首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Double-barrel ion-sensitive microelectrodes were used to measure activity-related changes in extracellular pH (pHe), potassium and calcium concentration ([K+]e and [Ca2+]e) in the spinal dorsal horns of frogs. Repetitive stimulation (30-100 Hz) of the dorsal root evoked transient acidification in the lower dorsal horn by 0.25 pH units, which was accompanied by an increase in [K+]e by 4-5 mmol/l and a decrease in [Ca2+]e by 0.5 mmol/l. The pHe changes were found to have a typical depth profile and increased with the stimulation frequency, intensity and duration. The maximum of pHe changes was reached in 25-30 s of stimulation, and when stimulation continued further no greater pHe changes were achieved. Similarly as the K+ and Ca2+ transients, the pHe reached a ceiling level, which was 0.2-0.25 pH units more acid than the pH of the Ringer solution. The poststimulation K+ undershoot below the resting K+ level (3 mmol/l) was accompanied by an alkaline shift before the original pH base line. The rise time of the pHe changes was slower than that of [K+]e and [Ca2+]e changes. However, the redistribution of all the ionic changes had a similar time course. The clearance of changes in [K+]e and pHe was slowed by ouabain. The depression of the acid shift required higher concentrations of ouabain than the depression of the alkaline shifts. Acetazolamide, a carbonic anhydrase inhibitor, depressed the acid and enhanced the alkaline shift. Superfusion of the cord with elevated [K+]e was accompanied by a prompt and progressive acid shift, the lowering of [K+]e by an alkaline shift. The stimulus-evoked K+ increase and acid shift were depressed during the elevated [K+]e, while the alkaline shift was enhanced. Spontaneous elevations of [K+]e were accompanied by acid shifts of a similar time course. The results are discussed in terms of stimulus-evoked changes in extracellular strong ion differences [SID]e, and of their possible physiological significance.  相似文献   

2.
In Chara corallina cells exposed to continuous light, external pH (pH(o)) and photosystem II (PSII) photochemical yield show correlated banding patterns. Photosynthetic activity is low in cell regions producing alkaline zones and high in the acid regions. We addressed the question whether (and how) photosynthetic activity and plasma membrane (PM) H+-pumping and H+-conductance are coupled in the different bands. First, PM H+-pump activity was stimulated with fusicoccin. This resulted in a more acidic pH in the acid bands without disturbing the correlation of photosynthetic electron transport and H+ fluxes across the PM. Next, H+-pump activity was reduced through microinjection of a phosphorylated peptide matching the canonical 14-3-3 binding motif RSTpSTP in the acid cell region. Microinjection induced a rapid (~5 min) rise in pH(o) by ca. 1.0 unit near the injection site, whereas the injection of the non-phosphorylated peptide had no effect. This pH rise confirms the supposed inhibition of the H+-pump upon the detachment of 14-3-3 proteins from the H+-ATPase. However, the PSII yield in the cell regions corresponding to the new alkaline peak remained high, which violated the normal inverse relations between the pH(o) and PSII photochemical yield. We conclude that the injection of the competitive inhibitor of the H+-ATPase disrupts the balanced operation of PM H+-transport and photosynthetic electron flow and promotes electron flow through alternative pathways.  相似文献   

3.
Roles of the respiratory Na+ pump in bioenergetics of Vibrio alginolyticus   总被引:3,自引:0,他引:3  
Bioenergetic characteristics of Na+ pump-defective mutants of a marine bacterium Vibrio alginolyticus were compared with those of the wild type and revertant. Generation of membrane potential and motility at pH 8.5 in the mutants were completely inhibited by a proton conductor, carbonylcyanide m-chlorophenylhydrazone, whereas those in the wild type or revertant were resistant to the inhibitor. Motility and amino acid transport were driven by the electrochemical potential of Na+ not only in the wild type or revertant but also in the mutants. In the absence of the proton conductor, motility and amino acid transport of the mutants did not significantly differ from those of the wild type or revertant even at pH 8.5, where the Na+ pump has maximum activity. Therefore, the electrochemical potential of Na+ in the mutants seemed to be maintained at a normal level by a respiration-dependent H+ pump and Na+/H+ antiporter. On the other hand, growth of the mutants became defective as the medium pH increased, especially on minimal medium. These results indicate that the Na+ pump is an important energy-generating mechanism when nutrients are limited at alkaline pH.  相似文献   

