首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peptide amidase (Pam), a hydrolytic enzyme that belongs to the amidase signature (AS) family, selectively catalyzes the hydrolysis of the C-terminal amide bond (CO-NH(2)) of peptides. The recent availability of the X-ray structures of Pam, fatty acid amide hydrolase, and malonamidase E2 has led to the proposal of a novel Ser-Ser-Lys catalytic triad mechanism for the amide hydrolysis by the AS enzymes. The molecular dynamics (MD) simulations using the CHARMM force field were performed to explore the catalytic mechanism of Pam. The 1.8 A X-ray crystal structure of Pam in complex with the amide analogue of chymostatin was chosen for the initial coordinates for the MD simulations. The five systems that were investigated are as follows: (i) enzyme.substrate with Lys123-NH(2), (ii) enzyme.substrate with Lys123-NH(3)(+), (iii) enzyme.substrate with Lys123-NH(3)(+) and Ser226-O(-), (iv) enzyme.transition state, and (v) enzyme.tetrahedral intermediate. Our data support the presence of the hydrogen bonding network among the catalytic triad residues, Ser226, Ser202, and Lys123, where Ser226 acts as the nucleophile and Ser202 bridges Ser226 and Lys123. The MD simulation supports the catalytic role of the crystallographic waters, Wat1 and Wat2. In all the systems that have been studied, the backbone amide nitrogens of Asp224 and Thr223 create an oxyanion hole by hydrogen bonding to the terminal amide oxygen of the substrate, and stabilize the oxyanion tetrahedral intermediate. The results from both our computational investigation and previously published experimental pH profile support two mechanisms. In a mechanism that is relevant at lower pH, the Lys123-NH(3)(+)-Ser202 dyad provides structural support to the catalytic residue Ser226, which in turn carries out a nucleophilic attack at the substrate amide carbonyl in concert with Wat1-mediated deprotonation and stabilization of the tetrahedral transition state by the oxyanion hole. In the mechanism operating at higher pH, the Lys123-NH(2)-Ser202 catalytic dyad acts as a general base to assist addition of Ser226 to the substrate amide carbonyl. The results from the MD simulation of the tetrahedral intermediate state show that both Ser202 and Lys123 are possible candidates for protonation of the leaving group, NH(2), to form the acyl-enzyme intermediate.  相似文献   

2.
Dienelactone hydrolase (DLH), an enzyme from the β-ketoadipate pathway, catalyzes the hydrolysis of dienelactone to maleylacetate. Our inhibitor binding studies suggest that its substrate, dienelactone, is held in the active site by hydrophobic interactions around the lactone ring and by the ion pairs between its carboxylate and Arg-81 and Arg-206. Like the cysteine/serine proteases, DLH has a catalytic triad (Cys-123, His-202, Asp-171) and its mechanism probably involves the formation of covalently bound acyl intermediate via a tetrahedral intermediate. Unlike the proteases, DLH seems to protonate the incipient leaving group only after the collapse of the first tetrahedral intermediate, rendering DLH incapable of hydrolyzing amide analogues of its ester substrate. In addition, the triad His probably does not protonate the leaving group (enolate) or deprotonate the water for deacylation; rather, the enolate anion abstracts a proton from water and, in doing so, supplies the hydroxyl for deacylation. © 1993 Wiley-Liss, Inc.  相似文献   

3.
4.
The structure and reactivity of cobalt(II), nickel(II), and copper(II) halides have been investigated in 0.20 M CTAX (X = Cl, Br) |CHCl3 reversed micelles. The former two metal ions adopt a tetrahedral configuration at low water concentrations in the micelle. The tetrahedral complexes are converted to octahedral aqua complexes by increasing the water concentration (solvochromism) or by lowering the temperature (thermochromism). Upon reaction with imidazole, the tetrahedral cobalt and nickel halide complexes also undergo a structural transformation into an octahedral configuration with imidazole coordination. At low water concentrations, copper halides form a polynuclear complex bridged by halide ions and these halogen bridges are easily broken upon addition of water or imidazole. The copper complexes produced by reaction with imidazole were deduced to be CuIm2X2 and CuIm4X2 at intermediate and high ligand concentrations, respectively. It was also found that the cupric ion in reversed micelles is readily reduced to the cuprous ion with 2-mercaptoethanol, and the cuprous ion is oxidized to the cupric ion by reaction with hydrogen peroxide.  相似文献   

