首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methyl chloride (CH(3)Cl) and methyl bromide (CH(3)Br) are the primary carriers of natural chlorine and bromine, respectively, to the stratosphere, where they catalyze the destruction of ozone, whereas methyl iodide (CH(3)I) influences aerosol formation and ozone loss in the boundary layer. CH(3)Br is also an agricultural pesticide whose use is regulated by international agreement. Despite the economic and environmental importance of these methyl halides, their natural sources and biological production mechanisms are poorly understood. Besides CH(3)Br fumigation, important sources include oceans, biomass burning, tropical plants, salt marshes, and certain crops and fungi. Here, we demonstrate that the model plant Arabidopsis thaliana produces and emits methyl halides and that the enzyme primarily responsible for the production is encoded by the HARMLESS TO OZONE LAYER (HOL) gene. The encoded protein belongs to a group of methyltransferases capable of catalyzing the S-adenosyl-L-methionine (SAM)-dependent methylation of chloride (Cl(-)), bromide (Br(-)), and iodide (I(-)) to produce methyl halides. In mutant plants with the HOL gene disrupted, methyl halide production is largely eliminated. A phylogenetic analysis with the HOL gene suggests that the ability to produce methyl halides is widespread among vascular plants. This approach provides a genetic basis for understanding and predicting patterns of methyl halide production by plants.  相似文献   

2.
陆地生态系统卤甲烷释放特点及其生态意义   总被引:2,自引:0,他引:2  
大气卤甲烷与平流层臭氧破坏密切相关,并参与光化学反应,还具有一定的.温室效应和污染毒害作用。研究发现:(1)大气CH3Cl和CH3Br存在巨大的未知源,它们的已知源分别仅占已知汇的大约1/2~2/3和60%。而CH3I的源和汇还都不确切;(2)陆地生态系统有可能是最大的卤甲烷自然释放源;(3)生物合成和土壤非生物生产是陆地生态系统卤甲烷生产的两个主要途径;(4)沿海湿地、水稻田、热带森林等陆地生态系统是卤甲烷主要释放源;(5)陆地生态系统卤甲烷的自然释放可能在生物竞争、生物代谢和大气环境污染方面具有重要的生态意义;(6)随着大气卤甲烷人为释放源的控制,其自然释放源的相对重要性将更加突出。提出了当前陆地生态系统卤甲烷释放研究的重点方向以及我国开展相关研究的重要意义。  相似文献   

3.
大气溴甲烷的释放与控制研究   总被引:1,自引:0,他引:1  
大气溴甲烷是破坏大气臭氧层的主要化合物之一,既有人为释放,也有自然释放,目前还存在着巨大的未知源。了解大气溴甲烷释放规律和控制措施,不仅对保护臭氧层具有重要意义,而且是大气溴甲烷含量的历史追溯和未来预测的重要基础,是全球变化研究热点。全面介绍了大气溴甲烷排放的途径和机制以及调控排放通量的主要措施,并分析了近期的优先研究领域。  相似文献   

4.
5.
Marine bacteria that oxidized methyl bromide and methyl chloride were enriched and isolated from seawater samples. Six methyl halide-oxidizing enrichments were established from which 13 isolates that grew on methyl bromide and methyl chloride as sole sources of carbon and energy were isolated and maintained. All isolates belonged to three different clades in the Roseobacter group of the alpha subdivision of the Proteobacteria and were distinct from Leisingera methylohalidivorans, the only other identified marine bacterium that grows on methyl bromide as sole source of carbon and energy. Genes encoding the methyltransferase/corrinoid-binding protein CmuA, which is responsible for the initial step of methyl chloride oxidation in terrestrial methyl halide-oxidizing bacteria, were detected in enrichments and some of the novel marine strains. Gene clusters containing cmuA and other genes implicated in the metabolism of methyl halides were cloned from two of the isolates. Expression of CmuA during growth on methyl halides was demonstrated by analysis of polypeptides expressed during growth on methyl halides by SDS-PAGE and mass spectrometry in two isolates representing two of the three clades. These findings indicate that certain marine methyl halide degrading bacteria from the Roseobacter group contain a methyltransferase pathway for oxidation of methyl bromide that may be similar to that responsible for methyl chloride oxidation in Methylobacterium chloromethanicum. This pathway therefore potentially contributes to cycling of methyl halides in both terrestrial and marine environments.  相似文献   