4.
Modulation of L-type Ca2+ channel current by extracellular pH (pHo) was studied in vascular smooth muscle cells from bovine pial and porcine coronary arteries. Relative to pH 7.4, alkaline pH reversibly increased and acidic pH reduced ICa. The efficacy of pHo in modulating ICa was reduced when the concentration of the charge carrier was elevated ([Ca2+]o or [Ba2+]o varied between 2 and 110 mM). Analysis of whole cell and single Ca2+ channel currents suggested that more acidic pHo values shift the voltage-dependent gating (approximately 15 mV per pH- unit) and reduce the single Ca2+ channel conductance gCa due to screening of negative surface charges. pHo effects on gCa depended on the pipette [Ba2+] ([Ba2+]p), pK*, the pH providing 50% of saturating conductance, increased with [Ba2+]p according to pK* = 2.7-2.log ([Ba2+]p) suggesting that protons and Ba2+ ions complete for a binding site that modulates gCa. The above mechanisms are discussed in respect to their importance for Ca2+ influx and vasotonus.  相似文献   

5.
The pgr1 mutant of Arabidopsis thaliana carries a single point mutation (P194L) in the Rieske subunit of the cytochrome b6/f (cyt b6/f) complex and is characterised by a reduced electron transport activity at saturating light intensities in vivo. We have investigated the electron transport in this mutant under in vitro conditions. Measurements of P700 reduction kinetics and of photosynthetic electron transport rates indicated that electron transfer from cyt b6/f to photosystem I is not generally reduced in the mutant, but that the pH dependence of this reaction is altered. The data imply that the pH-dependent inactivation of electron transport through cyt b6/f is shifted by about 1 pH unit to more alkaline pH values in pgr1 thylakoids in comparison with wild-type thylakoids. This interpretation was confirmed by determination of the transmembrane deltapH at different stromal pH values showing that the lumen pH in pgr1 mutant plants cannot drop below pH 6 reflecting most likely a shift of the pK and/or the redox potential of the oxidised Rieske protein.  相似文献   

6.
To test the hypothesis that internal ion imbalances at high pH are caused by altered branchial ion transporting capacity and permeability, radiotracers (24Na+ and 36Cl-) were used to measure ion movements across the gills of intact rainbow trout (Oncorhynchus mykiss) during 3 d exposure to pH 9.5. At control pH (pH 8.0), the trout were in net ion balance, but by 8 h at high pH, 60%-70% reductions in Cl- influx (JClin) and Na+ influx (JNain) led to net Cl- and Na+ losses of -200 micromol kg-1 h-1. Outflux (diffusive efflux plus renal ion losses) was not initially altered. By 72 h, net Cl- balance was reestablished because of a restoration of JClin. Although JNain remained 50% lower at this time, counterbalancing reductions in Na+ outflux restored net Na+ balance. One-substrate ion-uptake kinetics analyses indicated that reduced ion influx after 8 h at pH 9.5 was caused by 50% decreases in Cl- and Na+ maximal transport rates (JClmax, JNamax), likely reflecting decreased numbers of functional transport sites. Two-substrate kinetic analyses indicated that reduced internal HCO-3 and H+ supply for respective branchial Cl-/base and Na+/acid transport systems also contributed to lower JClin and, to a lesser extent, lower JNain at pH 9.5. Recovery of JClmax after 3 d accounted for restoration of Cl- balance and likely reflected increased numbers of transport sites. In contrast, JNamax remained 33% lower after 3 d, but a lower affinity of the gills for Na+ (fourfold greater KNam) accounted for the chronic reduction in Na+ influx at pH 9.5. Thus, reestablishment of Cl- uptake capacity and counterbalancing reductions in Na+ outflux allows rainbow trout to reestablish net ion balance in alkaline waters.  相似文献   

