首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In a recent study, we reported that the combined average mutation rate of 10 di-, 6 tri-, and 8 tetranucleotide repeats in Drosophila melanogaster was 6.3 x 10(-6) mutations per locus per generation, a rate substantially below that of microsatellite repeat units in mammals studied to date (range = 10(-2)-10(-5) per locus per generation). To obtain a more precise estimate of mutation rate for dinucleotide repeat motifs alone, we assayed 39 new dinucleotide repeat microsatellite loci in the mutation accumulation lines from our earlier study. Our estimate of mutation rate for a total of 49 dinucleotide repeats is 9.3 x 10(-6) per locus per generation, only slightly higher than the estimate from our earlier study. We also estimated the relative difference in microsatellite mutation rate among di-, tri-, and tetranucleotide repeats in the genome of D. melanogaster using a method based on population variation, and we found that tri- and tetranucleotide repeats mutate at rates 6.4 and 8.4 times slower than that of dinucleotide repeats, respectively. The slower mutation rates of tri- and tetranucleotide repeats appear to be associated with a relatively short repeat unit length of these repeat motifs in the genome of D. melanogaster. A positive correlation between repeat unit length and allelic variation suggests that mutation rate increases as the repeat unit lengths of microsatellites increase.   相似文献   

2.
We have previously used NotI as the marker enzyme (recognizing GCGGCCGC) in a genome scanning approach for detection of mutations induced in mouse spermatogonia and estimated the mutation induction rate as about 0.7 x 10(-5) per locus per Gy. To see whether different parts of the genome have different sensitivities for mutation induction, we used AflII (recognizing CTTAAG) as the marker enzyme in the present study. After the screening of 1,120 spots in each mouse offspring, we found five mutations among 92,655 spots from the unirradiated paternal genome, five mutations among 218,411 spots from the unirradiated maternal genome, and 13 mutations among 92,789 spots from 5 Gy-exposed paternal genome. Among the 23 mutations, 11 involved mouse satellite DNA sequences (AT-rich), and the remaining 12 mutations also involved AT-rich but non-satellite sequences. Both types of sequences were found as multiple, similar-sequence blocks in the genome. Counting each member of cluster mutations separately and excluding results on one hypermutable spot, the spontaneous mutation rates were estimated as 3.2 (+/- 1.9) x 10(-5) and 2.3 (+/- 1.0) x 10(-5) per locus per generation in the male and female genomes, respectively, and the mutation induction rate as 1.1 (+/- 1.2) x 10(-5) per locus per Gy. The induction rate would be reduced to 0.9 x 10(-5) per locus per Gy if satellite sequence mutations were excluded from this analysis. The results indicate that mutation induction rates do not largely differ between GC-rich and AT-rich regions: 1 x 10(-5) per locus per Gy or less, which is close to 1.08 x 10(-5) per locus per Gy, the current estimate for the mean mutation induction rate in mice.  相似文献   

3.
A subclone of a human diploid lymphoblastoid cell line, TK-6, with consistently high cloning efficiency has been used to estimate the rates of somatic mutations on the basis of protein variation detected by two-dimensional polyacrylamide gel electrophoresis. A panel of 267 polypeptide spots per gel was screened, representing the products of approximately 263 unselected loci. The rate of human somatic mutation in vitro was estimated by measuring the proportion of protein variants among cell clones isolated at various times during continuous exponential growth of a TK-6 cell population. Three mutants of spontaneous origin were observed, giving an estimated spontaneous rate of 6 x 10(-8) electrophoretic mutations per allele per cell generation (i.e., 1.2 x 10(-7) per locus per cell generation). Following treatment of cells with N-ethyl-N-nitrosourea, a total of 74 confirmed variants at 54 loci were identified among 1143 clones analyzed (approximately 601,000 allele tests). The induced variants include 65 electromorphs which exhibit altered isoelectric charge and/or apparent molecular weight and nine nullimorphs for each of which a gene product was not detected at its usual location on the gel. The induced frequency for these 65 structural gene mutants is 1.1 x 10(-4) per allele. An excess of structural gene mutations at ten known polymorphic loci and repeat mutations at these and other loci suggest nonrandomness of mutation in human somatic cells. Nullimorphs occurring at three heterozygous loci in TK-6 cells may be caused by genetic processes other than structural gene mutation.  相似文献   