6.
Most aerobic biodegradation pathways for hydrocarbons involve iron-containing oxygenases. In iron-limited environments, such as the rhizosphere, this may influence the rate of degradation of hydrocarbon pollutants. We investigated the effects of iron limitation on the degradation of toluene by Pseudomonas putida mt2 and the transconjugant rhizosphere bacterium P. putida WCS358(pWWO), both of which contain the pWWO (TOL) plasmid that harbors the genes for toluene degradation. The results of continuous-culture experiments showed that the activity of the upper-pathway toluene monooxygenase decreased but that the activity of benzyl alcohol dehydrogenase was not affected under iron-limited conditions. In contrast, the activities of three meta-pathway (lower-pathway) enzymes were all found to be reduced when iron concentrations were decreased. Additional experiments in which citrate was used as a growth substrate and the pathways were induced with the gratuitous inducer o-xylene showed that expression of the TOL genes increased the iron requirement in both strains. Growth yields were reduced and substrate affinities decreased under iron-limited conditions, suggesting that iron availability can be an important parameter in the oxidative breakdown of hydrocarbons.  相似文献   

7.
Pseudomonas putida (arvilla) mt-2 carries genes for the catabolism of toluene, m-xylene, and p-xylene on a transmissible plasmid, TOL. These compounds are degraded by oxidation of one of the methyl substituents via the corresponding alcohols and aldehydes to benzoate and m- and p-toluates, respectively, which are then further metabolised by the meta pathway, also coded for by the TOL plasmid. The specificities of the benzyl alcohol dehydrogenase and the benzaldehyde dehydrogenase for their three respective substrates are independent of the carbon source used for growth, suggesting that a single set of nonspecific enzymes is responsible for the dissimilation of the breakdown products of toluene and m- and p-xylene. Benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase are coincidently and possible coordinately induced by toluene and the xylenes, and by the corresponding alcohols and aldehydes. They are not induced in cells grown on m-toluate but catechol 2,3-oxygenase can be induced by m-xylene.  相似文献   

8.
The TOL plasmid upper pathway operon encodes enzymes involved in the catabolism of aromatic hydrocarbons such as toluene and xylenes. The regulator of the gene pathway, the XylR protein, exhibits a very broad effector specificity, being able to recognize as effectors not only pathway substrates but also a wide variety of mono- and disubstituted methyl-, ethyl-, and chlorotoluenes, benzyl alcohols, and p-chlorobenzaldehyde. Benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase, two upper pathway enzymes, exhibit very broad substrate specificities and transform unsubstituted substrates and m- and p-methyl-, m- and p-ethyl-, and m- and p-chloro-substituted benzyl alcohols and benzaldehydes, respectively, at a high rate. In contrast, toluene oxidase only oxidizes toluene, m- and p-xylene, m-ethyltoluene, and 1,2,4-trimethylbenzene [corrected], also at a high rate. A biological test showed that toluene oxidase attacks m- and p-chlorotoluene, albeit at a low rate. No evidence for the transformation of p-ethyltoluene by toluene oxidase has been found. Hence, toluene oxidase acts as the bottleneck step for the catabolism of p-ethyl- and m- and p-chlorotoluene through the TOL upper pathway. A mutant toluene oxidase able to transform p-ethyltoluene was isolated, and a mutant strain capable of fully degrading p-ethyltoluene was constructed with a modified TOL plasmid meta-cleavage pathway able to mineralize p-ethylbenzoate. By transfer of a TOL plasmid into Pseudomonas sp. strain B13, a clone able to slowly degrade m-chlorotoluene was also obtained.  相似文献   