7.
The calcium (Ca2+) uptake by brush border membrane vesicles isolated from fresh human placentas has been characterized. This process was saturable and time- and concentration-dependent. It exhibited a double Michaelis-Menten kinetics, with apparent Km values of 0.17 +/- 0.03 and 2.98 +/- 0.17 mM Ca2+, and Vmax values of 0.9 +/- 0.13 and 2.51 +/- 0.45 pmol.micrograms-1.5 s-1. It was not influenced by the presence of Na+ or Mg2+ in the incubation medium. It was not increased by K+ or anion diffusion potentials, inside negative. At a steady state of 1 mM Ca2+ uptake, a large proportion (approximately 94%) of the Ca2+ was bound to the internal surface of the membranes. Preincubation of these membrane vesicles with voltage-dependent Ca2+ channel blockers (nifedipine and verapamil) had no influence on Ca2+ uptake. However, this uptake was very sensitive to pH. In the absence of a pH gradient, the Ca2+ uptake increased with alkalinity. When the intravesicular pH was kept constant while the pH of the incubation medium was increased, Ca2+ uptake was also stimulated by alkaline pH. In contrast, when the pH of the incubation medium was kept constant and the intravesicular pH was progressively increased, Ca2+ uptake was diminished with alkaline pH. Therefore, H+ gradient (H+ in trans-position greater than H+ in cis-position) favored Ca2+ transport, suggesting a H+/Ca2+ exchange mechanism. Finally, in contrast to the basal plasma membrane, the brush border membrane did not show any ATP-dependent Ca2+ transport activity.  相似文献   

8.
The effects of K+, Na+ and ATP on the gastric (H+ + K+)-ATPase were investigated at various pH. The enzyme was phosphorylated by ATP with a pseudo-first-order rate constant of 3650 min-1 at pH 7.4. This rate constant increased to a maximal value of about 7900 min-1 when pH was decreased to 6.0. Alkalinization decreased the rate constant. At pH 8.0 it was 1290 min-1. Additions of 5 mM K+ or Na+, did not change the rate constant at acidic pH, while at neutral or alkaline pH a decrease was observed. Dephosphorylation of phosphoenzyme in lyophilized vesicles was dependent on K+, but not on Na+. Alkaline pH increased the rate of dephosphorylation. K+ stimulated the ATPase and p-nitrophenylphosphatase activities. At high concentrations K+ was inhibitory. Below pH 7.0 Na+ had little or no effect on the ATPase and p-nitrophenylphosphatase, while at alkaline pH, Na+ inhibited both activities. The effect of extravesicular pH on transport of H+ was investigated. At pH 6.5 the apparent Km for ATP was 2.7 microM and increased little when K+ was added extravesicularly. At pH 7.5, millimolar concentrations of K+ increased the apparent Km for ATP. Extravesicular K+ and Na+ inhibited the transport of H+. The inhibition was strongest at alkaline pH and only slight at neutral or acidic pH, suggesting a competition between the alkali metal ions and hydrogen ions at a common binding site on the cytoplasmic side of the membrane. Two H+-producing reactions as possible candidates as physiological regulators of (H+ + K+)-ATPase were investigated. Firstly, the hydrolysis of ATP per se, and secondly, the hydration of CO2 and the subsequent formation of H+ and HCO3-. The amount of hydrogen ions formed in the ATPase reaction was highest at alkaline pH. The H+/ATP ratio was about 1 at pH 8.0. When CO2 was added to the reaction medium there was no change in the rate of hydrogen ion transport at pH 7.0, but at pH 8.0 the rate increased 4-times upon the addition of 0.4 mM CO2. The results indicate a possible co-operation in the production of acid between the H+ + K+-ATPase and a carbonic anhydrase associated with the vesicular membrane.  相似文献   