4.
Within recent years, microsatellite have become one of the most powerful genetic markers in biology. For several mammalian species, microsatellite mutation rates have been estimated on the order of 10(- 3)-10(-5). A recent study, however, demonstrated mutation rates in Drosophila melanogaster of at least one order of magnitude lower than those in mammals. To further test this result, we examined mutation rates of different microsatellite loci using a larger sample size. We screened 24 microsatellite loci in 119 D. melanogaster lines maintained for approximately 250 generations and detected 9 microsatellite mutations. The average mutation rate of 6.3 x 10(-6) is identical to the mutation rate from a previous study. Most interestingly, all nine mutations occurred at the same allele of one locus (DROYANETSB). This hypermutable allele has 28 dinucleotide repeats and is among the longest microsatellite reported in D. melanogaster. The allele-specific mutation rate of 3.0 x 10(-4) per generation is within the range of mammalian mutation rates. Future microsatellite analyses will have to account for the dramatic differences in allele-specific mutation rates.   相似文献   

5.
The mutation rate for the Na+/K+ ATPase locus (ouabain resistance, OuaR) in mammalian cells in culture has been reported to be 10-100-fold lower than the mutation rate of other gene loci in culture, such as the hypoxanthine phosphoribosyl transferase (HPRT) locus. Determination of the mutation rate to ouabain resistance is sensitive to culture conditions and the concentration of ouabain used to select mutants. Our improved growth conditions for human cells have permitted absolute cloning efficiencies of 70-90% and population doubling times of 16-17 h with both normal human diploid fibroblasts, KD, and their chemically induced neoplastic derivative, Hut-11A. Ouabain at 10(-7) M was found to be adequate to select for resistant (OuaR) mutants with an absolute recovery efficiency of 54-102%. Under these conditions, the mutation rates to ouabain resistance for human cells were measured and found to be 1-8.5 X 10(-7)/cell/generation for KD cells and 6-13 X 10(-7)/cell/generation for Hut-11A cells. These rates are 5-25 times higher than previously reported for human cells. Improved growth and the use of a lower concentration of ouabain for selection may allow for the increased recovery of OuaR mutants and an improved estimate of the mutation rate at this locus, which is only 2-10-fold less than the mutation rate at the HPRT locus in the same cells.  相似文献   

6.
A per-generation somatic mutation rate for microsatellites was estimated in western redcedar (Thuja plicata, Donn ex D. Don.: Cupressaceae). A total of 80 trees representative of the average size and age of reproductive trees were sampled in four natural populations in southwestern British Columbia. Samples of bulked haploid megagametophytes were collected from two or three positions on each tree, assuming that the collections were far enough apart that the same mutant sector was not sampled twice. All samples were genotyped at eight microsatellite loci. A single mutation corresponding to a stepwise increase in one dinucleotide repeat was detected. The estimated mutation rate for microsatellites was 6.3 x 10(-4) mutations per locus per generation (or 3.1 x 10(-4) per allele per generation), with a 95% confidence interval of 3.0 x 10(-5) to 4.0 x 10(-3) mutations per locus. Somatic mutations can contribute to a greater mutational load in trees, as compared to shorter lived plants, and genotypic mosaics within an individual have important implications for plant defense strategies and plant evolution.  相似文献   

