首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
The complex N-glycan structures on glycoproteins play important roles in cell adhesion and recognition events in metazoan organisms. A critical step in the biosynthetic pathway leading from high mannose to these complex structures includes the transfer of N-acetylglucosamine (GlcNAc) to a mannose residue by the inverting N-acetylglucosaminyltransferase I (GnT-I). The catalytic mechanism of this enzymatic reaction is explored herein using DFT quantum chemical methods. The computational model used to follow the reaction is based on the X-ray crystallographic structure of GnT-I and contains 127 atoms that represent fragments of residues critical for the substrate binding and catalysis. The mechanism of the catalytic reaction was monitored by means of a 2D potential energy map calculated as a function of predefined reaction coordinates at the B3LYP/6-31G** level. This potential energy surface revealed one transition state associated with a reaction pathway following a concerted mechanism. The reaction barrier was estimated, and the structure of the transition state was characterized at the B3LYP/6-311++G**// B3LYP/6-31G** level.  相似文献   

2.
The structure of trypanosomal triosephosphate isomerase (TIM)has been solved at a resolution of 2.1Å in a new crystal form grown at pH 8.8 from PEG6000. In this new crystal form (space group C2, cell dimensions 94.8 Å, 48.3 Å, 131.0 Å, 90.0°, 100.3°, 90.0°), TIM is present in a ligand-free state. The asymmetric unit consists of two TIM subunits. Each of these subunits is part of a dimer which is sitting on a crystallographic twofold axis, such that the crystal packing is formed from two TIM dimers in two distinct environments. The two constituent monomers of a given dimer are, therefore, crystallographically equivalent. In the ligand-free state of TIM in this crystal form, the two types of dimer are very similar in structure, with the flexible loops in the “Open” conformation. For one dimer (termed molecule-1), the flexible loop (loop-6) is involved in crystal contacts. Crystals of this type have been used in soaking experiments with 0.4 M ammonium sulphate (studied at 2.4 Å resolution), and with 40 μM phosphoglycolohydroxamate (studied at 2.5 Å resolution). It is found that transfer to 0.4 M ammonuum sulphate (equal to 80 times the Ki of sulphate for TIM), gives rise to significant sulphate binding at the active site of one dimer (termed molecule-2), and less significant binding at the active site of the other. In neither dimer does sulphate induce a “closed” conformation. In a mother liquor containing 40 μM phosphoglycolohydroxamate (equal to 10 times the Ki of phosphoglycolohydroxamate for TIM), an inhibitor molecule binds at the active site of only that dimer of which the flexible loop is free from crystal contacts (molecule-2). In this dimer, it induces a closed conformation. These three structures are compared and discussed with respect to the mode of binding of ligand in the active site as well as with respect to the conformational changes resulting from ligand binding. © 1993 Wiley-Liss, Inc.  相似文献   

3.
The NADP-dependent glycerol dehydrogenase (EC 1.1.1.72) from Gluconobacter oxydans is a member of family 11 of the aldo-keto reductase (AKR) enzyme superfamily; according to the systematic nomenclature within the AKR superfamily, the term AKR11B4 has been assigned to the enzyme. AKR11B4 is a biotechnologically attractive enzyme because of its broad substrate spectrum, combined with its distinctive regioselectivity and stereoselectivity. These features can be partially rationalized based on a 2-Å crystal structure of apo-AKR11B4, which we describe and interpret here against the functional complex structures of other members of family 11 of the AKR superfamily. The structure of AKR11B4 shows the AKR-typical (β/α)8 TIM-barrel fold, with three loops and the C-terminal tail determining the particular enzymatic properties. In comparison to AKR11B1 (its closest AKR relative), AKR11B4 has a relatively broad binding cleft for the cosubstrate NADP/NADPH. In the crystalline environment, it is completely blocked by the C-terminal segment of a neighboring protomer. The structure reveals a conspicuous tryptophan residue (Trp23) that has to adopt an unconventional and strained side-chain conformation to permit cosubstrate binding. We predict and confirm by site-directed mutagenesis that Trp23 is an accelerator of (co)substrate turnover. Furthermore, we show that, simultaneously, this tryptophan residue is a critical determinant for substrate binding by the enzyme, while enantioselectivity is probably governed by a methionine residue within the C-terminal tail. We present structural reasons for these notions based on ternary complex models of AKR11B4, NADP, and either octanal, d-glyceraldehyde, or l-glyceraldehyde.  相似文献   

