共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibition of mouse macrophage degradation of acetyl-low density lipoprotein by interferon-gamma 总被引:9,自引:0,他引:9
In vitro, metabolism of modified forms of low density lipoprotein (LDL) by macrophages via the acetyl-LDL receptor pathway promotes the massive cellular accumulation of lipid. It has been postulated that in vivo this contributes to foam cell formation in the atherosclerotic lesion. Recent studies have shown that arterial wall cells in vitro can secrete a number of cytokines, several of which have been reported to modulate macrophage cell function. Thus, cytokines have the potential to modulate the acetyl-LDL receptor pathway and to influence the rate of foam cell generation. To study the regulation of this pathway by cytokines, the effect of cytokines on the degradation of acetyl-LDL protein by mouse peritoneal macrophages was examined. Initially, supernatant from stimulated lymphocytes was used as a source of cytokines. Macrophages preincubated with supernatants obtained after the stimulation of T-cell helper type 1 (Th1) clone HDK-1 or BALB/c spleen cells degraded acetyl-LDL at a slower rate, whereas supernatant from stimulated T-cell helper type 2 (Th2) clone D-10 had no effect. Comparison of the lymphokine profiles showed that spleen and HDK-1 cells secreted several lymphokines in common including significant levels of interferon-gamma. Interferon-gamma was then directly shown to be inhibitory; an anti-interferon-gamma monoclonal antibody blocked the HDK-1-mediated inhibition by 70% and the addition of recombinant interferon-gamma (IFN-gamma) to macrophages inhibited the specific degradation of acetyl-LDL in a dose- and time-dependent manner with a maximum suppression to approximately 40% of control. The inhibition was not accompanied by an increase in the amount of cell-associated acetyl-LDL and was not due to cell death nor could it be accounted for by the presence of endotoxin. To study the mechanism of the inhibition, the effects of IFN-gamma on the itinerary of acetyl-LDL and its receptor were examined. IFN-gamma decreased specific acetyl-LDL binding only to a small degree, and the rate of lysosome-mediated degradation was not affected. The principal alteration was in the rate of transport to the lysosome which was markedly slowed. Since the receptors eventually returned to the surface to maintain a steady state, and there was not an increase in cell-associated lipoprotein, there must be other changes in the itinerary that were not identified with the techniques used. Thus, the receptor cycle is being regulated at a discrete point. IFN-gamma also suppressed the LDL receptor pathway in macrophages, but this pathway was not affected by IFN-gamma in mouse fibroblasts.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
2.
A macrophage receptor that recognizes oxidized low density lipoprotein but not acetylated low density lipoprotein 总被引:37,自引:0,他引:37
The formation of cholesterol-loaded macrophage foam cells in arterial tissue may occur by the uptake of modified lipoproteins via the scavenger receptor pathway. The macrophage scavenger receptor, also called the acetylated low density lipoprotein (Ac-LDL) receptor, has been reported to recognize Ac-LDL as well as oxidized LDL species such as endothelial cell-modified LDL (EC-LDL). We now report that there is another class of macrophage receptors that recognizes EC-LDL but not Ac-LDL. We performed assays of 0 degrees C binding and 37 degrees C degradation of 125I-Ac-LDL and 125I-EC-LDL by mouse peritoneal macrophages. Competition studies showed that unlabeled Ac-LDL could compete for only 25% of the binding and only 50% of the degradation of 125I-EC-LDL. Unlabeled EC-LDL, however, competed for greater than 90% of 125I-EC-LDL binding and degradation. Unlabeled Ac-LDL was greater than 90% effective against 125I-Ac-LDL; EC-LDL competed for about 80% of 125I-Ac-LDL binding and degradation. Copper-oxidized LDL behaved the same as EC-LDL in all the competition studies. Copper-mediated oxidation of Ac-LDL produced a superior competitor which could now displace 90% of 125I-EC-LDL binding. After 5 h at 37 degrees C in the presence of ligand, macrophages accumulated six times more cell-associated radioactivity from 125I-EC-LDL than from 125I-Ac-LDL, despite approximately equal amounts of degradation to trichloroacetic acid-soluble products, which may imply different intracellular processing of the two lipoproteins. Our results suggest that 1) there is more than one macrophage "scavenger receptor" for modified lipoproteins; and 2) oxidized LDL and Ac-LDL are not identical ligands with respect to macrophage recognition and uptake. 相似文献
3.