7.
We estimated the rates per base per generation of specific types of mutations, using our direct estimate of the overall mutation rate for hemophilia B and information on the mutations present in the United Kingdom's population as well as those reported year by year in the hemophilia B world database. These rates are as follows: transitions at CpG sites 9.7x10-8, other transitions 7.3x10-9, transversions at CpG sites 5.4x10-9, other transversions 6.9x10-9, and small deletions/insertions causing frameshifts 3.2x10-10. By taking into account the ratio of male to female mutation rates, the above figures were converted into rates appropriate for autosomal DNA-namely, 1.3x10-7, 9.9x10-9, 7.3x10-9, 9.4x10-9, 6.5x10-10, where the latter is the rate for all small deletion/insertion events. Mutation rates were also independently estimated from the sequence divergence observed in randomly chosen sequences from the human and chimpanzee X and Y chromosomes. These estimates were highly compatible with those obtained from hemophilia B and showed higher mutation rates in the male, but they showed no evidence for a significant excess of transitions at CpG sites in the spectrum of Y-sequence divergence relative to that of X-chromosome divergence. Our data suggest an overall mutation rate of 2.14x10-8 per base per generation, or 128 mutations per human zygote. Since the effective target for hemophilia B mutations is only 1.05% of the factor IX gene, the rate of detrimental mutations, per human zygote, suggested by the hemophilia data is approximately 1.3.  相似文献   

8.
In 10,844 parent/child allelic transfers at nine short-tandem-repeat (STR) loci, 23 isolated STR mismatches were observed. The parenthood in each of these cases was highly validated (probability >99.97%). The event was always repeat related, owing to either a single-step mutation (n=22) or a double-step mutation (n=1). The mutation rate was between 0 and 7 x 10(-3) per locus per gamete per generation. No mutations were observed in three of the nine loci. Mutation events in the male germ line were five to six times more frequent than in the female germ line. A positive exponential correlation between the geometric mean of the number of uninterrupted repeats and the mutation rate was observed. Our data demonstrate that mutation rates of different loci can differ by several orders of magnitude and that different alleles at one locus exhibit different mutation rates.  相似文献   

9.
Data on rare and private electrophoretic variants have been used to estimate mutation rates for populations belonging to 55 language groups in Papua New Guinea. Three different methods yield values of 1.42 x 10(-6), 1.40 x 10(-6), and 5.58 x 10(-6)/locus per generation. The estimates for three islands populations off the north coast of New Guinea--Manus, Karkar, and Siassi--are much lower. The variability in mutation rates estimated from rare electrophoretic variants as a function of population size is discussed. The mean mutation rate in Papua New Guinea is less than half the estimates obtained for Australian Aborigines and Amerindians.  相似文献   

10.
Genetic selection assays were developed to measure rates of deletion of one or more (CAG).(CTG) repeats, or an entire repeat tract, in Escherichia coli. In-frame insertions of >or=25 repeats in the chloramphenicol acetyltransferase (CAT) gene of pBR325 resulted in a chloramphenicol-sensitive (Cm(s)) phenotype. When (CAG)25 comprised the leading template strand, deletion of one or more repeats resulted in a chloramphenicol resistant (Cm(r)) phenotype at a rate of 4 x 10(-2) revertants per cell per generation. The mutation rates for plasmids containing (CAG)43 or (CAG)79 decreased significantly. When (CTG)n comprised the leading template strand the Cm(r) mutation rates were 100-1000 lower than for the opposite orientation. As an initial application of this assay, the effects of mutations influencing mismatch repair and recombination were examined. The methyl directed mismatch repair system increased repeat stability only when (CTG)n comprised the leading template strand. Replication errors made with the opposite repeat orientation were apparently not recognized. For the (CAG)n leading strand orientation, mutation rates were reduced as much as 3000-fold in a recA- strain. In a second assay, out-of-frame mutation inserts underwent complete deletion at rates ranging from about 5 x 10(-9) to 1 x 10(-7) per cell per generation. These assays allow careful quantitation of triplet repeat instability in E. coli and provide a way to examine the effects of mutations in replication, repair, and recombination on repeat instability.  相似文献   