4.
A Synechococcus sp. strain PCC 7002 psaAB::cat mutant has been constructed by deletional interposon mutagenesis of the psaA and psaB genes through selection and segregation under low-light conditions. This strain can grow photoheterotrophically with glycerol as carbon source with a doubling time of 25 h at low light intensity (10 E m–2 s–1). No Photosystem I (PS I)-associated chlorophyll fluorescence emission peak was detected in the psaAB::cat mutant. The chlorophyll content of the psaAB::cat mutant was approximately 20% that of the wild-type strain on a per cell basis. In the absence of the PsaA and PsaB proteins, several other PS I proteins do not accumulate to normal levels. Assembly of the peripheral PS I proteins PsaC,PsaD, PsaE, and PsaL is dependent on the presence of the PsaA and PsaB heterodimer core. The precursor form of PsaF may be inserted into the thylakoid membrane but is not processed to its mature form in the absence of PsaA and PsaB. The absence of PS I reaction centers has no apparent effect on Photosystem II (PS II) assembly and activity. Although the mutant exhibited somewhat greater fluorescence emission from phycocyanin, most of the light energy absorbed by phycobilisomes was efficiently transferred to the PS II reaction centers in the absence of the PS I. No light state transition could be detected in the psaAB::cat strain; in the absence of PS I, cells remain in state 1. Development of this relatively light-tolerant strain lacking PS I provides an important new tool for the genetic manipulation of PS I and further demonstrates the utility of Synechococcus sp. PCC 7002 for structural and functional analyses of the PS I reaction center.Abbreviations ATCC American type culture collection - Chl chlorophyll - DCMU 3-(3,4-dichlorophyl)-1,1-dimethylurea - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - HEPES N-[2-hydroxyethyl]piperazine-N-[2-ethanesulfonic acid] - PCC Pasteur culture collection - PS I Photosystem I - PS II Photosystem II - SDS sodium dodecyl sulfate  相似文献   

5.
The structure of the recombinant (-) gamma-lactamase from an Aureobacterium species has been solved at 1.73A resolution in the cubic space group F23 with unit cell parameters a=b=c=240.6A. The trimeric enzyme has an alpha/beta hydrolase fold and closely resembles the cofactor free haloperoxidases. The structure has been solved in complex with a covalently bound ligand originating from the host cell and also in the unligated form. The associated density in the former structure has been interpreted as the two-ring ligand (3aR,7aS)-3a,4,7,7a-tetrahydro-benzo [1,3] dioxol-2-one which forms a tetrahedral complex with OG of the catalytic Ser98. Soaks of these crystals with the industrial substrate gamma-lactam or its structural analogue, norcamphor, result in the displacement of the ligand from the enzyme active site, thereby allowing determination of the unligated structure. The presence of the ligand in the active site protects the enzyme from serine hydrolase inhibitors. Cyclic ethylene carbonate, the first ring of the ligand, was shown to be a substrate of the enzyme.  相似文献   

6.
Previously we reported an antifungal protein specific to Pythium porphyrae, a causative agent of red rot disease afflicting seaweed Porphyra spp. This study was carried out to identify the antifungal mechanism of the antifungal protein to P. porphyrae. When we first examined the effect of an anti- Pythium protein (SAP) on the P. porphyrae cell walls, SAP did not decompose the six structural polysaccharides in Pythium cell walls. However, hyphal growth was significantly inhibited in Pythium cells treated with 50 microg/ml of SAP by MTT assay. Protoplasmic leakage was observed in P. porphyrae hyphae treated with SAP for 1 h, followed by hyphal swelling and disintegration, using SYTOX Green, and SAP permeabilized the membrane of P. porphyrae in a dose-dependent manner. Treating P. porphyrae cells with SAP in the presence of carbonyl cyanide m-chlorophenylhydrazone (CCCP), a membrane-depolarizing agent, significantly reduced the membrane permeability to SYTOX Green. Moreover, a similar effect was observed when the P. porphyrae cells were treated with SAP in the presence of MgCl2. In contrast, identical treatment in the presence of KCl significantly increased the membrane permeability to SYTOX Green. These results suggested that anti- Pythium mechanism of SAP was related to alteration of the membrane permeability in P. porphyrae.  相似文献   

7.
Indoleglycerol phosphate synthase catalyzes the ring closure of an N-alkylated anthranilate to a 3-alkyl indole derivative, a reaction requiring Lewis acid catalysis in vitro. Here, we investigated the enzymatic reaction mechanism through X-ray crystallography of complexes of the hyperthermostable enzyme from Sulfolobus solfataricus with the substrate 1-(o-carboxyphenylamino) 1-deoxyribulose 5-phosphate, a substrate analogue and the product indole-3-glycerol phosphate. The substrate and the substrate analogue are bound to the active site in a similar, extended conformation between the previously identified phosphate binding site and a hydrophobic pocket for the anthranilate moiety. This binding mode is unproductive, because the carbon atoms that are to be joined are too far apart. The indole ring of the bound product resides in a second hydrophobic pocket adjacent to that of the anthranilate moiety of the substrate. Although the hydrophobic moiety of the substrate moves during catalysis from one hydrophobic pocket to the other, the triosephosphate moiety remains rigidly bound to the same set of hydrogen-bonding residues. Simultaneously, the catalytically important residues Lys53, Lys110 and Glu159 maintain favourable distances to the atoms of the ligand undergoing covalent changes. On the basis of these data, the structures of two putative catalytic intermediates were modelled into the active site. This new structural information and the modelling studies provide further insight into the mechanism of enzyme-catalyzed indole synthesis. The charged epsilon-amino group of Lys110 is the general acid, and the carboxylate group of Glu159 is the general base. Lys53 guides the substrate undergoing conformational transitions during catalysis, by forming a salt-bridge to the carboxylate group of its anthranilate moiety.  相似文献   