9.
Toluene-degrading strains T101 and T102 were isolated from rock surface biomass in a toluene-contaminated freshwater stream. These organisms were present at a density of 5.5 x 10(6) cells/g of rock surface biomass. Both are aerobic, rod-shaped, Gram-negative, non-motile, catalase-positive, oxidase-positive, with yellow pigments, and can grow on benzene. Phylogenetic analyses show that strains T101 and T102 have 16S rDNA sequences identical to Xanthobacter autotrophicus. Fatty acid analyses indicate that they are different strains of the same species Xanthobacter autotrophicus, and that they have high levels of cis-11-octadecenoic acid and cis-9-hexadecenoic acid; 3-hydroxyhexadecanoic acid is the major hydroxy fatty acid present. Strains T101 and T102 had maximal velocities (Vmax) for toluene biodegradation of 3.8 +/- 0.5 and 28.3 +/- 2.2 mumoles toluene/mgprotein-hr, and half-saturation constants (Ks) of 0.8 +/- 0.5 and 11.5 +/- 2.4 microM, respectively. Strain T102 has a higher capacity than strain T101 to degrade toluene, and kinetic calculations suggest that strain T102 may be a major contributor to toluene biodegradation in the stream.  相似文献   

10.
3-Ethynylbenzoate (3EB) functions as a novel, activity-dependent, fluorogenic, and chromogenic probe for bacterial strains expressing the TOL pathway, which degrade toluene via conversion to benzoate, followed by meta ring fission of the intermediate catechol. This direct physiological analysis allows the fluorescent labeling of cells whose toluene-degrading enzymes have been induced by an aromatic substrate.  相似文献   

11.
12.
Strain T1 is a facultative bacterium that is capable of anaerobic toluene degradation under denitrifying conditions. While 80% of the carbon from toluene is either oxidized to carbon dioxide or assimilated into cellular carbon, a significant portion of the remainder is transformed into two dead-end metabolites. These metabolites were produced simultaneous to the mineralization of toluene and were identified as benzylsuccinic acid and benzylfumaric acid. Identification was based on comparison of mass spectra of the methyl esters of the metabolites and authentic compounds that were chemically synthesized. Strain T1 is also capable of o-xylene transformation during growth on toluene. o-Xylene does not serve as a source of carbon and is not mineralized. Rather, it is transformed to analogous dead-end metabolites, (2-methylbenzyl)-succinic acid and (2-methylbenzyl)-fumaric acid. o-Xylene transformation also occurred during growth on succinic acid, which suggests that attack of the methyl group by succinyl-coenzyme A is a key reaction in this transformation. We reason that the main pathway for toluene oxidation to carbon dioxide involves a mechanism similar to that for the formation of the metabolites and involves an attack of the methyl group of toluene by acetyl-coenzyme A.  相似文献   

13.
Strain T1 is a facultative bacterium that is capable of anaerobic toluene degradation under denitrifying conditions. While 80% of the carbon from toluene is either oxidized to carbon dioxide or assimilated into cellular carbon, a significant portion of the remainder is transformed into two dead-end metabolites. These metabolites were produced simultaneous to the mineralization of toluene and were identified as benzylsuccinic acid and benzylfumaric acid. Identification was based on comparison of mass spectra of the methyl esters of the metabolites and authentic compounds that were chemically synthesized. Strain T1 is also capable of o-xylene transformation during growth on toluene. o-Xylene does not serve as a source of carbon and is not mineralized. Rather, it is transformed to analogous dead-end metabolites, (2-methylbenzyl)-succinic acid and (2-methylbenzyl)-fumaric acid. o-Xylene transformation also occurred during growth on succinic acid, which suggests that attack of the methyl group by succinyl-coenzyme A is a key reaction in this transformation. We reason that the main pathway for toluene oxidation to carbon dioxide involves a mechanism similar to that for the formation of the metabolites and involves an attack of the methyl group of toluene by acetyl-coenzyme A.  相似文献   