11.
Fifty-four independent dexamethasone-resistant clones were isolated from the clonal, glucocorticoid-sensitive human leukemic T-cell line CEM-C7. Resistance to 1 microM dexamethasone was acquired spontaneously at a rate of 2.6 X 10(-5) per cell per generation as determined by fluctuation analysis. After mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), the phenotypic expression time for dexamethasone resistance was determined to be 3 days. Spontaneous acquisition of resistance to 0.1 mM 6-thioguanine appeared to occur at a much slower rate, 1.6 X 10(-6) per cell per generation. However, the expression time after MNNG mutagenesis for this resistant phenotype was greater than 11 days, suggesting that the different rates of acquisition for the two phenotypes measured by fluctuation analysis were the results of the disparate expression times. The mutagens ICR 191 and MNNG were effective in increasing the dexamethasone-resistant fraction of cells in mutagenized cultures; ICR 191 produced a 35.6-fold increase, and MNNG produced an 8.5-fold increase. All the spontaneous dexamethasone-resistant clones contained glucocorticoid receptors, usually less than half of the amount found in the parental clone. They are therefore strikingly different from dexamethasone-resistant clones derived from the mouse cell lines S49 and W7. Dexamethasone-resistant clones isolated after mutagenesis of CEM-C7 contained, on the average, lower concentrations of receptor than did those isolated spontaneously, and one clone contained no detectable receptor. These results are consistent with a mutational origin for dexamethasone resistance in these human cells at a haploid or functionally hemizygous locus. They also suggest that this is a useful system for mutation assay.  相似文献   

12.
Variable-number tandem repeat (VNTR) loci have shown a remarkable ability to discriminate among isolates of the recently emerged clonal pathogen Escherichia coli O157:H7, making them a very useful molecular epidemiological tool. However, little is known about the rates at which these sequences mutate, the factors that affect mutation rates, or the mechanisms by which mutations occur at these loci. Here, we measure mutation rates for 28 VNTR loci and investigate the effects of repeat copy number and mismatch repair on mutation rate using in vitro-generated populations for 10 E. coli O157:H7 strains. We find single-locus rates as high as 7.0 x 10(-4) mutations/generation and a combined 28-locus rate of 6.4 x 10(-4) mutations/generation. We observed single- and multirepeat mutations that were consistent with a slipped-strand mispairing mutation model, as well as a smaller number of large repeat copy number mutations that were consistent with recombination-mediated events. Repeat copy number within an array was strongly correlated with mutation rate both at the most mutable locus, O157-10 (r2= 0.565, P = 0.0196), and across all mutating loci. The combined locus model was significant whether locus O157-10 was included (r2= 0.833, P < 0.0001) or excluded (r2= 0.452, P < 0.0001) from the analysis. Deficient mismatch repair did not affect mutation rate at any of the 28 VNTRs with repeat unit sizes of >5 bp, although a poly(G) homomeric tract was destabilized in the mutS strain. Finally, we describe a general model for VNTR mutations that encompasses insertions and deletions, single- and multiple-repeat mutations, and their relative frequencies based upon our empirical mutation rate data.  相似文献   

13.
Melphalan (MLP), a bifunctional alkylating agent structurally related to the highly mutagenic chemical chlorambucil (CHL), was found to induce high frequencies of specific-locus mutations in postspermatogonial germ cells of the mouse, and to be one of only a few chemicals that is also mutagenic in spermatogonial stem cells. Productivity patterns following MLP exposures resembled those that had been found for CHL. Mutation rates in successive male germ-cell stages were measured at three MLP-exposure levels in a total of 95,375 offspring. While the induced (experimental minus historical-control) mutation rate is relatively low in stem-cell spermatogonia (1.2 x 10(-5) per locus at a weighted-mean exposure of 7.3 mg/kg), it is about 5 times higher in poststem-cell stages overall, and peaks at 26.7 x 10(-5) per locus in early spermatids at a weighted-mean exposure of only 5.7 mg/kg. This "type-2 pattern" of mutation yield (Russell et al., 1990), i.e., peak sensitivity in early spermatids, has heretofore been found for only one other chemical, CHL. Mutation-rate data earlier reported for CHL (Russell et al., 1989) were augmented in the present study for comparison with MLP-induced rates. Because of the greater toxicity of MLP, average exposures used for this chemical were only about one-half of those for CHL. When MLP and CHL mutation rates are extrapolated to equimolar doses, they appear very similar for poststem-cell stages overall. However, in the case of CHL, a somewhat higher proportion of the mutations is induced in early spermatids than in the case of MLP.  相似文献   

