首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
金黄色葡萄球菌蛋白A(Staphylococcal protein A,SpA)和链球菌蛋白G(Streptococcal protein G,SpG)是细菌产生的特异结合宿主抗体的细菌免疫球蛋白结合蛋白(Immunoglobulin(Ig)-binding proteins,IBPs)的代表分子。SpA和SpG均包含由多个序列高度同源的结合结构域重复组成的抗体结合区,各单结构域都具有完全的结合IgG的功能。为研究这些单结构域随机组合能否产生具有新结合特性的组合分子,将SpA的A、B、C、D、E以及SpG的B2、B3共7个单结合结构域随机组合构建成噬菌体展示文库后,应用人IgG1、2、3、4为诱饵分子对该文库进行4轮筛选,获得了SpA天然分子中不存在的单结构域排列组合分子D-C。在筛选过程中,阴性对照噬菌体的逐渐减少、展示两个结构域以上的噬菌体比例不断增多,尤其是D-C组合的选择性富集和其随机连接肽的严格筛选都显示了筛选的有效性和D-C组合的重要性。噬菌体ELISA进一步证实D-C与人IgG四亚类的结合能力远强于天然SpA分子。该研究应用分子进化技术首次获得了一种与人IgG四亚类具有结合优势的新型组合分子D-C,不仅可为IgG纯化、制备、检测等方面的应用提供新的候选分子,还为细菌IBP结构功能的进一步研究提供新的手段。  相似文献   

2.
英国帝国化学工业公司和莱斯特大学的科学家们业已制造了至今最大的合成基因。当他们把新基因插入细菌时,这种基因能指导细胞制造一种可能为蛋白质的生物分子。八位科学家经过一年多的努力获得的这项成就对设计更大的、能指导微生物严密模仿人体自然物质生产新药剂的基因的可能性更大了。  相似文献   

3.
国外继细菌DNA鸟嘌呤(G)和胞嘧啶(c)克分子百分比(G + C mol%)作为分子遗传学指征;用于细菌分类之后,DNA分子杂交技术作为细菌分类鉴定的新指标业已开始广泛应用,国内因受某些条件所限,目前尚属起步。为了迅速提高我国细菌分类鉴定的研究水平,我们初步建立了用~3H-TdR体内标记细菌DNA,通过固相膜分子杂交技术来鉴定细菌DNA的遗传同源性的方法,现将结果报告如下:  相似文献   

4.
产Ⅱ类细菌素乳酸菌群体感应及其应用   总被引:1,自引:0,他引:1  
张香美  李平兰 《微生物学报》2011,51(9):1152-1157
群体感应(quorum sensing,QS)是微生物通过感知与细胞密度相关的信号分子的浓度来调控基因表达的一种行为。许多产Ⅱ类细菌素乳酸菌通过自诱导肽介导的QS系统调控其细菌素的合成。本文综述了乳酸菌Ⅱ类细菌素合成的QS调控现象、调控机制、QS系统组分以及QS的应用。产Ⅱ类细菌素乳酸菌QS的研究,必将为揭示发酵调控机理、调控发酵过程提供新的研究平台,为食品级基因表达系统的开发提供新的选择。  相似文献   

5.
<正>细菌毒素的研究始于19世纪末分离出白喉毒素后,其后也分离并研究了其它细菌毒素。经查明大多数细菌毒素为蛋白性,并具有结合部位和活性功能。毒素分子具有结合功能的部分使毒素粘着于特定细胞的相应受体上,然后分子的活性部分施展毒性作用。研究结果指出没有结合部位的毒素分子不能体现生物学作用,尽管分子中仍保持具有活性功能的部位。 由于积累了许多有关细菌毒素的资料,有必要对其系统化和分类。在许多著作中都阐述了一些主要细菌毒素的分类法。Bonventre提出根据毒素分子的结构特点进行分  相似文献   

6.
乳酸菌产生的细菌素中Ⅱa类细菌素是很大的一类,这类细菌素数量众多且抑菌活性广,尤其是它们都对单核细胞增生李斯特氏菌有较强的抑菌活性,而且它们的理化性质也比较稳定,因而它们是最有希望作为食品添加剂应用的细菌素。对目前研究比较清楚的一些Ⅱa类细菌素的分子构成、基因组织、生物合成、作用方式进行了概述,并对未来Ⅱa类细菌素在食品中的应用途径做出了展望。  相似文献   