8.
Monoacylglycerol lipases (MGLs) catalyse the hydrolysis of monoacylglycerol into free fatty acid and glycerol. MGLs have been identified throughout all genera of life and have adopted different substrate specificities depending on their physiological role. In humans, MGL plays an integral part in lipid metabolism affecting energy homeostasis, signalling processes and cancer cell progression. In bacteria, MGLs degrade short-chain monoacylglycerols which are otherwise toxic to the organism. We report the crystal structures of MGL from the bacterium Bacillus sp. H257 (bMGL) in its free form at 1.2 Å and in complex with phenylmethylsulfonyl fluoride at 1.8 Å resolution. In both structures, bMGL adopts an α/β hydrolase fold with a cap in an open conformation. Access to the active site residues, which were unambiguously identified from the protein structure, is facilitated by two different channels. The larger channel constitutes the highly hydrophobic substrate binding pocket with enough room to accommodate monoacylglycerol. The other channel is rather small and resembles the proposed glycerol exit hole in human MGL. Molecular dynamics simulation of bMGL yielded open and closed states of the entrance channel and the glycerol exit hole. Despite differences in the number of residues, secondary structure elements, and low sequence identity in the cap region, this first structure of a bacterial MGL reveals striking structural conservation of the overall cap architecture in comparison with human MGL. Thus it provides insight into the structural conservation of the cap amongst MGLs throughout evolution and provides a framework for rationalising substrate specificities in each organism.  相似文献   

9.
A carbamoylase enzyme was purified from a cell-free extract of Agrobacterium sp. with an overall yield of 81%. It was judged to be homogenous on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, with a subunit molecular weight of 38,000 daltons. Further studies on the native enzyme suggested that the active enzyme was present as a dimer, with a pI of 5.5. It was able to cleave a variety of N-carbamoyl substrates, but was strictly D(−) specific. It was found to have a Km of 0.82 m and a Vmax of 31 U mg−1 for D(−) N-carbamoyl hydroxyphenylglycine in the presence of 10 m dithiothreitol. It showed no metal ion requirements but was inhibited by iodoacetic acid and iodoacetamide, both thiol reagents. The N-terminal amino acid sequence of the enzyme was elucidated.  相似文献   

10.
The first naturally occurring split intein was found in the dnaE gene of Synechocystis sp. PCC6803 and belongs to a subclass of inteins without a penultimate histidine residue. We describe two high-resolution crystal structures, one derived from an excised Ssp DnaE intein and the second from a splicing-deficient precursor protein. The X-ray structures indicate that His147 in the conserved block F activates the side-chain N(delta) atom of the intein C-terminal Asn159, leading to a nucleophilic attack on the peptide bond carbonyl carbon atom at the C-terminal splice site. In this process, Arg73 appears to stabilize the transition state by interacting with the carbonyl oxygen atom of the scissile bond. Arg73 also seems to substitute for the conserved penultimate histidine residue in the formation of an oxyanion hole, as previously identified in other inteins. The finding that the precursor structure contains a zinc ion chelating the highly conserved Cys160 and Asp140 reveals the structural basis of Zn2+-mediated inhibition of protein splicing. Furthermore, it is of interest to observe that the carbonyl carbon atom of Asn159 and N(eta) of Arg73 are 2.6 angstroms apart in the free intein structure and 10.6 angstroms apart in the precursor structure. The orientation change of the aromatic ring of Tyr-1 following the initial acyl shift may be a key switching event contributing to the alignment of Arg73 and the C-terminal scissile bond, and may explain the sequential reaction property of the Ssp DnaE intein.  相似文献   

11.
A novel alkaline mannanase Man26A has been found in the culture of an alkaliphilic Bacillus sp. strain JAMB-750 and the optimal pH for the mannanase activity of the enzyme was around pH 10 (J Biol Macromol 4: 67–74, 2004). This optimal pH is the highest among those of the mannanases reported to date. The gene man26A coding the enzyme was cloned from the genomic DNA of strain JAMB-750 and sequenced. It encodes a protein of 997 amino acids including a signal peptide. The N-terminal half (Glu27–Val486) of the enzyme exhibited moderate similarities to other mannanases belonging to glycoside hydrolase family 26, such as the enzymes from Cellvibrio japonicus (37% identity), Cellulomonas fimi (33% identity), and Bacillus sp. strain AM-001 (28% identity). The C-terminal half was found to contain four domains. The first, second, third, and fourth domains exhibited similarities to the carbohydrate-binding module, the mannan-binding module, the Homo sapiens collagen type IX alpha I chain, and the membrane anchor region of Gram-positive surface proteins, respectively. Its recombinant mannanase was produced extracellularly using Bacillus subtilis as the host. The optimal pH for the mannanase activity of the recombinant enzyme was around pH 10. The enzyme was very resistant to surfactants, for example, SDS up to 2.0% (w/v).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号