14.
A revised indirect estimate of mutation rates in Amerindians   总被引:4,自引:3,他引:1       下载免费PDF全文
We have previously raised the possibility that the mutation rate resulting in rare electrophoretic variants is higher in tribal/tropical-dwelling/nonindustrialized societies than in civilized/temperate-dwelling/industrialized societies. Here, we report the results of examining 11 additional proteins for the occurrence of rare electrophoretic variants in 10 Amerindian tribes, for a total of 8,968 determinations and a total of 17,648 locus tests. When these data are combined with the results of all our previous similar studies of Amerindians, a total of 272,298 polypeptides, the products of 43 different loci, have been examined for the occurrence of rare electrophoretic variants. On the assumption that these variants are maintained by mutation pressure and are essentially neutral in their phenotypic effects, we have calculated by three different approaches that it requires an average mutation rate of 1.3 X 10(-5)/locus per generation to maintain the observed variant frequency. Concurrently, we are reporting elsewhere that a direct estimate of the mutation rate resulting in electromorphs in various studies of civilized industrialized populations is 0.3 X 10(-5)/locus per generation. Although this difference appears to have statistical significance, the nonquantifiable uncertainties to both approaches are such that our enthusiasm for a true difference in mutation rates between the two types of populations has diminished. However, even the lower of these estimates, when corrected for all the types of genetic variation that electrophoresis does not detect, implies total locus and gametic mutation rates well above those which in the past have dominated genetic thinking.  相似文献   

15.
The authors have developed a method to measure the rate of spontaneous mutations taking place in IgH, the gene encoding the immunoglobulin heavy chain. When an amber chain-termination codon mutates to a sense codon, translation of the polypeptide chain will be completed, and mutant cells producing the heavy chain can be detected with a fluorescent labelled antibody. The protocol used is the compartmentalization test which minimizes any effect of selection. In subclones of the pre-B lymphocyte line 18-81, the spontaneous mutation rate in the part of IgH encoding the variable region is somewhat greater than 10(-5) mutations per base pair per generation. This supports the hypothesis that hypermutation is not dependent on cell stimulation by an antigen. In a hybrid between a cell of this line and a myeloma (which represents the terminal stage of the B-cell lineage), the mutation rate was too low to be determined by this test, less than 10(-9). When the same loss to gain procedure system was used with an opal chain-terminating codon in the part of IgH encoding the constant region (C mu), a high rate of reversion by deletion was found. Long (more than one exon) and short (less than one exon) deletions occurred at rates of 1.7 x 10(-5) and 1.4 x 10(-7) per generation, respectively. It is thought that the high rate of deletion is not related to somatic hypermutation but rather to DNA rearrangement during the heavy-chain class switch, which is occurring in these pre-B cell lines. The point mutation rate was too low to be detected above the background of deletion mutants, less than 5 x 10(-8). The immunoglobulin mutator system works weakly, if at all, on two other, nonimmunoglobulin, genes tested: B2m (beta 2 microglobulin) and the gene for ouabain resistance.  相似文献   

16.
This work presents a model describing the rate of recombination between homologous segments of DNA stably integrated into the genome of cultured cells. The model has been applied to rat cell lines carrying the polyomavirus middle T oncogene and a functional origin of viral DNA replication. Introduction of the gene coding for the polyoma large T antigen or the SV40 large T antigen into cells by DNA transfection promotes homologous recombination in the resident viral inserts with rates varying between 0.1 x 10(-3) and 3.7 x 10(-1) per cell generation.  相似文献   

