首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Squid giant axons injected with either aequorin or arsenazo III and bathed in 3 mM Ca (Na) seawater were transferred to 3 mM Ca (K) seawater and the response of the aequorin light or the change in the absorbance of arsenazo III was followed. These experimental conditions were chosen because they measure the change in the rate of Na/Ca exchange in introducing Ca into the axon upon depolarization; [Ca]o is too low to effect a channel-based system of Ca entry. This procedure was applied to axons treated with a variety of compounds that have been implicated as inhibitors of Na/Ca exchange. The result obtained was that the substances tested could be placed in three groups. (a) Substances that were without effect on Ca entry effected by Na/Ca exchange were: D600 at 10-100 microM, nitrendipine at 1-5 microM, Ba2+ and Mg2+ at concentrations of 10-50 mM, lidocaine at 0.1-10 mM, cyanide at 2 mM, adriamycin at a concentration of 3 microM, chloradenosine at 35 microM, 2,4-diaminopyridine at 1 mM, Cs+ at 45-90 mM, and tetrodotoxin at 10(-7). (b) Substances that had a significant inhibitory effect on Na/Ca exchange were: Mn2+, Cd2+, and La3+ at 1-50 mM, and quinidine at 50 microM. (c) There were also blocking agents and biochemical inhibitors whose action appeared to be the inhibition of nonmitochondrial Ca buffering in axoplasm rather than an inhibition of Na/Ca exchange. These were the general anesthetic l-octanol at 0.1 mM and 1 mM orthovanadate plus apyrase.  相似文献   

2.
The "late" Ca channel in squid axons   总被引:6,自引:3,他引:3       下载免费PDF全文
Squid giant axons were injected with aequorin and then treated with seawater containing 50 mM Ca and 100-465 mM K+. Measurements of light production suggested a phasic entry of Ca as well as an enhanced steady-state aequorin glow. After a test K+ depolarization, the aequorin-injected axon was stimulated for 30 min in Li seawater that was Ca-free, a procedure known to reduce [Na]i to about one-half the normal concentration. Reapplication of the elevated K+ test solution now showed that the Ca entry was virtually abolished by this stimulation in Li. A subsequent stimulation of the axon in Na seawater for 30 min resulted in recovery of the response to depolarization by high K+ noted in a normal fresh axon. In axons first tested for a high K+ response and then stimulated in Na seawater for 30 min (where [Na]i increases approximately 30%), there was approximately eight fold enhancement in this response to a test polarization. Axons depolarized with 465 mM K seawater in the absence of external Ca for several minutes were still capable of producing a large phasic entry of Ca when [Ca]0 was made 50 mM, which suggests that it is Ca entry itself rather than membrane depolarization that produced inactivation. Responses to stimulation at 60 pulses/s in Na seawater containing 50 mM Ca are at best only 5% of those measured with high K solutions. The response to repetitive stimulation is not measurable if [Ca]o is made 1 mM, whereas the response to steady depolarization is scarcely affected.  相似文献   

3.
Squid giant axons were injected with aequorin or arsenazo III and impaled with a Ca-sensing electrode. The light output of aequorin or the spectrophotometer output when measuring arsenazo was compared with the voltage output of the electrode when the squid axon was depolarized with high-K solutions, when the seawater was made Na-free, or when the axon was tetanized for several minutes. The results from these treatments were that the optical response rose (as much as 50-fold) with all treatments known to increase Ca entry, while the electrode remained unaffected by these treatments. If axons previously subjected to Ca load are treated with electron-transport poisons such as CN, it is known that [Ca]i rises after a time necessary to deplete ATP stores. In such axons one expects a rise of [Ca]i in axoplasm which does not necessarily have to be uniform although the source of such Ca is the mitochondria and these are uniformly distributed in axoplasm. Under conditions of CN application, the optical signals from aequorin or arsenazo and Ca electrode output do rise together when [Ca]i is high, but there is a region of [Ca]i concentration where aequorin light output or arsenazo absorbance rises while electrode output does not. Axons not loaded with Ca but injected with apyrase and vanadate have mitochondria that still retain some Ca and this can be released by CN in a truly uniform manner. The results show that such a release (which is small) can be readily measured with aequorin, but again the Ca electrode is insensitive to such [Ca]i change.  相似文献   