9.
Recessed-tip microelectrodes were used to measure internal pH (pHi) in the fungus Neurospora, and to examine the response of pHi to several kinds of stress: changes of extracellular pH (pHo), inhibition of the principal proton pump in the plasma membrane, and inhibition of respiration. Under control conditions, at pHo = 5.8, pHi in Neurospora is 7.19 +/- 0.04. Changes of pHo between 3.9 and 9.3 affect pHi linearly but with a slope of only approximately 0.1 unit pHi per unit pHo, stable pHi being reached within 3 min of changed pHo. Despite a postulated high passive permeability of the Neurospora membrane to protons (Slayman, 1970), neither active nor passive H+ transport appears critical to pHi because (alpha) specific inhibition of the proton pump by orthovanadate has little effect on pHi, and (b) cytoplasmic acidification produced by respiratory blockade is unaffected by the size or direction of proton gradient. To convert measured changes in pHi into net proton fluxes, intracellular buffering capacity (beta i) was measured by the weak acid/weak base technique. At pHi = 7.2, beta i was (-) 35 mmol H+ (liter cell water)-1 (pH unit)-1, but beta i increased substantially in both the acid and alkaline directions, which suggests that amino acid side chains are the principal source of buffer.  相似文献   

10.
H441 cells, a bronchiolar epithelial cell line, develop a cAMP-regulated benzamil-sensitive Na+ transport pathway on permeable supports (Itani OA, Auerbach SD, Husted RF, Volk KA, Ageloff S, Knepper MA, Stokes JB, Thomas CP. Am J Physiol Lung Cell Mol Physiol 282: L631-L641, 2002). To understand the molecular basis for the stimulation of Na+ transport, we delineated the role of specific intracellular pathways and examined the effect of cAMP on alphabetagamma-epithelial Na+ channel (ENaC) and sgk1 expression. Na+ transport increases within 5 min of cAMP stimulation and is sustained for >24 h. The sustained effect of cAMP on Na+ transport is abolished by LY-294002, an inhibitor of phosphatidylinositol 3-kinase, by H89, an inhibitor of PKA, or by SB-202190, an inhibitor of p38 MAP kinase. The sustained effect of cAMP was associated with increases in alpha-ENaC mRNA and protein but without a detectable increase in betagamma-ENaC and sgk1. The early effect of cAMP on Na+ transport is brefeldin sensitive and is mediated via PKA. These results are consistent with a model where the early effect of cAMP is to increase trafficking of Na+ channels to the apical cell surface whereas the sustained effect requires the synthesis of alpha-ENaC.  相似文献   

11.
Summary The distribution of Mg+ +-ATPase in osteoclasts along the endosteal surface of the chick tibia was investigated by neutral and alkaline pH cytochemical methods at the electron-microscopic level. Reaction product was observed in mitochondria, cytoplasmic vesicles, and ruffled-border membrane. Levamisole, ouabain, and vanadate did not affect the enzymatic activity. Para-chloromercuribenzoic acid (PCMB) prevented staining of mitochondria, ruffled border, and most cytoplasmic vesicles. Tri-n-butyltin decreased the amount of reaction product in cytoplasmic vesicles and ruffled-border membrane, but did not inhibit reaction product formation within mitochondria. Duramycin, which is a potent inhibitor for proton-pump ATPase, blocked reaction-product formation along the ruffled-border membrane, in mitochondria, and in cytoplasmic vesicles at alkaline pH, but not at neutral pH. It is concluded that the alkaline pH method for Mg+ +-ATPase appears to demonstrate sites of proton-pump ATPase activity.  相似文献   