14.
The influence of toluene concentration on the specific growth rate, cellular yield, specific CO2, and metabolite production by Pseudomonas putida F1 (PpF1) was investigated. Both cellular yield and specific CO2 production remained constant at 1.0 ± 0.1 g biomass dry weight (DW) g−1 toluene and 1.91 ± 0.31 g CO2 g−1 biomass, respectively, under the tested range of concentrations (2–250 mg toluene l−1). The specific growth rate increased up to 70 mg toluene l−1. Further increases in toluene concentration inhibited PpF1 growth, although inhibitory concentrations were far from the application range of biological treatment processes. The specific ATP content increased with toluene concentration up to toluene concentrations of 170 mg l−1. 3-Methyl catechol (3-MC) was never detected in the cultivation medium despite being an intermediary in the TOD pathway. This suggested that the transformation from toluene to 3-MC was the limiting step in the biodegradation process. On the other hand, benzyl alcohol (BA) was produced from toluene in a side chain reaction. This is, to the best of our knowledge, the first reported case of methyl monoxygenation of toluene by PpF1 not harboring the pWW0 TOL plasmid. In addition, the influence of 3-MC, BA, and o-cresol on toluene degradation was investigated respirometrically, showing that toluene-associated respiration was not significantly inhibited in the presence of 10–100 mg l−1 of the above-mentioned compounds.  相似文献   

15.
Pseudomonas sp. strain JS6 grows on a wide range of chloro- and methylaromatic substrates. The simultaneous degradation of these compounds is prevented in most previously studied isolates because the catabolic pathways are incompatible. The purpose of this study was to determine whether strain JS6 could degrade mixtures of chloro- and methyl-substituted aromatic compounds. Strain JS6 was maintained in a chemostat on a minimal medium with toluene or chlorobenzene as the sole carbon source, supplied via a syringe pump. Strain JS6 contained an active catechol 2,3-dioxygenase when grown in the presence of chloroaromatic compounds; however, in cell extracts, this enzyme was strongly inhibited by 3-chlorocatechol. When cells grown to steady state on toluene were exposed to 50% toluene-50% chlorobenzene, 3-chlorocatechol and 3-methylcatechol accumulated in the medium and the cell density decreased. After 3 h, the enzyme activities of the modified ortho ring fission pathway were induced, the metabolites disappeared, and the cell density returned to previous levels. In cell extracts, 3-methylcatechol was degraded by both catechol 1,2- and catechol 2,3-dioxygenase. Strain JS62, a catechol 2,3-dioxygenase mutant of JS6, grew on toluene, and ring cleavage of 3-methylcatechol was catalyzed by catechol 1,2-dioxygenase. The transient metabolite 2-methyllactone was identified in chlorobenzene-grown JS6 cultures exposed to toluene. These results indicate that strain JS6 can degrade mixtures of chloro- and methylaromatic compounds by means of a modified ortho ring fission pathway.  相似文献   

16.
Alcanivorax is an alkane-degrading marine bacterium which propagates and becomes predominant in crude-oil-containing seawater when nitrogen and phosphorus nutrients are supplemented. In order to understand why Alcanivorax overcomes other bacteria under such cultural conditions, competition experiments between Alcanivorax indigenous to seawater and the exogenous alkane-degrading marine bacterium, Acinetobacter venetianus strain T4, were conducted. When oil-containing seawater supplemented with nitrogen and phosphorus nutrients was inoculated with A. venetianus strain T4, this bacterium was the dominant population at the early stage of culture. However, its density began to decrease after day 6, and Alcanivorax predominated in the culture after day 20. The crude-oil-degrading profiles of both bacteria were therefore investigated. Alcanivorax borkumensis strain ST-T1 isolated from the Sea of Japan exhibited higher ability to degrade branched alkanes (pristane and phytane) than A. venetianus strain T4. It seems that this higher ability of Alcanivorax to degrade branched alkanes allowed this bacterium to predominate in oil-containing seawater. It is known that some marine zooplanktons produce pristane and Alcanivorax may play a major role in the biodegradation of pristane in seawater.  相似文献   