7.
细菌对喹诺酮类抗菌药的分子耐药机制   总被引:7,自引:0,他引:7  
喹诺酮类是目前临床上应用较多的抗菌药。然而,喹诺酮类耐药菌时有出现。就细菌对喹诺酮类抗菌药主要耐药机制从分子水平作一综述。(1)一般认为,喹诺酮类抗菌药通过结合细菌Ⅱ类拓扑异构酶,干扰细菌复制,而发挥抑菌作用。Ⅱ类拓扑异构酶变异时,细菌可逃脱喹诺酮类的抑菌作用。高水平的耐药由DNA回旋酶和拓扑异构酶Ⅳ同时发生变异造成。(2)细菌细胞壁是抗菌药进入的屏障。细胞壁组分脂多糖和孔蛋白的改变,可减少喹诺酮类的通透。(3)有些细菌可利用“外排泵”主动将喹诺酮类排出,降低喹诺酮类在菌体内的积累浓度。(4)细菌的其他一些代谢因素也可影响喹诺酮类的抑菌作用。  相似文献   

8.
细菌非编码RNA指细菌中不编码蛋白质,而以RNA的分子形式起调控作用的一类核酸分子。高通量测序技术的应用极大地推进了多种细菌中非编码RNA的发现工作,但由于现阶段对细菌非编码RNA特征的认识尚不够深入,该领域测序数据的生物信息学分析还存在许多不足。介绍了应用高通量测序技术研究细菌非编码RNA的两种主要技术——RNA-seq技术和d RNA-seq技术,对现行的筛选非编码RNA的生物信息学分析方法进行综述,并对该领域生物信息学分析策略的改进提出设想。  相似文献   

9.
细菌非编码RNA指细菌中不编码蛋白质,而以RNA的分子形式起调控作用的一类核酸分子。高通量测序技术的应用极大地推进了多种细菌中非编码RNA的发现工作,但由于现阶段对细菌非编码RNA特征的认识尚不够深入,该领域测序数据的生物信息学分析还存在许多不足。介绍了应用高通量测序技术研究细菌非编码RNA的两种主要技术——RNA-seq技术和d RNA-seq技术,对现行的筛选非编码RNA的生物信息学分析方法进行综述,并对该领域生物信息学分析策略的改进提出设想。  相似文献   

10.
一氧化氮(NO)是一种气体信号分子,具有调节血管张力、引起肿瘤细胞凋亡和减缓植物成熟等功能。最新研究发现,NO可以通过限制菌体对抗生素药物的摄入等保护细菌,但高浓度的NO对细菌又具有杀灭作用;与此同时NO通过双分子系统、c-di-GMP和群体感应等影响细菌生物膜的形成,但细菌种类不同NO的影响效果也不同。本文主要对NO在细菌抗菌机理和生物膜形成的分子作用等进行综述,同时,也对NO研究发展的新方向进行了展望。  相似文献   

11.
纤毛类原生动物中宿主—共生体系统的研究   总被引:2,自引:0,他引:2  
目前已经在100多种纤毛虫中观察到细菌、藻类和其他微生物等共生体。对纤毛虫中宿主-共生体系统的研究表明,双小核草履虫中卡巴粒的遗传为细胞质遗传理论提供了例证;含细菌共生体的许多厌氧纤毛虫无线粒体,共生体对宿主代谢有重要作用;尾草履虫-钝状全孢螺菌共生作用中,共生菌感染形式的39kDa、15kDa周质蛋白可分别与IF-3-1、IF-3-2两种单抗反应,其共生体早期感染过程中两种抗原的量发生显著变化,并且共生体生殖形式选择性地合成63kDa蛋白质,该蛋白质可能是与共生作有联系的关键分子;绿草履虫-小球藻共生系统中,共生藻中存在葡糖胺硬性壁是其与草履虫发生共生关系的基本条件,其中,共生藻参与宿主代谢,与宿主形成相互受益的专一性关系,并且藻类共生体的作用可能影响了宿主草履虫基因组有关结构,改变了其基因表达。作者推测,探索共生体对宿主基因结构及其表达产物的影响可能是对纤毛虫中共生作用研究的主要趋势,这对于深入了解真核细胞中宿主-共生体双方的相互作用、物质交流在分子水平上的调控机理、细胞结构与功能的关系等细胞生命活动规律是有意义的。  相似文献   