12.
Membrane vesicles were purified from resting corpus mucosa of pig stomachs by velocity-sedimentation on a sucrose-Ficoll step gradient. Two vesicular fractions containing the (H+ + K+)-ATPase were obtained. One fraction was tight towards KCl, the other was leaky. At 21 degrees C maximal (H+ + K+)-ATPase activities of 0.8 and 0.4 mumol X mg-1 X min-1, respectively, were observed in lyophilized vesicles. The vesicles contained a membrane-associated carbonic anhydrase, the activity of which was in 100-fold excess of the maximal ATPase activity. Both vesicular fractions were rich in phosphatidylcholine, phosphatidylethanolamine, sphingomyelin and cholesterol. The characteristics of ion permeability and transport in the tight vesicles were in agreement with corresponding data for vesicles of a tubulovesicular origin in the parietal cell. Measurement of the rate of K+ uptake into the vesicles was based on the ability of K+ to promote H+ transport. The uptake was slow and dependent on the type of anion present. The effectiveness in promoting uptake of K+ by anions was SCN- greater than NO3- greater than Cl- much greater than HCO3- greater than SO4(2-). Uptake of K+ was much more rapid at alkaline pH than at neutral or at acidic pH. Addition of CO2 at alkaline pH strongly stimulated the rate of H+ accumulation in the vesicles. The initial part of this stimulation was sensitive to acetazolamide, an inhibitor of carbonic anhydrase. A model how the (H+ + K+)-ATPase and the carbonic anhydrase may co-operate is presented. It is concluded that membrane vesicles of a tubulovesicular origin can produce acid.  相似文献   

13.
Summary Ethacrynic acid greatly inhibited net transport of ions and aerobic, energyconserving metabolism in slices of avian salt gland, rat liver, and rat and guinea-pig kidney cortex. The effects of increasing concentrations of ethacrynic acid on the transport of Na+, K+ and Cl ran closely parallel to its effects on tissue ATP levels and respiration. The concentration needed for maximal inhibition of transport reduced ATP levels by 80–90%. Respiration was reduced by 80–90% in salt gland and kidney cortex, and by a maximum of 30% in liver slices. The effects of low concentrations of ethacrynic acid required time to become fully manifest in some tissues, and the development of transport inhibition followed a similar course to decline of respiration and ATP levels. Ca2+ extrusion by liver cells was inhibited by ethacrynic acid. The concentration dependence of the inhibition was similar to that shown by the other transport systems inhibited. There was no distinction evident between the sensitivity of Na+ extrusion and of K+ accumulation to the diuretic. Lactate production increased as respiration decreased in the presence of increasing concentrations of ethacrynic acid. We conclude that ethacrynic acid acted primarily as an inhibitor of mitochondrial respiration and ATP synthesis in the tissue slices, and that inhibition of ion transport was a nonspecific consequence of the failure of the energy supply.  相似文献   

14.
The sulfoxide agent Ro 18-5364 is an extremely potent and rapid inhibitor of the gastric mucosal (H+ + K+)-ATPase with an apparent Ki of 0.1 microM at pH 6. The inhibition of both enzymatic activity and vesicular proton transport in membrane preparations is concentration- and time-dependent. Comparative studies with the two enantiomers of Ro 18-5364 indicated no enantiomeric preference. Marked differences were seen between Ro 18-5364 (sulfoxide) and Ro 18-5362 (sulfide) with regard to inhibitory activity. Even at concentrations as high as 0.1 mM Ro 18-5362 failed to affect significantly (H+ + K+)-ATPase activity and associated proton translocation. Similarly, Ro 17-5380 demonstrated an apparent Ki of 20 microM for inhibition of the (H+ + K+)-ATPase whereas its reduced derivative Ro 17-4749 was inactive. Addition of a single methyl group in the pyridine moiety of Ro 18-5364 noticeably decreased the inhibitory potency. The inhibitory action of Ro 18-5364 on (H+ + K+)-ATPase activity was markedly higher at low incubation medium pH in comparison to physiological or alkaline values. The results of incorporation studies paralleled that of enzymatic inhibition. The extent of Ro 18-5364 incorporation was dependent on time, concentration, and medium hydrogen ion concentration, with a decrease in medium pH resulting in increased binding. While ATP and GTP had little effect on the binding rates, reduced lipoic acid methyl ester, mercaptoethanol and dithiothreitol were capable of displacing the radiolabel to different extents. Autoradiography of electrophoresed Ro-18-5364-labeled gastric microsomal membranes confirmed that the radiolabel was associated with polypeptides of approximately 100 kDa. The incorporation was reversed upon subjection of the membranes to reducing conditions.  相似文献   