Oxidized low density lipoprotein decreases macrophage expression of scavenger receptor B-I 总被引:8,自引:0,他引:8
Han J Nicholson AC Zhou X Feng J Gotto AM Hajjar DP 《The Journal of biological chemistry》2001,276(19):16567-16572
Scavenger receptor class B type I (SR-BI) has recently been identified as a high density lipoprotein (HDL) receptor that mediates bidirectional flux of cholesterol across the plasma membrane. We have previously demonstrated that oxidized low density lipoprotein (OxLDL) will increase expression of another class B scavenger receptor, CD36 (Han, J., Hajjar, D. P., Febbraio, M., and Nicholson, A. C. (1997) J. Biol. Chem. 272, 21654-21659). In studies reported herein, we evaluated the effects of OxLDL on expression of SR-BI in macrophages to determine how exposure to this modified lipoprotein could alter SR-BI expression and cellular lipid flux. OxLDL decreased SR-BI expression in a dose- and time-dependent manner. Incubation with OxLDL had no effect on the membrane distribution of SB-BI, and it decreased expression of both cytosolic and membrane protein. Consistent with its effect on SR-BI protein expression, OxLDL decreased SR-BI mRNA in a dose-dependent manner. The ability of OxLDL to decrease SR-BI expression was dependent on the degree of LDL oxidation. OxLDL decreased both [(14)C]cholesteryl oleate/HDL uptake and efflux of [(14)C]cholesterol to HDL in a time-dependent manner. Incubation of macrophages with 7-ketocholesterol, but not free cholesterol, also inhibited expression of SR-BI. Finally, we demonstrate that the effect of OxLDL on SR-BI is dependent on the differentiation state of the monocyte/macrophage. These results imply that in addition to its effect in inducing foam cell formation in macrophages through increased uptake of oxidized lipids, OxLDL may also enhance foam cell formation by altering SR-BI-mediated lipid flux across the cell membrane. 相似文献
4.
A macrophage Fc receptor for IgG is also a receptor for oxidized low density lipoprotein. 总被引:16,自引:0,他引:16
L W Stanton R T White C M Bryant A A Protter G Endemann 《The Journal of biological chemistry》1992,267(31):22446-22451
The internalization of oxidized low density lipoprotein (OxLDL) by macrophages is hypothesized to contribute to foam cell formation and eventually to atherosclerotic lesion formation. OxLDL is a ligand for the acetylated low density lipoprotein (AcLDL) receptor, however, our data show that this receptor accounts for less than half of OxLDL uptake by mouse macrophages, suggesting additional receptors for OxLDL. We have developed a novel expression cloning strategy in order to isolate clones encoding OxLDL receptors. In addition to the AcLDL receptor, we isolated a molecular clone for a structurally unrelated receptor capable of mediating the high affinity uptake of OxLDL following transfection into cells. This receptor has been identified as the mouse Fc gamma RII-B2, a member of a family of receptors known to mediate immune complex uptake through recognition of the Fc region of IgG. The uptake of OxLDL by cells transfected with the Fc gamma RII-B2 clone is not blocked by AcLDL but is blocked by the anti-Fc gamma RII monoclonal antibody, 2.4G2. 相似文献
5.
Evidence suggests that aggregated low density lipoprotein (AgLDL) accumulates in atherosclerotic lesions. Previously, we showed that AgLDL induces and enters surface-connected compartments (SCC) in human monocyte-derived macrophages by a process we have named patocytosis. Most AgLDL taken up by these macrophages in the absence of serum is stored in SCC and remains undegraded. We now show that macrophages released AgLDL (prepared by vortexing or treatment with phospholipase C or sphingomyelinase) from their SCC when exposed to 10% human lipoprotein-deficient serum (LPDS). Macrophages also took up AgLDL in the presence of LPDS, but subsequently released it. In both cases, the released AgLDL was disaggregated. Although the AgLDL that macrophages took up could not pass through a 0.45-micrometer filter, >60% of AgLDL could pass this filter after release from the macrophages. Disaggregation of AgLDL was verified by gel-filtration chromatography and electron microscopy that also showed particles larger than LDL, reflecting fusion of LDL that aggregates. The factor in serum that mediated AgLDL release and disaggregation was plasmin generated from plasminogen by macrophage urokinase plasminogen activator. AgLDL release was decreased >90% by inhibitors of plasmin (epsilon-amino caproic acid and anti-plasminogen mAb), and also by inhibitors of urokinase plasminogen activator (plasminogen activator inhibitor-1 and anti-urokinase plasminogen activator mAb). Moreover, plasminogen could substitute for LPDS and produce similar macrophage release and disaggregation of AgLDL. Because only plasmin bound to the macrophage surface is protected from serum plasmin inhibitors, interaction of AgLDL with macrophages was necessary for reversal of its aggregation by LPDS. The released disaggregated LDL particles were competent to stimulate LDL receptor-mediated endocytosis in cultured fibroblasts. Macrophage-mediated disaggregation of aggregated and fused LDL is a mechanism for transforming LDL into lipoprotein structures size-consistent with lipid particles found in atherosclerotic lesions. 相似文献
6.