4.
Squid giant axons were injected with aequorin or arsenazo III and impaled with a Ca-sensing electrode. The light output of aequorin or the spectrophotometer output when measuring arsenazo was compared with the voltage output of the electrode when the squid axon was depolarized with high-K solutions, when the seawater was made Na-free, or when the axon was tetanized for several minutes. The results from these treatments were that the optical response rose (as much as 50-fold) with all treatments known to increase Ca entry, while the electrode remained unaffected by these treatments. If axons previously subjected to Ca load are treated with electron-transport poisons such as CN, it is known that [Ca]i rises after a time necessary to deplete ATP stores. In such axons one expects a rise of [Ca]i in axoplasm which does not necessarily have to be uniform although the source of such Ca is the mitochondria and these are uniformly distributed in axoplasm. Under conditions of CN application, the optical signals from aequorin or arsenazo and Ca electrode output do rise together when [Ca]i is high, but there is a region of [Ca]i concentration where aequorin light output or arsenazo absorbance rises while electrode output does not. Axons not loaded with Ca but injected with apyrase and vanadate have mitochondria that still retain some Ca and this can be released by CN in a truly uniform manner. The results show that such a release (which is small) can be readily measured with aequorin, but again the Ca electrode is insensitive to such [Ca]i change.  相似文献   

5.
Aequorin was microinjected into squid giant axons, the axons were stimulated, and the change in light emission was followed. This response was compared with that found when the axon, in addition to being microinjected with aequorin, is also injected with the dye phenol red. Large concentrations of phenol red injected into axons result in a high probability that photons emitted by aequorin, when it reacts with Ca in the core of the axoplasm, will be absorbed before they escape from the axon; photons produced by the aequorin reaction at the periphery of the axoplasm are much less likely to be absorbed. This technique thus favors observing changes in Cai taking place in the periphery of the axon. Stimulation in 50 mM Ca seawater of an aequorin-phenol red-injected axon at 180 s-1 for 1 min produces a scarcely detectable change in Cai; the addition of 2 mM cyanide (CN) to the seawater produces an easily measureable increase in Cai, suggesting that mitochondrial buffering in the periphery is substantial. Making the pH of the axoplasm of a normal axon alkaline with 30 mM NH4+ -50 mM Ca seawater, reduces the resting glow of the axon but results in an even more rapid increase in Cai with stimulation. In a phenol red-injected axon, this treatment results in a measureable response to stimulation in the absence of CN.  相似文献   

6.
The level of intracellular Ca in squid axons (both ionized and total Ca) was studied as a function of the experimental variables [Na]i, [Na]o, pHi, cyanide, and depolarization. Ionized Ca was measured by following the light emission of aequorin while total Ca was measured by the atomic absorption analysis of samples of axoplasm. Aequorin glow is known to be increased either by the application of Nao-free solutions or by depolarization produced by external solutions containing greater than normal K concentrations. The present results show that if [Na]i is low, the depolarization that is brought about by solutions with elevated [K] leads to a resting light emission that is decreased rather than increased, as is the case when [Na]i is high. In axons where [Na]i is varied, a comparison of the increments in light emission produced by the application first of Na-free and then of high-K solutions shows that they have an identical dependence on [Na]i, with a half-activation of Ca entry produced by an [Na]i of 25-30 mM. Changes in pHi affect the aequorin signal produced by depolarization, with acidification reducing and alkanization increasing the response. Cyanide did not greatly affect the size of the signal resulting from either Nao removal or that from depolarization.  相似文献   