15.
The plasma membrane Na+/H+ exchanger 1 is activated in response to various extrinsic factors, and this process is regulated by an intracellular pH-sensing mechanism. To identify the candidate residues responsible for intracellular pH regulation, we analyzed the functional properties of engineered Na+/H+ exchanger 1 mutants with charge-reversal mutations of charged residues located in the intracellular loops. Na+/H+ exchanger 1 mutants with mutations at 11 positions were well expressed in the plasma membrane, but that with E247R was not, suggesting that Glu247 is important for the functional expression of Na+/H+ exchanger 1. Charge-reversal mutations of Glu131 (E131R, E131K) and Arg327 (R327E) resulted in a shift in the intracellular pH dependence of the exchange activity measured by 22Na+ uptake to the acidic side, and it abolished the response to growth factors and a hyperosmotic medium; however, mutations of Asp448 (D448R) and Arg500 (R500E) slightly shifted it to the alkaline side. In E131R, in addition to the change in intracellular pH dependence, the affinities for extracellular Na+, Li+ and the inhibitor 5-(N-ethyl-N-isopropyl)amiloride significantly increased. Furthermore, charge-conserved mutation of E131 (E131D) was found to have no effect, whereas charge neutralization (E131Q) resulted in a slight acidic shift of exchange. These results support the view that the multiple charged residues identified in this study, along with several basic residues reported previously, participate in the regulation of the intracellular pH sensing of Na+/H+ exchanger 1. In addition, Glu131 may also be important for cation transport.  相似文献   

16.
The aim of the study was to confirm the hypothesis that the longer a contraction is sustained, the larger are the changes in the spatial distribution of muscle activity. For this purpose, surface electromyographic (EMG) signals were recorded with a 13 x 5 grid of electrodes from the upper trapezius muscle of 11 healthy male subjects during static contractions with shoulders 90 degrees abducted until endurance. The entropy (degree of uniformity) and center of gravity of the EMG root mean square map were computed to assess spatial inhomogeneity in muscle activation and changes over time in EMG amplitude spatial distribution. At the endurance time, entropy decreased (mean+/-SD, percent change 2.0+/-1.6%; P<0.0001) and the center of gravity moved in the cranial direction (shift 11.2+/-6.1mm; P<0.0001) with respect to the beginning of the contraction. The shift in the center of gravity was positively correlated with endurance time (R(2)=0.46, P<0.05), thus subjects with larger shift in the activity map showed longer endurance time. The percent variation in average (over the grid) root mean square was positively correlated with the shift in the center of gravity (R(2)=0.51, P<0.05). Moreover, the shift in the center of gravity was negatively correlated to both initial and final (at the endurance) entropy (R(2)=0.54 and R(2)=0.56, respectively; P<0.01 in both cases), indicating that subjects with less uniform root mean square maps had larger shift of the center of gravity over time. The spatial changes in root mean square EMG were likely due to spatially-dependent changes in motor unit activation during the sustained contraction. It was concluded that the changes in spatial muscle activity distribution play a role in the ability to maintain a static contraction.  相似文献   

17.
Mechanisms of Na+ transport into the inside-out subcellular vesicles of alkalo- and halotolerant Bacillus FTU and of Escherichia coli grown at different pH have been studied. Both microorganisms growing at pH 7.5 are shown to possess a system of the respiration-dependent Na+ transport which (i) is inhibited by protonophorous uncoupler, by delta pH-discharging agent diethylammonium (DEA) acetate, by micromolar cyanide arresting the H(+)-motive respiratory chain, and by amiloride, and (ii) is resistant to the Na+/H+ antiporter monensin and to Ag+, inhibitor of the Na(+)-motive respiratory chain. Growth at pH 8.6 strongly changes the activator and inhibitor pattern. Now (1) protonophore stimulates the Na+ transport, (2) DEA acetate is without effect in the absence of protonophore and is stimulating in its presence, (3) amiloride and low cyanide are ineffective, (4) monensin and Ag+ completely arrest the Na+ accumulation in the vesicles. Independent of pH of the growth medium, (a) valinomycin is stimulatory for the Na+ transport, (b) Na+ ionophore ETH 157 is inhibitory and, (c) Na+ transport can be supported by NADH----fumarate as well as by ascorbate (TMPD)----O2 electron transfers. Growth at alkaline pH results in the appearance of ascorbate (TMPD) oxidation resistant to low and sensitive to high cyanide concentrations. These relationships are in agreement with the concept (Skulachev, V.P. (1984) Trends Biochem. Sci. 9, 483-485) that adaptation to alkaline conditions in bacteria growing in the high [Na+] media causes substitution of Na+ for H+ as a coupling ion. The obtained data indicate that under alkaline conditions, Na+ can be pumped from the cell by the Na(+)-motive respiratory chain with neither H(+)-motive respiration nor the Na+/H+ antiporter involved. In the Na(+)-motive respiratory chain of Bac. FTU or E. coli, two Na+ pumps are localized, one in its initial and the other in its terminal spans.  相似文献   