12.
将含分子伴侣GroESL基因的DNA片段,通过在合适的酶切位点进行酶切,将该基因克隆入高表达载体pKC220,含该表达质粒的工程菌经42℃热诱导后,分子伴侣GroESL基因在大肠杆菌中获得了高效表达,其中,分子伴侣蛋白GroEL的表达量占细菌总蛋白的40%,其辅助蛋白GroES的表达量占细菌总蛋白的15%;同时,建立了较简单的分离纯化路线,通过硫酸铵沉淀、DEAE-52柱层析,Sephadex G-50凝胶过滤等方法得到纯化的分子伴侣蛋白GroEL和GroES。  相似文献   

13.
将含分子伴侣GroESL基因的DNA片段,通过在合适的酶切位点进行酶切,将该基因克隆入高表达载体pKC220,含该表达质粒的工程菌经42℃热诱导后,分子伴侣GroESL基因在大肠杆菌中获得了高效表达,其中,分子伴侣蛋白GroEL的表达量占细菌总蛋白的40%,其辅助蛋白GroES的表达量占细菌总蛋白的15%;同时,建立了较简单的分离纯化路线,通过硫酸铵沉淀、DEAE-52柱层析,Sephadex G-50凝胶过滤等方法得到纯化的分子伴侣蛋白GroEL和GroES。  相似文献   

14.
群体感应(Quorum sensing,QS)是细菌细胞间通过信号分子互相交流的一种现象,细菌细胞通过分泌并感应特定的信号分子浓度,当信号分子浓度达到一定阈值时,细菌细胞会启动特定基因尤其是很多致病基因的表达,这就给防治某些植物、动物性疾病提供了一种新思维。群体淬灭(Quorum quenching,QQ)就是基于群体感应而提出的,它主要是通过分解细菌细胞所产生的信号分子,使信号分子浓度在阈值之内,从而使细菌无法表达特定致病因子,进而防治病害的一种方法,群体淬灭酶是研究的最多也是最有效的淬灭途径。到目前为止,很多群体淬灭酶已经被分离出来。系统总结了群体淬灭酶的种类、特性、催化机制和生理功能方面的进展。  相似文献   

15.
羊毛硫细菌素是由细菌核糖体上合成并经翻译后加工修饰而成的一类抗菌肽。已经在多种G+细菌中发现有羊毛硫细菌素,大多对G+细菌有抑菌作用。羊毛硫细菌素的基因工程无法从单一的表达羊毛硫细菌素结构基因获得高活性的成熟羊毛硫细菌素。本研究综述了羊毛硫细菌素前体分子定向位点突变后,由修饰酶重新识别和修饰可产生结构变异的可分泌的变体分子和无法分泌的变体分子,对羊毛硫细菌素分子突变位点进行了分类和归纳,并总结了羊毛硫细菌素分子突变位点与其生物活性的关系。在现有羊毛硫细菌素应用成果有限的条件下,对于工程改造羊毛硫细菌素和增强其抑菌活性具有重要意义。  相似文献   

16.
目前已经在100多种纤毛虫中观察到细菌、藻类和其他微生物等共生体。对纤毛虫中宿主-共生体系统的研究表明,双小核草履虫中卡巴粒的遗传为细胞质遗传理论提供了例证;含细菌共生体的许多厌氧纤毛虫无线粒体,共生体对宿主代谢有重要作用;尾草履虫-钝状全孢螺菌共生作用中,共生菌感染形式的39kDa、15kDa周质蛋白可分别与IF-3-1、IF-3-2两种单抗反应,其共生体早期感染过程中两种抗原的量发生显著变化,并且共生体生殖形式选择性地合成63kDa蛋白质,该蛋白质可能是与共生作用有联系的关键分子;绿草履虫-小球藻共生系统中,共生藻中存在葡糖胺硬性壁是其与草履虫发生共生关系的基本条件,其中,共生藻参与宿主代谢,与宿主形成相互受益的专一性关系,并且藻类共生体的作用可能影响了宿主草履虫基因组有关结构,改变了其基因表达。作者推测,探索共生体对宿主基因结构及其表达产物的影响可能是对纤毛虫中共生作用研究的主要趋势,这对于深入了解真核细胞中宿主-共生体双方的相互作用、物质交流在分子水平上的调控机理、细胞结构与功能的关系等细胞生命活动规律是有意义的。  相似文献   