7.
The control of ionized calcium in squid axons   总被引:9,自引:6,他引:3       下载免费PDF全文
Measurements of the Ca content, [Ca](T), of freshly isolated squid axons show a value of 60 μmol/kg axoplasm. Axons in 3 mM Ca(Na) seawater show little change in Ca content over 4 h, while axons in 3 mM Ca(Na) seawater show little change in Ca content over 4 h, while axons in 10 mM Ca(Na) seawater show gains of 18 μmol/Ca/kgxh. In 10 Ca (Choline) seawater the gain is 2,400 μmol/kgxh. Using aequorin confined to a dialysis capillary in the center of an axon, one finds that [Ca](i) is in a steady state with 3 Ca (Na) seawater, and that both 10 Ca (Na) and 3 Ca (choline) seawater cause increases in [Ca](i). In 3 Ca (Na) seawater-3 Ca (choline) seawater mixtures, 180 mM [Na](0) (40 perecent Na) is as effective as 450 mM [Na](0) (100 percent Na) in maintaining a normal [Ca](1); lower [Na] causes an increase in [Ca](i). If axons are injected with the ATP-splitting enzyme apyrase, the resulting [Ca](1) is not loading with high [Ca](0) or low [Na](0) solutions. Depolarization of an axon with 100 mM K (Na) seawater leads to an increase in the steady-state level of [Ca](1) that is reversed upon returning the axon to normal seawater. Freshly isolated axons treated with either CN or FCCP to inhibit mitochondrial Ca buffering can still maintain a normal [Ca](i) in 1 Ca (Na) seawater.  相似文献   

8.
Simultaneous measurements of electrical activity and light absorbance have been made on nerve cell bodies from Archidoris monteryensis injected with indicator dyes. pH indicators, phenol red and bromocresol purple, and arsenazo III, which under normal conditions is primarily a calcium indicator have been employed. Voltage clamp pulses which induced calcium influx caused an absorbance decrease of the pH dyes indicating an internal acidification. The onset of the pH drop lagged the onset of Ca2+ influx by 200-400 ms, and pH continued to decrease for several seconds after pulse termination which shut off Ca2+ influx. Trains of action potentials also produced an internal pH decrease. Recovery of the pH change required periods greater than 10 min. The magnitude of the pH change was largely unaffected by external pH in the range 6.8-8.4. The voltage dependence of the internal p/ change was similar to the voltage dependence of calcium influx determined by arsenazo III, and removal of calcium from the bathing saline eliminated the pH signal. In neurons injected with EGTA (1-5 mM), the activity- induced internal Ca2+ changes were reduced or eliminated, but the internal pH drop was increased severalfold in magnitude. After the injection of EGTA, voltage clamp pulses produced a decrease in arsenazo III absorbance instead of the normal increase. Under these conditions the dye was responding primarily to changes in internal pH. Injection of H+ caused a rise in internal free calcium. The pH buffering capacity of the neurons was measured using three different techniques: H+ injection, depressing intrinsic pH changes with a pH buffer, and a method employing the EGTA-calcium reaction. The first two methods gave similar measurements: 4-9 meq/unit pH per liter for pleural ganglion cells and 13-26 meq/unit pH per liter for pedal ganglion cells. The EGTA method gave significantly higher values (20-60 meq/unit pH per liter) and showed no difference between pleural and pedal neurons.  相似文献   

9.
Transient changes in free intracellular Ca2+ concentration were monitored in the presynaptic terminal of the giant synapse of the squid, by means of the Ca2+-sensitive dye arsenazo III. Calibration experiments showed a linear relation between the amount of Ca2+ injected by iontophoresis into the terminal, and the peak size of the arsenazo light absorbance record. A light signal could be detected on tetanic stimulation of the presynaptic axon bathed in sea water containing 45 mM Ca2+. During a 1 s tetanus the light signal rose approximately linearly, even though transmitter release declined rapidly and the light signal subsequently declined with a half-time of 2-6 s. The Ca2+ transient elicited by single nerve impulses was recorded by signal averaging, and showed a time course very much slower than the duration of transmitter release.  相似文献   

10.
The luminescence of aequorin, a useful tool for studying intracellular Ca2+, was recently found to be inhibited by the free EDTA and EGTA that are present in calcium buffers. In the present study we have examined the effect of the free forms of various chelators in the calibration of [Ca2+] with aequorin. Free EDTA and EGTA in low-ionic-strength solutions strongly inhibited the Ca2+-triggered luminescence of aequorin, causing large errors in the calibration of [Ca2+] (approx. 2 pCa units), whereas in solutions containing 150mM-KCl, errors were relatively small (0.2-0.3 pCa units). Citric acid in low-ionic-strength solutions and [(carbamoylmethyl)imino]diacetic acid in high-ionic-strength solutions showed no inhibition and did not cause detectable error in the calibration of [Ca2+], indicating that they are better chelators than EDTA and EGTA for use with aequorin.  相似文献   