5.
B P Murphy  R F Pratt 《Biochemistry》1991,30(15):3640-3649
Certain acyclic depsipeptides, but not peptides, are substrates of typical beta-lactamases [Pratt, R.F., & Govardhan, C.P. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 1302]. This may reflect either the greater chemical reactivity of depsipeptides (and of beta-lactams, the natural substrates) than peptides or the greater ease of distortion of the depsipeptide (ester) than the peptide (amide) group into a penicillin-like conformation. The latter explanation has been shown to be more likely by employment of a novel beta-lactamase substrate. N-(phenylacetyl)glycyl-D-aziridine-2-carboxylate, which combines a high chemical reactivity with a close to tetrahedral amide nitrogen atom. Although this substrate was better (higher kcat/KM) than a comparable depsipeptide for beta-lactamases, it was poorer than the depsipeptide for the Streptomyces R61 D-alanyl-D-alanine peptidase (which catalyzes specific peptide hydrolysis). It therefore seems likely that one vital feature of the putative evolution of a DD-peptidase into a beta-lactamase would have been modification of the active site to, on one hand, accommodate bicyclic beta-lactams and, on the other, exclude productive binding of planar acyclic amides. Certain serine beta-lactamases and the R61 DD-peptidase also catalyze methanolysis and aminolysis by D-phenylalanine of the N-acylaziridine. The latter reaction, the first amide aminolysis shown to be catalyzed by a beta-lactamase, is a very close analogue of the transpeptidase reaction of DD-peptidases. The methanolysis reaction appeared to proceed by way of the same acyl-enzyme intermediate as formed from depsipeptides possessing the same acyl moiety as the aziridine. The kinetics of methanolysis were employed to determine whether acylation or deacylation was rate limiting to the hydrolysis reaction under saturating substrate concentrations. The kinetics of the aminolysis reaction, catalyzed by the Enterobacter cloacae P99 beta-lactamase, showed the characteristics of, and were interpreted in terms of, a sequential mechanism previously deduced for depsipeptides and this enzyme [Pazhanisamy, S., & Pratt, R. F. (1989) Biochemistry 28, 6875-6882]. This mechanism features two separate binding sites, only one of which is productive. Strikingly, the binding of the N-acylaziridine to the nonproductive site was very tight, such that essentially all hydrolysis at substrate concentrations above 0.1Km proceeded via the ternary complex; this could also be true of penicillins.  相似文献   

6.
Torsional deformation of the peptide linkage by anti distortion of cis substituents (i.e., forcing groups attached to one side of an amide partial π bond out of plane in opposite directions) leads to rehybridization of the constituent atoms (nitrogen and carbonyl carbon) toward tetrahedral geometry. In consequence the partial π bond is uniquely activated toward trans (antarafacial) addition with defined steric orientation of addends. Application of these considerations to the known structure of an enzyme-substrate complex of carboxypeptidase A leads to a unique mechanistic hypothesis for proteolytic cleavage by this enzyme. Extant evidence concerning the mode of catalysis is considered in light of a mechanism involving electrostatically induced torsional activation of the scissile peptide bond, Lewis acid coordination of zinc to amide carbonyl, proton donation from Glu 270 to the amide nitrogen of the scissile bond, with concerted attack upon the amide carbonyl by solvent water.  相似文献   

7.
We summarize our current view of the reaction mechanism in F1-ATPase as it has emerged from experiment, theory, and computational studies over the last several years. ATP catalysis in the catalytic binding pockets of F1 takes place without the release of any significant free energy and is efficiently driven by the combined action of two water molecules utilizing a so-called protein-relay mechanism. The chemical reaction itself is controlled by the spatial position of a key arginine residue.  相似文献   