7.
The low density lipoprotein receptor 总被引:3,自引:0,他引:3
W J Schneider 《Biochimica et biophysica acta》1989,988(2):303-317
The study of familial hypercholesterolemia at the molecular level has led to its advancement from a clinical syndrome to a fascinating experimental system. FH was first described 50 years ago by Carl Müller who concluded that the disease produces high plasma cholesterol levels and myocardial infarctions in young people, and is transmitted as an autosomal dominant trait determined by a single gene. The existence of two forms of FH, namely heterozygous and homozygous, was recognized by Khachadurian and Fredrickson and Levy much later. The value of FH as an experimental model system lies in the availability of homozygotes, because mutant genes can be studied without interference from the normal gene. The first and most important breakthrough was the realization that the defect underlying FH could be studied in cultured skin fibroblasts. Rapidly, the LDL receptor pathway was conceptualized and its dysfunction in cells from FH homozygotes was demonstrates. Isolation of the normal LDL receptor protein and studies on the biosynthesis and structure of abnormal receptors in mutant cell lines provided essential groundwork for elucidation of defects at the DNA level. The power of the experimental system, FH, became nowhere more obvious than in work that correlated structural information at the protein level with the elucidation of defined defects in the LDL receptor gene. In addition to revealing important structure-function relationships in the LDL receptor polypeptide and delineating mutational events, studies of FH have established several more general concepts. First, the tight coupling of LDL binding to its internalization suggested that endocytosis was not a non-specific process as suggested from early observations. The key finding was that LDL receptors clustered in coated pits, structures that had been described by Roth and Porter 10 years earlier. These investigators had demonstrated, in electron microscopic studies on the uptake of yolk proteins by mosquito oocytes, that coated pits pinch off from the cell surface and form coated vesicles that transport extracellular fluid into the cell. Studies on the LDL receptor system showed directly that receptor clustering in coated pits is the essential event in this kind of endocytosis, and thus established receptor-mediated endocytosis as a distinct mechanism for the transport of macromolecules across the plasma membrane. Subsequently, many additional systems of receptor-mediated endocytosis have been defined, and variations of the overall pathway have been described.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
8.
Lindholm MW Nilsson J Moses J 《Biochemical and biophysical research communications》2005,328(2):455-460
Lipoprotein trapping in arterial intima increases the risk for lipoprotein oxidation, foam cell formation, and inflammatory response in surrounding cells. Modified lipoproteins increase smooth muscle cell production of proteoglycans likely to retain lipoproteins in intimal extracellular matrix. We hypothesized that macrophage proteoglycan production is regulated in a similar manner, and characterized glycosaminoglycan side chains of secreted proteoglycans. Incubation with native low density lipoproteins (LDL) strongly stimulates total proteoglycan secretion in a time and concentration dependent manner. The main secretion product is small-sized (120 kDa) with unusually long galactosaminoglycan chains, predominantly chondroitin-6-O-sulfated. The effect appears specific for native LDL; oxidized LDL, very low density lipoproteins or phospholipid liposomes have only minor effects compared to control. These observations suggest that native LDL stimulate macrophages to secrete a chondroitin sulfate-rich proteoglycan moiety likely to have high capacity for vascular extracellular trapping of apolipoprotein B-containing lipoproteins. 相似文献
9.