17.
Pseudomonas sp. strain JS6 grows on a wide range of chloro- and methylaromatic substrates. The simultaneous degradation of these compounds is prevented in most previously studied isolates because the catabolic pathways are incompatible. The purpose of this study was to determine whether strain JS6 could degrade mixtures of chloro- and methyl-substituted aromatic compounds. Strain JS6 was maintained in a chemostat on a minimal medium with toluene or chlorobenzene as the sole carbon source, supplied via a syringe pump. Strain JS6 contained an active catechol 2,3-dioxygenase when grown in the presence of chloroaromatic compounds; however, in cell extracts, this enzyme was strongly inhibited by 3-chlorocatechol. When cells grown to steady state on toluene were exposed to 50% toluene-50% chlorobenzene, 3-chlorocatechol and 3-methylcatechol accumulated in the medium and the cell density decreased. After 3 h, the enzyme activities of the modified ortho ring fission pathway were induced, the metabolites disappeared, and the cell density returned to previous levels. In cell extracts, 3-methylcatechol was degraded by both catechol 1,2- and catechol 2,3-dioxygenase. Strain JS62, a catechol 2,3-dioxygenase mutant of JS6, grew on toluene, and ring cleavage of 3-methylcatechol was catalyzed by catechol 1,2-dioxygenase. The transient metabolite 2-methyllactone was identified in chlorobenzene-grown JS6 cultures exposed to toluene. These results indicate that strain JS6 can degrade mixtures of chloro- and methylaromatic compounds by means of a modified ortho ring fission pathway.  相似文献   

18.
19.
For the complete biodegradation of a mixture of benzene, toluene, and p-xylene (BTX), a critical metabolic step that can connect two existing metabolic pathways of aromatic compounds (the tod and the tol pathways) was determined. Toluate-cis-glycol dehydrogenase in the tol pathway was found to attack benzene-cis-glycol, toluene-cis-glycol, and p-xylene-cis-glycol, which are metabolic intermediates of the tod pathway. Based on this observation, a hybrid strain, Pseudomonase putida TB101, was constructed by introduction of the TOL plasmid pWW0 into P. putida F39/D, a derivative of P. putida F1, which is unable to transform cis-glycol compounds to corresponding catechols. The metabolic flux of BTX into the tod pathway was redirected to the tol pathway at the level of cis-glycol compounds by the action of toluate-cis-glycol dehydrogenase in P. putida TB101, resulting in the simultaneous mineralization of BTX mixture without accumulation of any metabolic intermediates. The profile of specific degradation rates showed a similar pattern as that of the specific growth rate of the microorganism, and the maximum specific degradation rates of benzene, toluene, and p-xylene were determined to be about 0.27, 0.86, and 2.89 mg/mg biomass/h, respectively. P. putida TB101 is the first reported microorganism that mineralizes BTX mixture simultaneously. (c) 1994 John Wiley & Sons, Inc.  相似文献   

20.
The Arctic tundra has been shown to be a potentially significant regional sink for methyl chloride (CH3Cl) and methyl bromide (CH3Br), although prior field studies were spatially and temporally limited, and did not include gross flux measurements. Here we compare net and gross CH3Cl and CH3Br fluxes in the northern coastal plain and continental interior. As expected, both regions were net sinks for CH3Cl and CH3Br. Gross uptake rates (−793 nmol CH3Cl m−2 day−1 and −20.3 nmol CH3Br m−2 day−1) were 20–240% greater than net fluxes, suggesting that the Arctic is an even greater sink than previously believed. Hydrology was the principal regulator of methyl halide flux, with an overall trend towards increasing methyl halide uptake with decreasing soil moisture. Water table depth was one of the best predictors of net and gross uptake, with uptake increasing proportionately with water table depth. In drier areas, gross uptake was very high, averaging −1201 nmol CH3Cl m−2 day−1 and −34.9 nmol CH3Br m−2 day−1; in flooded areas, gross uptake was significantly lower, averaging −61 nmol CH3Cl m−2 day−1 and −2.3 nmol CH3Br m−2 day−1. Net and gross uptake was greater in the continental interior than in the northern coastal plain, presumably due to drier inland conditions. Within certain microtopographic features (low‐ and high‐centered polygons), uptake rates were positively correlated with soil temperature, indicating that temperature played a secondary role in methyl halide uptake. Incubations suggested that the inverse relationship between water content and methyl halide uptake was the result of mass transfer limitation in saturated soils, rather than because of reduced microbial activity under anaerobic conditions. These findings have potential regional significance, as the Arctic is expected to become warmer and drier due to anthropogenic climate forcing, potentially enhancing the Arctic sink for CH3Cl and CH3Br.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号