8.
Based on stability studies on the drugs atenolol and propranolol and some of their derivatives it is believed that increasing the lipophilicity of the drug will lead to an increase in the stability of its aqueous solutions and will provide a prodrug system with the potential for releasing atenolol in a controlled manner. Using DFT theoretical calculations we have calculated an intramolecular acid catalyzed hydrolysis in nine maleamic (4-amino-4-oxo-2butenoic) acids (Kirby’s N-alkylmaleamic acids), 19. The DFT calculations confirmed that the acid-catalyzed hydrolysis mechanism in these systems involves: (1) a proton transfer from the hydroxyl of the carboxyl group to the adjacent amide carbonyl carbon, (2) an approach of the carboxylate anion toward the protonated amide carbonyl carbon to form a tetrahedral intermediate; and (3) a collapse of the tetrahedral intermediate into products. Furthermore, DFT calculations in different media revealed that the reaction rate-limiting step depends on the reaction medium. In aqueous medium the rate-limiting step is the collapse of the tetrahedral intermediate whereas in the gas phase the formation of the tetrahedral intermediate is the rate-limiting step. Furthermore, the calculations establish that the acid-catalyzed hydrolysis efficiency is largely sensitive to the pattern of substitution on the carbon-carbon double bond. Based on the experimental t1/2 (the time needed for the conversion of 50% of the reactants to products) and EM (effective molarity) values for processes 19 we have calculated the t1/2 values for the conversion of the two prodrugs to the parental drug, atenolol. The calculated t1/2 values for ProD 1–2 are predicted to be 65.3 hours and 11.8 minutes, respectively. Thus, the rate by which atenolol prodrug undergoes cleavage to release atenolol can be determined according to the nature of the linker of the prodrug (Kirby’s N-alkylmaleamic acids 1–9).  相似文献   

9.
In the acylation reaction of serine proteases the effect of amino acid residues on the geometrical change of the catalytic site from Michaelis to tetrahedral state was studied by using ab initio molecular orbital calculations. Amino acid residues in the catalytic site and the peptide substrate were calculated as a quantum mechanical region, and all the other amino acid residues and the calcium ion were included in the calculation as the electrostatic effects. The effects of Asp102, Asp194, N-terminus and the oxyanion binding site are large. The oxyanion binding site directly stabilizes the tetrahedral substrate. Asp102 stabilizes the enzyme intermediate, interacting with the protonated His57 residue. In order to elucidate the roles of Asp102 and the oxyanion binding site, energy decomposition analyses were done for the intermolecular interactions. The contribution of Asp102 and the oxyanion binding site to the decrease of energy in the geometrical change is due to the electrostatic effect. The energies of the proton shuttle from Ser195 Oγ to the leaving group of the substrate were calculated for amide and ester substrate models.  相似文献   

10.
The reaction mechanism of acetylcholine hydrolysis by acetylcholinesterase, including both acylation and deacylation stages from the enzyme-substrate (ES) to the enzyme-product (EP) molecular complexes, is examined by using an ab initio type quantum mechanical – molecular mechanical (QM/MM) approach. The density functional theory PBE0/aug-6–31+G* method for a fairly large quantum part trapped inside the native protein environment, and the AMBER force field parameters in the molecular mechanical part are employed in computations. All reaction steps, including the formation of the first tetrahedral intermediate (TI1), the acylenzyme (EA) complex, the second tetrahedral intermediate (TI2), and the EP complex, are modeled at the same theoretical level. In agreement with the experimental rate constants, the estimated activation energy barrier of the deacylation stage is slightly higher than that for the acylation phase. The critical role of the non-triad Glu202 amino acid residue in orienting lytic water molecule and in stabilizing the second tetrahedral intermediate at the deacylation stage of the enzymatic process is demonstrated. Figure The computed energy diagram for the reaction path from the enzyme – substrate complex (ES) to the enzyme-product complex (EP).  相似文献   