A direct role for the macrophage low density lipoprotein receptor in atherosclerotic lesion formation. 总被引:2,自引:0,他引:2
M F Linton V R Babaev L A Gleaves S Fazio 《The Journal of biological chemistry》1999,274(27):19204-19210
To evaluate the contribution of the macrophage low density lipoprotein receptor (LDLR) to atherosclerotic lesion formation, we performed bone marrow transplantation studies in different mouse strains. First, LDLR(-/-) mice were transplanted with either LDLR(+/+) marrow or LDLR(-/-) marrow and were challenged with an atherogenic Western type diet. The diet caused severe hypercholesterolemia of a similar degree in the two groups, and no differences in the aortic lesion area were detected. Thus, macrophage LDLR expression does not influence foam cell lesion formation in the setting of extreme LDL accumulation. To determine whether macrophage LDLR expression affects foam cell formation under conditions of moderate, non-LDL hyperlipidemia, we transplanted C57BL/6 mice with either LDLR(-/-) marrow (experimental group) or LDLR(+/+) marrow (controls). Cholesterol levels were not significantly different between the two groups at baseline or after 6 weeks on a butterfat diet, but were 40% higher in the experimental mice after 13 weeks, mostly due to accumulation of beta-very low density lipoprotein (beta-VLDL). Despite the increase in cholesterol levels, mice receiving LDLR(-/-) marrow developed 63% smaller lesions than controls, demonstrating that macrophage LDLR affects the rate of foam cell formation when the atherogenic stimulus is beta-VLDL. We conclude that the macrophage LDLR is responsible for a significant portion of lipid accumulation in foam cells under conditions of dietary stress. 相似文献
10.
W J Schneider 《Journal of cellular biochemistry》1983,23(1-4):95-106
The receptor for low density lipoprotein was purified from bovine adrenal cortex in the presence of the nonionic detergent octylglucoside. Receptors were incorporated into the bilayer of egg phosphatidylcholine vesicles by a detergent-dialysis method. Reconstituted receptors were functional in that they bound low density lipoprotein as well as a monoclonal antibody directed against the receptor in a specific, saturable fashion. Binding activity of reconstituted receptors was measured by a gel chromatography assay. The orientation of the receptor molecule within the phospholipid bilayer was investigated by binding assays following proteolytic digestion. Reconstituted receptors showed an orientation that was functionally indistinguishable from that of low density lipoprotein receptors in the plasma membrane of intact human fibroblasts. 相似文献
11.
12.
Somatic cell mutants of low density lipoprotein receptor 总被引:1,自引:0,他引:1
13.
Scavenger receptor class B type I as a receptor for oxidized low density lipoprotein 总被引:7,自引:0,他引:7
Gillotte-Taylor K Boullier A Witztum JL Steinberg D Quehenberger O 《Journal of lipid research》2001,42(9):1474-1482
Scavenger receptor class B type I (SR-BI) has been established as the primary mediator of the selective transfer of lipids from HDL to mammalian cells. In addition to its role in cholesterol metabolism, SR-BI has been shown to bind apoptotic cells and thus could in theory also function as a scavenger receptor. We now show that SR-BI binds oxidized LDL (OxLDL) with high affinity (K(d) of 4.0 +/- 0.5 microg/ml) and mediates internalization and degradation to an extent comparable to that of other scavenger receptors, when normalized to binding activity. The best competitors for OxLDL binding to SR-BI were oxidized lipoproteins, whereas native or acetylated lipoproteins only competed for a small fraction of OxLDL binding. Both the isolated lipids and the isolated protein from OxLDL bound with high affinity to SR-BI and showed partial reciprocal competition. Monoclonal antibody EO6, an antibody against oxidized phospholipids, and 1-palmitoyl-2-(5-oxovaleroyl) phosphatidylcholine (POVPC) both competed effectively with intact OxLDL and with isolated lipids from OxLDL for SR-BI binding.Together, these results demonstrate a potential function of SR-BI, in addition to its role in selective uptake of lipids, to mediate internalization of OxLDL by macrophages and suggest a central role for oxidized phospholipids in this process. 相似文献
14.