11.
Calcium influx in internally dialyzed squid giant axons   总被引:9,自引:4,他引:5       下载免费PDF全文
A method has been developed to measure Ca influx in internally dialyzed squid axons. This was achieved by controlling the dialyzed segment of the axon exposed to the external radioactive medium. The capacity of EGTA to buffer all the Ca entering the fiber was explored by changing the free EGTA at constant [Ca++]i. At a free [EGTA]i greater than 200 microM, the measured resting Ca influx and the expected increment in Ca entry during electrical stimulation were independent of the axoplasmic free [EGTA]. To avoid Ca uptake by the mitochondrial system, cyanide, oligomycin, and FCCP were included in the perfusate. Axons dialyzed with a standard medium containing: [ATP] = 2 mM, [Ca++]i = 0.06 microM, [Ca++]o = 10 mM, [Na+]i = 70 mM, and [Na+]o = 465 mM, gave a mean Ca influx of 0.14 +/- 0.012 pmol.cm-2.s-1 (n = 12. Removal of ATP drops the Ca influx to 0.085 +/- 0.007 pmol.cm-2.s-1 (n = 12). Ca influx increased to 0.35 pmol.cm-2,s-1 when Nao was removed. The increment was completely abolished by removing Nai+ and (or) ATP from the dialysis medium. At nominal zero [Ca++]i, no Nai-dependent Ca influx was observed. In the presence of ATP and Nai [Ca++]i activates the Ca influx along a sigmoid curve without saturation up to 1 microM [Ca++]i. Removal of Nai+ always reduced the Ca influx to a value similar to that observed in the absence of [Ca++]i (0.087 +/- 0.008 pmol.cm-2.s-1; n = 11). Under the above standard conditions, 50-60% of the total Ca influx was found to be insensitive to Nai+, Cai++, and ATP, sensitive to membrane potential, and partially inhibited by external Co++.  相似文献   

12.
Squid giant axons were injected with aequorin and tetraethylammonium and were impaled with hydrogen ion sensitive, current and voltage electrodes. A newly designed horizontal microinjector was used to introduce the aequorin. It also served, simultaneously, as the current and voltage electrode for voltage clamping and as the reference for ion-sensitive microelectrode measurements. The axons were usually bathed in a solution containing 150 mM each of Na+, K+, and some inert cation, at either physiological or zero bath Ca2+ concentration [( Ca2+]o), and had ionic currents pharmacologically blocked. Voltage clamp pulses were repeatedly delivered to the extent necessary to induce a change in the aequorin light emission, a measure of axoplasmic ionized Ca2+ level, [( Ca2+]i). Alternatively, membrane potential was steadily held at values that represented deviations from the resting membrane potential observed at 150 mM [K+]o (i.e. approximately -15 mV). In the absence of [Ca2+]o a significant steady depolarization brought about by current flow increased [Ca2+]i (and acidified the axoplasm). Changes in internal hydrogen activity, [H+]i, induced by current flow from the internal Pt wire limited the extent to which valid measurements of [Ca2+]i could be made. However, there are effects on [Ca2+]i that can be ascribed to membrane potential. Thus, in the absence of [Ca2+]o, hyperpolarization can reduce [Ca2+]i, implying that a Ca2+ efflux mechanism is enhanced. It is also observed that [Ca2+]i is increased by depolarization. These results are consistent with the operation of an electrogenic mechanism that exchanges Na+ for Ca2+ in squid giant axon.  相似文献   