11.
Mechanistic studies on the hydrolytic dehalogenation catalyzed by haloalkane dehalogenases are of importance for environmental and industrial applications. Here, Car-Parrinello (CP) and ONIOM hybrid quantum-mechanical/molecular mechanics (QM/MM) are used investigate the second reaction step of the catalytic cycle, which comprises a general base-catalyzed hydrolysis of an ester intermediate (EI) to alcohol and free enzyme. We focus on the enzyme LinB from Sphingomonas paucimobilis UT26, for which the X-ray structure at atomic resolution is available. In agreement with previous proposals, our calculations suggest that a histidine residue (His272), polarized by glutamate (Glu132), acts as a base, accepting a proton from the catalytic water molecule and transferring it to an alcoholate ion. The reaction proceeds through a metastable tetrahedral intermediate, which shows an easily reversed reaction to the EI. In the formation of the products, the protonated aspartic acid (Asp108) can easily adopt conformation of the relaxed state found in the free enzyme. The overall free energy barrier of the reaction calculated by potential of the mean force integration using CP-QM/MM calculations is equal to 19.5 +/- 2 kcal . mol(-1). The lowering of the energy barrier of catalyzed reaction with respect to the water reaction is caused by strong stabilization of the reaction intermediate and transition state and their preorganization by electrostatic field of the enzyme.  相似文献   

12.
Despite the availability of many experimental data and some modeling studies, questions remain as to the precise mechanism of the serine proteases. Here we report molecular dynamics simulations on the acyl-enzyme complex and the tetrahedral intermediate during the deacylation step in elastase catalyzed hydrolysis of a simple peptide. The models are based on recent crystallographic data for an acyl-enzyme intermediate at pH 5 and a time-resolved study on the deacylation step. Simulations were carried out on the acyl enzyme complex with His-57 in protonated (as for the pH 5 crystallographic work) and deprotonated forms. In both cases, a water molecule that could provide the nucleophilic hydroxide ion to attack the ester carbonyl was located between the imidazole ring of His-57 and the carbonyl carbon, close to the hydrolytic position assigned in the crystal structure. In the "neutral pH" simulations of the acyl-enzyme complex, the hydrolytic water oxygen was hydrogen bonded to the imidazole ring and the side chain of Arg-61. Alternative stable locations for water in the active site were also observed. Movement of the His-57 side-chain from that observed in the crystal structure allowed more solvent waters to enter the active site, suggesting that an alternative hydrolytic process directly involving two water molecules may be possible. At the acyl-enzyme stage, the ester carbonyl was found to flip easily in and out of the oxyanion hole. In contrast, simulations on the tetrahedral intermediate showed no significant movement of His-57 and the ester carbonyl was constantly located in the oxyanion hole. A comparison between the simulated tetrahedral intermediate and a time-resolved crystallographic structure assigned as predominantly reflecting the tetrahedral intermediate suggests that the experimental structure may not precisely represent an optimal arrangement for catalysis in solution. Movement of loop residues 216-223 and P3 residue, seen both in the tetrahedral simulation and the experimental analysis, could be related to product release. Furthermore, an analysis of the geometric data obtained from the simulations and the pH 5 crystal structure of the acyl-enzyme suggests that since His-57 is protonated, in some aspects, this crystal structure resembles the tetrahedral intermediate.  相似文献   

13.
Amino acid activation by anhydride formation in model tetrahedral silicate and aluminate sites in clays and neutral phosphates have been studied by semi-empirical molecular orbital calculations. the results have been compared to previousab initio studies on the reactant species and were found to be in good agreement. The geometries of all species were totally optimized and heats of formation obtained. Relative heats of formation of the anhydrides indicate the extent of anhydride formation to be Al > Si > P which is the same order as the stability of hydrolysis. The relative efficacy of the anhydrides in promoting peptide bond formation has been evaluated using both thermodynamic and chemical reactivity criteria. Heats of reaction for model reactions were calculated from calculated enthalpies of formation of the products and reactants. The electrophilicity of the carbonyl carbon and the nucleophilicity of the oxygen were specifically used as indicators of chemical reactivity towards dipeptide formation by the activated amino acids. Our results indicate that if the reaction mechanism is dominated by the nucleophilic character of the oxygen, tetrahedral Al sites should be more active than Si, and if the electrophilic character dominates, the order would be reversed.  相似文献   