17.
近年,有关细菌与宿主相互作用的研究表明,细菌分泌的群体感应信号(quorum sensing signal,QSS)分子是调节宿主细胞信号传递的重要信使。细菌分泌的群体感应信号分子种类繁多,经常干扰宿主哺乳动物细胞对细菌的免疫应答。通过抑制哺乳动物细胞免疫应答或炎症反应,QSS分子阻碍细胞免疫信号通路,最终致使细胞凋亡或坏死。不同种类的QSS分子具有不同的性质,某些信号分子能够穿过细胞膜,自由出入细胞;而有些则需要与膜上的特异受体结合后才能进出细胞。但QSS分子究竟如何干扰宿主免疫防御,宿主细胞能否识别细菌QSS的保守结构抵御细菌感染,还有待于进一步深入研究。本文针对QSS分子与宿主哺乳细胞之间相互作用的相关研究进行综述。  相似文献   

18.
产黑色素类杆菌是牙周可疑致病菌之一,对这些细菌的抗原分析是防治牙周病的重要课题。本文对其中5种标准菌株或模式菌株的可溶性蛋白抗原进行了较细致的分子水平及化学性质分析。结果表明:SDS-PAGE凝胶系统分析5种细菌的主要蛋白区带是一致的,但付带可见明显差异。通过糖蛋白及脂蛋白染色分析细菌可溶性蛋白抗原化学成份,证明部分蛋白是糖脂蛋白。  相似文献   

19.
基因芯片技术在检测肠道致病菌方面的应用   总被引:10,自引:0,他引:10  
基因芯片技术具有高通量、自动化、快速检测等特点,因此被广泛地应用于各种研究领域,如细菌分子流行病学、细菌基因鉴定、致病分子机理、基因突变及多态性分析、表达谱分析、DNA测序和药物筛选等。现介绍基因芯片检测肠道致病菌方面的国外研究进展,基因芯片应用于检测肠道致病菌的3个方面:结合多重PCR对致病菌的毒力因子或者特异性基因进行鉴定;直接检测细菌的DNA或者RNA;以致病细菌核糖体RNA作为检测的靶基因同时检测多种肠道致病菌。由于其检测的高效率,该技术要优于其他分子生物学检测方法。基因芯片技术在肠道致病菌检测中有着巨大的应用价值,具有广阔的应用前景。  相似文献   

20.
杨林  范美华  刘雪珠  武梅  石戈  廖智 《生物工程学报》2011,27(11):1564-1573
为深入了解两种新型人工抗菌肽mytilin-derived-peptide-1 (MDP-1) 和mytilin-derived-peptide-2 (MDP-2) 的溶液结构和抗菌机理并探讨两种抗菌肽之间活性差异的结构基础,采用二维核磁共振技术 (2-D NMR) 研究MDP分子的溶液结构;采用透射电镜技术 (Transmitted electron microscopy,TEM) 研究MDP分子对于大肠杆菌和藤黄叠球菌的作用机理。研究结果表明,MDP-1和MDP-2均采取了典型的β-发夹结构,其分子表面具有明显的疏水斑片,其分子中碱性氨基酸突出于分子表面;经MDP分子处理后的大肠杆菌以及藤黄叠球菌均出现细胞壁或细胞膜结构被破坏,并出现膜壁分离以及细胞质内缩现象。我们认为,MDP-1和MDP-2分子中的碱性氨基酸有助于MDP结合细菌表面的带负电荷的基团,同时其分子表面的疏水斑片有助于其插入到细菌细胞膜内;其疏水斑片面积以及碱性氨基酸在分子表面的拓扑结构差异是MDP-1和MDP-2活性差异的主要原因;电镜实验结果表明MDP-1和MDP-2的主要靶标是细菌细胞壁以及细胞膜;上述研究为深入了解MDP分子的结构与功能的关系以及将来基于MDP分子的药物研发奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号