13.
Calcium entry in squid axons during voltage clamp pulses   总被引:1,自引:0,他引:1  
Squid giant axons were injected with aequorin and tetraethylammonium and were impaled with sodium ion sensitive, current and voltage electrodes. The axons were usually bathed in a solution of varying Ca2+ concentration ([Ca2+]o) containing 150mM each of Na+, K+ and an inert cation such as Li+, Tris or N-methylglucamine and had ionic currents pharmacologically blocked. Voltage clamp pulses were repeatedly delivered to the extent necessary to induce a change in the aequorin light emission, a measure of axoplasmic Ca2+ level, [Ca2+]i. The effect of membrane voltage on [Ca2+]i was found to depend on the concentration of internal Na+ ([Na+]i). Voltage clamp hyperpolarizing pulses were found to cause a reduction of [Ca2+]i. For depolarizing pulses a relationship between [Ca2+]i gain and [Na+]i indicates that Ca2+ entry is sigmoid with a half maximal response at 22 mM Na+. This Ca2+ entry is a steep function of [Na+]i suggesting that 4 Na+ ions are required to promote the influx of 1 Ca2+. There was little change in Ca2+ entry with depolarizing pulses when [Ca2+]o is varied from 1 to 10mM, while at 50mM [Ca2+]o calcium entry clearly increases suggesting an alternate pathway from that of Na+/Ca2+ exchange. This entry of Ca2+ at high [Ca2+]o, however, was not blocked by Cs+o. The results obtained lend further support to the notion that Na+/Ca2+ exchange in squid giant axon is sensitive to membrane voltage no matter whether this is applied as a constant change in membrane potential or as an intermittent one.  相似文献   

14.
The permeabilization-resealing technique [Al-Nasser & Crompton, Biochem. J. (1986) 239, 19-29] has been applied to the entrapment of arsenazo III in the matrix compartment of rat liver mitochondria. The addition of 10 mM-arsenazo III to mitochondria permeabilized with Ca2+ partially restores the inner-membrane potential (delta psi) and leads to the recovery of 3.9 nmol of arsenazo III/mg of protein in the matrix when the mitochondria are washed three times. The recovery of entrapped arsenazo III is increased 2-fold by 4 mM-Mg2+, which also promotes repolarization. ATP with or without Mg2+ decreased arsenazo III recovery. Under all conditions, less arsenazo III than [14C]sucrose is entrapped, in particular in the presence of ATP. The amount of arsenazo III entrapped is proportional to the concentration of arsenazo III used as resealant, and is equally distributed between heavy and light mitochondria. Arsenazo III-loaded permeabilized and resealed (PR) mitochondria develop delta psi values of 141 +/- 3 mV. PR mitochondria retain arsenazo III and [14C]sucrose for more than 2 h at 0 degrees C. At 25 degrees C, and in the presence of Ruthenium Red, PR mitochondria lose arsenazo III and [14C]sucrose at equal rates, but Ca2+ efflux is more rapid; this indicates that Ca2+ is released by an Na+-independent carrier in addition to permeabilization. The Na+/Ca2+ carrier of PR mitochondria is partially (60%) inhibited by extramitochondrial free Ca2+ stabilized with Ca2+ buffers; maximal inhibition is attained with 2 microM free Ca2+. A similar inhibition occurs in normal mitochondria with 3.5 nmol of matrix Ca2+/mg of protein, but the inhibition is decreased by increased matrix Ca2+. The data suggest the presence of Ca2+ regulatory sites on the Na+/Ca2+ carrier that change the affinity for matrix free Ca2+.  相似文献   