14.
根据过渡态理论设计和合成了能诱导产生催化选择性水解布洛芬甲酯的催化抗体的四面体硫酸盐半抗原,并与牛血清白蛋白(BSA)偶联制备成免疫源,通过免疫手段成功筛选出具有加速选择性水解生成S-布洛芬的特异性催化抗体.其Kcat,app/Kuncat,app达1.6x104.进一步地将催化抗体运用到W/O微乳体系(反胶束)中进行布洛芬酯的选择性水解研究,其动力学研究证明其催化过程同样遵循Michaelis.Menten方程.考察了pH值和温度对催化初速度影响,Wo(体系中水和琥珀酸二辛酯磺酸钠(AOT)的摩尔比)对催化初速度影响呈现为钟罩型,最适的Wo.为21.  相似文献   

15.
Solowiej J  Thomson JA  Ryan K  Luo C  He M  Lou J  Murray BW 《Biochemistry》2008,47(8):2617-2630
Severe acute respiratory syndrome (SARS) was a worldwide epidemic caused by a coronavirus that has a cysteine protease (3CLpro) essential to its life cycle. Steady-state and pre-steady-state kinetic methods were used with highly active 3CLpro to characterize the reaction mechanism. We show that 3CLpro has mechanistic features common and disparate to the archetypical proteases papain and chymotrypsin. The kinetic mechanism for 3CLpro-mediated ester hydrolysis, including the individual rate constants, is consistent with a simple double displacement mechanism. The pre-steady-state burst rate was independent of ester substrate concentration indicating a high commitment to catalysis. When homologous peptidic amide and ester substrates were compared, a series of interesting observations emerged. Despite a 2000-fold difference in nonenzymatic reactivity, highly related amide and ester substrates were found to have similar kinetic parameters in both the steady-state and pre-steady-state. Steady-state solvent isotope effect (SIE) studies showed an inverse SIE for the amide but not ester substrates. Evaluation of the SIE in the pre-steady-state revealed normal SIEs for both amide and ester burst rates. Proton inventory (PI) studies on amide peptide hydrolysis were consistent with two proton-transfer reactions in the transition state while the ester data was consistent with a single proton-transfer reaction. Finally, the pH-inactivation profile of 3CLpro with iodoacetamide is indicative of an ion-pair mechanism. Taken together, the data are consistent with a 3CLpro mechanism that utilizes an "electrostatic" trigger to initiate the acylation reaction, a cysteine-histidine catalytic dyad ion pair, an enzyme-facilitated release of P1, and a general base-catalyzed deacylation reaction.  相似文献   

16.
Perdih A  Hodoscek M  Solmajer T 《Proteins》2009,74(3):744-759
MurD (UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase), a three-domain bacterial protein, catalyses a highly specific incorporation of D-glutamate to the cytoplasmic intermediate UDP-N-acetyl-muramoyl-L-alanine (UMA) utilizing ATP hydrolysis to ADP and P(i). This reaction is part of a biosynthetic path yielding bacterial peptidoglycan. On the basis of structural studies of MurD complexes, a stepwise catalytic mechanism was proposed that commences with a formation of the acyl-phosphate intermediate, followed by a nucleophilic attack of D-glutamate that, through the formation of a tetrahedral reaction intermediate and subsequent phosphate dissociation, affords the final product, UDP-N-acetyl-muramoyl-L-alanine-D-glutamate (UMAG). A hybrid quantum mechanical/molecular mechanical (QM/MM) molecular modeling approach was utilized, combining the B3LYP QM level of theory with empirical force field simulations to evaluate three possible reaction pathways leading to tetrahedral intermediate formation. Geometries of the starting structures based on crystallographic experimental data and tetrahedral intermediates were carefully examined together with a role of crucial amino acids and water molecules. The replica path method was used to generate the reaction pathways between the starting structures and the corresponding tetrahedral reaction intermediates, offering direct comparisons with a sequential kinetic mechanism and the available structural data for this enzyme. The acquired knowledge represents new and valuable information to assist in the ongoing efforts leading toward novel inhibitors of MurD as potential antibacterial drugs.  相似文献   

