparent molecular mass of 50 kappaDa, indicating that, during the analytical procedure, SERT underwent proteolysis, which was counteracted by addition of 4 M urea in the cellular disrupting medium. The Tyr-phosphorylation degree of SERT immunoprecipitated from membrane extracts decreased by platelet treatment with SU6656 or PP2, and enhanced upon pervanadate treatment. The anti-SERT immunoprecipitates displayed anti-Src immunostaining and in vitro kinase activity towards a Src-specific peptide-substrate. Platelet treatment with PP2 or SU6656 also caused a decrease in the imipramine binding to platelets. It was concluded that the Src-mediated SERT Tyr-phosphorylation regulates the 5-HT transport by affecting the neurotransmitter binding sites.  相似文献   

20.
The role of proton binding sites in the vesicular acetylcholine transporter was investigated by characterization of the pH dependence for the binding of [3H]vesamicol [(-)-trans-2-(4-phenylpiperidino)cyclohexanol] to Torpedo synaptic vesicles. A single proton binds to a site with pKa 7.1 +/- 0.1, which is characteristic of histidine, to competitively inhibit vesamicol binding. The histidine-selective reagent diethylpyrocarbonate causes time-dependent inhibition of [3H]vesamicol binding with a rate constant only about 20-fold lower than for reaction with free histidine. Because its pH titration has a simple, ideal shape, this residue probably controls all pH effects in the transporter between pH 6-8. Inhibition of [3H]vesamicol binding by diethylpyrocarbonate was slowed by vesamicol but not acetylcholine, which binds to a separate site. The data suggest that a critical histidine with a pKa of 7.1 is unhindered when reacting with diethylpyrocarbonate. A conformational model for the histidine is proposed to explain why acetylcholine competes with protons but not with diethylpyrocarbonate. A conserved histidine in transmembrane helix VIII possibly is the histidine detected here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号