15.
1. The effect of K+, Na+, Mg2+ and pH upon the rate of aequorin utilization has been investigated in the presence of Ca2+. 2. The aequorin light emission in a medium simulating the in vivo cationic conditions for barnacle muscle fibres indicates that two Ca2+ are apparently involved in this process for free calcium concentrations higher than approx. 10(-5) M. However, for free calcium concentrations lower than 10(-6) M, the intensity of light emitted by aequorin shows a steeper dependency upon [Ca2+] than the square low relationship, indicating that a third Ca2+ should be involved in the process of aequorin light emission, as it has been previously predicted (Moisescu, D.G., Ashley, C.C. and Campbell, A.K. (1975) Biochim. Biophys. Acta. 396, 133-140). 3. The inhibitory effect of physiologically occurring cations upon the aequorin light emission can be explained by the cooperative action of two cations, competing with Ca2+ for the reactive sites on aequorin. 4. At a given concentration, Na2+ was found to have a stronger inhibitory effect upon the aequoring light emission than K+. 5. The experiments indicate a strong interaction between Na+ and K+ in this inhibitory process, since for a given total concentration of monovalent cations, a mixture containing both Na+ and K+ has a larger inhibitory effect on the aequorin light response than solutions containing either Na+ or K+ alone. 6. All other interactions between K+, Na+, H+ and Mg2+ appear to be weak. 7. The reaction schemes used for the explanation of these and other published results on aequorin (Moisescu, D.G., Ashley, C.C. and Campbell, A.K. (1975) Biochim. Biophys, Acta 396, 133-140 and Blinks, J.R. (1973) Eur. J. Cardiol. 1, 135-142) are described, and the 'absolute' binding constants of all physiologically occurring cations for aequorin have been determined. 8. Based on these parameters one can make accurate quantitative predictions for the aequoring light response under a variety of ionic conditions, and this suggests that it is possible to determine absolute free calcium concentrations providing that the ionic composition of the solutions is known, and that the relative rate of aequorin utilization is higher than 0.005.  相似文献   

16.
In isotonic buffer, IgE receptor-mediated exocytosis from rat basophilic leukemia cells is dependent on extracellular Ca2+, with half-maximal degranulation requiring 0.4 mM Ca2+. No significant exocytosis occurs in the absence of extracellular Ca2+. This absolute requirement for Ca2+ is eliminated by suspending the cells in a hypotonic buffer containing 60 to 80 mM K+; Na+ cannot substitute for K+. Optimal Ca2(+)-independent exocytosis occurs in a buffer containing 20 mM dipotassium Pipes, pH 7.1, 40 mM KCl, 5 mM glucose, 7 mM Mg acetate, 0.1% BSA, and 1 mM EGTA. The cells maintain this Ca2(+)-independent exocytosis even if they are preincubated with 1 mM EGTA for 40 min at 37 degrees C before triggering. Exocytosis is eliminated as isotonicity is approached by adding sucrose, NaCl, KCl, or potassium glutamate to the buffer. Quin 2 fluorescence measurements reveal only a very small rise in [Ca2+]i when the cells are triggered in hypotonic buffer in the absence of extracellular Ca2+ and the presence of 1 mM EGTA. In isotonic buffer, degranulation does not occur under conditions that lead to such a small rise in [Ca2+]i. Sustained IgE receptor-mediated phosphatidylinositol hydrolysis, which is also Ca2+ dependent in isotonic buffer, becomes independent of Ca2+ in the hypotonic buffer. In fact, the rate of phosphatidylinositol hydrolysis in hypotonic buffer in the absence of Ca2+ (and presence of 1 mM EGTA) is twice that observed in isotonic buffer in the presence of 1 mM Ca2+. These data show that in hypotonic buffer, the requirement of IgE receptor-mediated PI hydrolysis for extracellular Ca2+ is eliminated, and degranulation proceeds with a [Ca2+]i of 0.1 microM, the baseline level of [Ca2+]i found in resting cells. These results are consistent with the hypothesis that, in isotonic buffer, the Ca2+ requirement for mast cell degranulation is for the generation of second messengers via hydrolysis of membrane phosphatidylinositols.  相似文献   

17.
The metallochrome calcium indicators arsenazo III and antipyrylazo III have been introduced individually into cut single frog skeletal muscle fibers from which calcium transients have been elicited either by action potential stimulation or by voltage-clamp pulses of up to 50 ms in duration. Calcium transients recorded with both dyes at selected wavelengths have similar characteristics when elicited by action potentials. Longer voltage-clamp pulse stimulation reveals differences in the late phases of the optical signals obtained with the two dyes. The effects of different tension blocking methods on Ca transients were compared experimentally. Internal application of EGTA at concentrations up to 3 mM was demonstrated to be efficient in blocking movement artifacts without affecting Ca transients. Higher EGTA concentrations affect the Ca signals' characteristics. Differential effects of internally applied EGTA on tension development as opposed to calcium transients suggest that diffusion with binding from Ca++ release sites to filament overlap sites may be significant. The spectral characteristics of the absorbance transients recorded with arsenazo III suggest that in situ recorded signals cannot be easily interpreted in terms of Ca concentration changes. A more exhaustic knowledge of the dye chemistry and/or in situ complications in the use of the dye will be necessary.  相似文献   