P W Chun A J Espinosa C W Lee R B Shireman E E Brumbaugh 《Biophysical chemistry》1985,21(3-4):185-209
The macromolecular species distribution in a receptor-mediated endocytotic pathway was computer simulated based on kinetic data reported in the literature. In the proposed model, the rapidity with which the recycled receptor is shuttled to the cell surface is indicated by the magnitude of k-3, the shuttling constant. The magnitude of k-3 will vary with the experimental conditions, but when this value is large, the internalized receptor is shuttled back to the cell surface with a traverse time of 14 min. Under steady-state conditions, after the cells have been incubated in the presence of LDL for 5 h (M.S. Brown and J.L. Goldstein, Cell 9 (1976) 663), the time required for a receptor to traverse the entire endocytotic pathway is 52 min. Our simulation suggests that normal LDL binding in such a short-term experiment may be independent of receptor synthesis. Thus, the degradation of LDL and resultant build-up of cholesterol would have no apparent inhibitory effect on the down-regulation of receptor synthesis. 相似文献
15.
Reactive aldehydes can be formed during the oxidation of lipids, glucose, and amino acids and during the nonenzymatic glycation of proteins. Low density lipoprotein (LDL) modified with malondialdehyde are taken up by scavenger receptors on macrophages. In the current studies we determined whether alpha-hydroxy aldehydes also modify LDL to a form recognized by macrophage scavenger receptors. LDL modified by incubation with glycolaldehyde, glyceraldehyde, erythrose, arabinose, or glucose (alpha-hydroxy aldehydes that possess two, three, four, five, and six carbon atoms, respectively) exhibited decreased free amino groups and increased mobility on agarose gel electrophoresis. The lower the molecular weight of the aldehyde used for LDL modification, the more rapid and extensive was the derivatization of free amino groups. Approximately 50-75% of free lysine groups in LDL were modified after incubation with glyceraldehyde, glycolaldehyde, or erythrose for 24-48 h. Less extensive reductions in free amino groups were observed when LDL was incubated with arabinose or glucose, even at high concentration for up to 5 days. LDL modified with glycolaldehyde and glyceraldehyde labeled with (125)I was degraded more extensively by human monocyte-derived macrophages than was (125)I-labeled native LDL. Conversely, LDL modified with (125)I-labeled erythrose, arabinose, or glucose was degraded less rapidly than (125)I-labeled native LDL. Competition for the degradation of LDL modified with (125)I-labeled glyceraldehyde was nearly complete with acetyl-, glycolaldehyde-, and glyceraldehyde-modified LDL, fucoidin, and advanced glycation end product-modified bovine serum albumin, and absent with unlabeled native LDL.These results suggest that short-chain alpha-hydroxy aldehydes react with amino groups on LDL to yield moieties that are important determinants of recognition by macrophage scavenger receptors. 相似文献
16.
High density lipoprotein uptake by scavenger receptor SR-BII 总被引:4,自引:0,他引:4
Eckhardt ER Cai L Sun B Webb NR van der Westhuyzen DR 《The Journal of biological chemistry》2004,279(14):14372-14381
Scavenger receptor class B, type I (SR-BI) mediates selective uptake of high density lipoprotein (HDL) lipids. It is unclear whether this process occurs at the cell membrane or via endocytosis. Our group previously identified an alternative mRNA splicing variant of SR-BI, named SR-BII, with an entirely different, yet highly conserved cytoplasmic C terminus. In this study we aimed to compare HDL uptake by both isoforms. Whereas SR-BI was mainly ( approximately 70%) localized on the surface of transfected Chinese hamster ovary cells, as determined by biotinylation, HDL binding at 4 degrees C, and studies of enhanced green fluorescent protein-tagged SR-BI/II fusion proteins, the majority of SR-BII ( approximately 80-90%) was expressed intracellularly. The cellular distribution of SR-BI was not affected by deletion of the C terminus, which suggests that the distinct C terminus of SR-BII is responsible for its intracellular expression. Pulse-chase experiments showed that SR-BII rapidly internalized HDL protein, whereas in the case of SR-BI most HDL protein remained surface bound. Like its ligand, SR-BII was more rapidly endocytosed compared with SR-BI. Despite more rapid HDL uptake by SR-BII than SR-BI, selective cholesteryl ether uptake was significantly lower. Relative to their levels of expression at the cell surface, however, both isoforms mediated selective uptake with similar efficiency. HDL protein that was internalized by SR-BII largely co-localized with transferrin in the endosomal recycling compartment. Within the endosomal recycling compartment of SR-BII cells, there was extensive co-localization of internalized HDL lipid and protein. These results do not support a model that selective lipid uptake by SR-BI requires receptor/ligand recycling within the cell. We conclude that SR-BII may influence cellular cholesterol trafficking and homeostasis in a manner that is distinct from SR-BI. 相似文献
17.