17.
The condensation of a primary amine with fatty acids has been studied to determine optimum conditions for selective formation of amide surfactants via enzymatic amidification. Monoacylated ethanolamide and the diacylated amide-ester can be isolated from the reaction mixture, but the monoacylated ester cannot be isolated. The selectivity of the reaction depends on the solubility of the intermediate amide. Continuous precipitation of this product decreases the amount of amide-ester produced. Solubility values of the desired product (amide) are reported for different conditions.In acetonitrile, the ethyl ester of the corresponding fatty acid has been used successfully to avoid formation/precipitation of the ion-pair of the precursor reagents. In this medium, use of the transacylation reaction permits one to accelerate the reaction without producing a significant change in the selectivity toward the intermediate amide. This strategy is not successful in n-hexane where the solubilities of both ethanolamine and its ion-pair with lauric acid are similar.Results obtained for high loadings of substrates have been analyzed. In n-hexane and acetonitrile, the kinetics of the direct acylation reactions are controlled by the limited solubility of the ion pair formed by the two precursor reagents For the transacylation reaction in acetonitrile, at a sustrate loading of 2 mol l(-1,) selective production of as much as 92 mole percent N-acyl ethanolamine was observed in only 1.5 h.  相似文献   

18.
Zhang Z  Zhu Y  Shi Y 《Biophysical chemistry》2001,89(2-3):145-162
Molecular dynamics simulations of the S-peptide analogue AETAAAKFLREHMDS in water at 278 and 358 K, and in 8 M urea at 278 K were performed. The results show agreement with experiments. The helix is stable at low temperature (278 K), while at 358 K, unfolding is observed. The effects of urea on protein stability have been studied. The data support a model in which urea denatures proteins by: (1) diminishing the hydrophobic effect by displacing water molecules from the solvent shell around nonpolar groups; and (2) binding directly to amide units (NH and CO groups) via hydrogen bonds. The results of cluster analysis and essential dynamics analysis suggest that the mechanism of urea and thermal-induced denaturation may not be the same.  相似文献   

19.
We have examined the aminolysis of the mono-o-nitrophenyl ester of oxalic acid by piperidine in toluene with the purpose of determining how a carboxylate “buried” at an active site might affect an enzyme-catalyzed reaction. The oxalate ester and piperidine form an ion pair (R2NH2+−O2CCO2Ar) even in extremely dilute toluene solutions. This conclusion is supported by the kinetic effects of acidic and basic additives and by a “concentration inversion” experiment. The oxalate ester was found to react more than three orders of magnitude faster than o-nitrophenyl acetate. The neighboring carboxylate in the ion pair apparently accelerates the decomposition of a tetrahedral intermediate by accepting a proton from the amine nitrogen. The implications of this anchimeric assistance to enzymatic systems is discussed briefly.  相似文献   

20.
Using the semi-empirical MNDO/H method several systems simulating the reaction of tetrahedral intermediate formation in the active site of serine proteases have been studied. The role played by elements of the "catalytic triad" in increasing the reactivity of serine hydroxyl has been discussed. The formation of a strong hydrogen bond between His and Asp was shown to be important in lowering the activation energy in the reaction of Ser with substrate. The change in position of the proton located between Ser and His and between His and Asp was analysed. The influence of substrate distortion on the energy of intermediate formation has been considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号