18.
The Ca2+-sensitive photoprotein aequorin (Mr = 20,000) was introduced into human blood platelets by incubation with 10 mM EGTA and 5 mM ATP. Platelet cytoplasmic and granule contents were retained during the loading procedure, and platelet morphology, aggregation, and secretion in response to agonists were normal after aequorin loading. Luminescence indicated an apparent resting cytoplasmic ionized calcium concentration [( Cai2+]) of 2-4 microM in media containing 1 mM Ca2+ and of 0.8-2 microM in 2-4 mM EGTA. The Ca2+ ionophore A23187 and the enzyme thrombin produced dose-related luminescent signals in both Ca2+-containing and EGTA-containing media. Peak [Cai2+] after A23187 or thrombin stimulation of aequorin-loaded platelets was 2-10 microM, while peak [Cai2+] determined using Quin 2 as the [Cai2+] indicator was at least 1 log unit lower. In platelets loaded with both aequorin and Quin 2, the aequorin signal was delayed but not reduced in amplitude. Aequorin loading of Quin 2-loaded cells had no effect on the Quin 2 signal. Ca2+ buffering by Quin 2 (intracellular concentration greater than 1 mM) is also supported by a reciprocal relationship between [Quin 2] and peak [Cai2+] stimulated by A23187 in the presence of EGTA. Parallel experiments with Quin 2 and aequorin may identify inhomogeneous [Cai2+] in platelets and give a more complete picture of platelet Ca2+ homeostasis than either indicator alone.  相似文献   

19.
45Ca and 14C-labeled ethylenediamine-N, N'-tetraacetic acid (EDTA) effluxes were measured in internally dialyzed barnacle muscle fibers. In 45Ca experiments the internal ionized 45Ca was fixed at 0.2 muM with ethyleneglycolbis-(beta-aminoethylether)-N, N'-tetraacetic acid(EGTA). The 45Ca efflux was found to increase with internal CaEGTA from 0.05 pmol/cm2.s(CaEGTA equal to 0.02 mM) to 5.0 pmol/cm2.s(CaEGTAequal to 9.6 mM). To determine whether or not most of this increase in efflux was due to the exit of undissociated CaEGTA, comparable experiments were performed with Ca-[14-C]EDTA. Over the same range of internal calcium as studied in the 45Ca experiments, the Ca-[14-C]EDTA efflux was no more than 12% of the 45Ca efflux. We conclude that the exit of undissociated 45Ca cannot account for most of the 45Ca efflux nor can it account for the dependence of 45Ca efflux on internal CaEGTA. The experiments also demonstrated the existence of an endogenous pool of calcium, of 0.43 mmol/kg (about half the total calcium), which remained unexchanged during dialysis.  相似文献   

20.
Summary Giant axons from the marine annelidMyxicola infundibulum were internally dialyzed with solutions containing22Na ions as tracers of Na efflux. In experiments performed in Li-substituted seawater, Na efflux that is dependent on external Ca ion concentration, [Ca2+] o , was measured using dialysis to maintain [Na+] i at 100mm, which enhances the [Ca2+] o -dependent Na efflux component, (i.e., reverse-mode Na/Ca exchange). When dialysis fluid contained EGTA (1mm) to buffer the internal Ca concentration, [Ca2+] i , to desired levels, Na efflux lost its normal sensitivity to external calcium. The inhibition was not simply due to the Ca-chelating action of EGTA to produce insufficient [Ca2+] i to activate Na/Ca exchange. The addition of EGTA inhibited Ca o -dependent Na efflux even when a large enough excess of [Ca2+] i was present to saturate the EGTA and still produce elevated values of [Ca2+] i . Control experiments showed that these high values of [Ca2+] i resulted in normal Na/Ca exchange in the absence of EGTA. It is concluded that the presence of EGTA itself interferes with the manifestation of reverse-mode Na/Ca exchange inMyxicola giant axons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号