18.
Scavenger receptor BI: a scavenger receptor with a mission to transport high density lipoprotein lipids 总被引:7,自引:0,他引:7
PURPOSE OF REVIEW: This review will survey recent findings on the cholesterol transport and scavenger functions of scavenger receptor BI. Although scavenger receptor BI and CD36 bind many of the same ligands, these two receptors have very specific lipid transport functions: CD36 facilitates the uptake of long chain fatty acids and SR-BI mediates the transport of cholesterol and cholesteryl ester from HDL particles. Scavenger receptor BI is a physiologically relevant HDL receptor that, along with HDL, is protective against cardiovascular disease. Its atheroprotective role has been hypothesized to be due to its function in the reverse cholesterol transport pathway. RECENT FINDINGS: Recent studies suggest that scavenger receptor BI function is not only crucial for cholesterol delivery to the liver but is also important for cholesterol efflux at the vessel wall. Therefore, the receptor acts at both ends of the reverse cholesterol transport pathway. In addition, it stimulates nitric oxide production in endothelial cells, which may also contribute to its positive influence on the vasculature. Lastly, the glycoprotein was cloned as a scavenger receptor and in some cases is still thought to operate in this fashion. SUMMARY: It will be interesting to follow future research on scavenger receptor BI that will delineate its functions in cholesterol transport as well as its scavenger functions. Additionally, we are only beginning to learn of the glycoprotein's effects on disease states besides atherosclerosis and cardiovascular disease. 相似文献
19.
Graham VS Di Maggio P Armengol S Lawson C Wheeler-Jones CP Botham KM 《Biochimica et biophysica acta》2011,1811(3):209-220
Secretion of pro-inflammatory chemokines and cytokines by macrophages is a contributory factor in the pathogenesis of atherosclerosis. In this study, the effects of chylomicron remnants (CMR), the lipoproteins which transport dietary fat in the blood, on the production of pro-inflammatory chemokine and cytokine secretion by macrophages was investigated using CMR-like particles (CRLPs) together with THP-1 macrophages or primary human macrophages (HMDM). Incubation of CRLPs or oxidized CRLPs (oxCRLPs) with HMDM or THP-1 macrophages for up to 24h led to a marked decrease in the secretion of the pro-inflammatory chemokine monocyte chemoattractant protein-1 (MCP-1) and the pro-inflammatory cytokines tumour necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-1β (-50-90%), but these effects were reduced or abolished when CRLPs protected from oxidation by incorporation of the antioxidant drug, probucol, (pCRLPs) were used. In macrophages transfected with siRNA targeted to the low density lipoprotein receptor (LDLr), neither CRLPs nor pCRLPs had any significant effect on chemokine/cytokine secretion, but in cells transfected with siRNA targeted to the LDLr-related protein 1 (LRP1) both types of particles inhibited secretion to a similar extent to that observed with CRLPs in mock transfected cells. These findings demonstrate that macrophage pro-inflammatory chemokine/cytokine secretion is down-regulated by CMR, and that these effects are positively related to the lipoprotein oxidative state. Furthermore, uptake via the LDLr is required for the down-regulation, while uptake via LRP1 does not bring about this effect. Thus, the receptor-mediated route of uptake of CMR plays a crucial role in modulating their effects on inflammatory processes in macrophages. 相似文献
20.
N E Miller 《Biochimica et biophysica acta》1978,529(1):131-137
Further studies have been made of the effects of high density lipoprotein (HDL) on the surface binding, internalization and degradation of 125I-labeled low density lipoprotein (125I-labeled LDL) by cultured normal human fibroblasts. In agreement with earlier studies, during short incubations HDL inhibited the surface binding of 125I-labeled LDL. In contrast, following prolonged incubations 125I-labeled LDL binding was consistently greater in the presence of HDL. The increment in 125I-labeled LDL binding induced by HDL was: (a) associated with a decrease in cell cholesterol content; (b) inhibited by the addition of cholesterol or cycloheximide to the incubation medium; and (c) accompanied by similar increments in 125I-labeled LDL internalization and degradation. It is concluded that HDL induces the synthesis of high affinity LDL receptors in human fibroblasts by promoting the efflux of cholesterol from the cells. 相似文献