17.
The fate of most human endogenous retroviruses (HERVs) has been to undergo recombinational deletion. This process involves homologous recombination between the flanking long terminal repeats (LTRs) of a full-length element, leaving a relic structure in the genome termed a solo LTR. We examined loci in one family, HERV-K(HML2), and found that the deletion rate decreased markedly with age: the rate among recently integrated loci was almost 200-fold higher than that among loci whose insertion predated the divergence of humans and chimpanzees (8 x 10(-5) and 4 x 10(-7) recombinational deletion events per locus per generation, respectively). One hypothesis for this finding is that increasing mutational divergence between the flanking LTRs reduces the probability of homologous recombination and thus the rate of solo LTR formation. Consistent with this idea, we were able to replicate the observed rates by a simulation in which the probability of recombinational deletion was reduced 10-fold by a single mutation and 100-fold by any additional mutations. We also discuss the evidence for other factors that may influence the relationship between locus age and the rate of deletion, for example, host recombination rates and selection, and highlight the consequences of recombinational deletion for dating recent HERV integrations.  相似文献   

18.
Lang GI  Murray AW 《Genetics》2008,178(1):67-82
Although mutation rates are a key determinant of the rate of evolution they are difficult to measure precisely and global mutations rates (mutations per genome per generation) are often extrapolated from the per-base-pair mutation rate assuming that mutation rate is uniform across the genome. Using budding yeast, we describe an improved method for the accurate calculation of mutation rates based on the fluctuation assay. Our analysis suggests that the per-base-pair mutation rates at two genes differ significantly (3.80x10(-10) at URA3 and 6.44x10(-10) at CAN1) and we propose a definition for the effective target size of genes (the probability that a mutation inactivates the gene) that acknowledges that the mutation rate is nonuniform across the genome.  相似文献   

19.
Somatic cells of whole Syrian hamster fetuses (gestation day 13) were isolated and tested by an in vivo/in vitro mutation assay for spontaneous mutation frequencies using independent 6-thioguanine (6-TG), diphtheria toxin (DT), and ouabain mutation selection systems. Optimum conditions were ascertained. For 6-TG mutants, a total of 21 mutants were found in cells from 24 litters on 1993 plates, for an overall mutant frequency of 1.8 x 10(-7) per viable cell with 12 positive litters. In all, 26 litters were tested using DT; 77 mutants were found in 840 plates, yielding an overall mutant frequency of 2.6 x 10(-7), with 20 positive litters. No correlations or familial effects were found among 23 litters tested for both DT and 6-TG. Of 14 litters which were tested for ouabain mutants, 4 were positive, with a total of 5 mutants found on 988 plates, for an overall mutant frequency of 7.6 x 10(-8). For 14 F344 rat fetuses, the overall 6-TG spontaneous mutation frequency was determined to be 1.6 x 10(-7). From the data, estimates of mutation rates were calculated. For mutation to 6-TG resistance the rate was 8.3 x 10(-8), for mutation to DT resistance the rate was 8.1 x 10(-8) and for ouabain, the spontaneous mutation rate was 5.7 x 10(-8). For F344 rat, the spontaneous mutation rate was 1.1 x 10(-7). Induced mutant frequencies after in utero exposure to 1 mmol/kg N-ethyl-N-nitrosourea (ENU) were 311, 135 and 200 times the spontaneous value for 6-TG, DT and ouabain, respectively, for Syrian hamster fetal cells and 125 times the spontaneous 6-TG value for fetal F344 rat cells. Both spontaneous mutation frequencies and underlying spontaneous mutation rates are low, consistent with the view that fetal cells exercise extremely tight control over DNA fidelity.  相似文献   

20.
To test the hypothesis that the ability to metastasize is determined by multiple point mutations during the expansion of a neoplastic clone, a mathematical model for sequential mutations was derived. Development of the metastatic phenotype was attributed to the mutation of a specific group of genes. The average tumor size was estimated for when a cell should manifest a set number of these mutated genes. In a tumor of 10(9) cells subject to 10(-6) mutations/gene per generation, only one of these genes, on average, should have mutated. To explain the multiplicity of changes associated with the metastatic phenotype, genetic variation at rates greater than 10(-3) variations/gene per generation seems necessary. Possible mechanisms for this variation involve gene amplification, chromosomal aneuploidy, and altered gene regulation rather than point mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号