18.
Potassium extrusion in bacteria is thought to play a role in the regulation of the cytoplasmic pH; in several organisms, it has been ascribed to secondary antiport of K+ for protons. Streptococcus faecalis exhibited a distinctive pattern: potassium extrusion occurred only when the cytoplasmic pH was alkaline and required the generation of ATP. The key observation is that glycolyzing cells suspended in an alkaline medium extruded K+, even against a K+ concentration gradient, provided the medium contained a weak permeant base (e.g. diethanolamine or methylamine). The amines render the cytoplasmic pH alkaline; when conditions were arranged to keep the cytoplasm neutral, no K+ extrusion was seen. Potassium extrusion required the presence of either glucose or arginine and was unaffected by protonophores and by inhibition of the F1Fo-ATPase. When the medium contained [14C]methylamine, the cells accumulated the base to an extent stoichiometrically equivalent to the K+ lost. Concurrently, the cytoplasmic pH fell from 8.8 to 7.6, at which point K+ extrusion ceased. The results suggest that K+ extrusion is due to an ATP-driven transport system that expels K+ by exchange for H+ and is active only at alkaline cytoplasmic pH.  相似文献   

19.
嗜热酯酶APE1547催化活性的定向进化研究   总被引:1,自引:0,他引:1  
对来源于嗜热古菌Aeropyrum pernix的酯酶(APE1547)催化活性进行定向进化研究。利用APE1547特殊的稳定性,建立了准确的高通量高温酯酶筛选方法。对第一代随机突变库筛选获得了催化活性较野生型提高1.5倍的突变体M010,序列分析表明其氨基酸突变为R526S。从第二代突变库中筛选出的总活力提高5.8倍突变体M020,突变位点为R526S/E88G/A200T/I519L,其比活力与M010一致,但表达量比野生型提高约4倍。对M020酶学性质表征发现,其最适pH为8.5,比野生型向碱性偏移0.5;活性中心残基酸性基团的解离常数(pK1)由野生型的7.0提高至7.5。晶体结构分析表明,突变位点R526距离活性中心较近,将其突变为Ser降低了活性中心的极性,抑制了催化残基His的解离,使酸性基团的解离常数升高。  相似文献   

20.
The inhibitory effects of uncouplers on amino acid transport into three marine bacteria, Vibrio alginolyticus 118, Vibrio parahaemolyticus 113, and Alteromonas haloplanktis 214, into a moderate halophile, Vibrio costicola NRC 37001, and into Escherichia coli K-12 were found to vary depending upon the uncoupler tested, its concentration, and the pH. Higher concentrations of all of the uncouplers were required to inhibit transport at pH 8.5 than at pH 7.0. The protonophore carbonyl cyanide m-chlorophenylhydrazone showed the greatest reduction in inhibitory capacity as the pH was increased, carbonyl cyanide p-trifluoromethoxyphenylhydrazone showed less reduction, and 3,3',4',5-tetrachlorosalicylanilide was almost as effective as an inhibitor of amino acid transport at pH 8.5 as at pH 7.0 for all of the organisms except A. haloplanktis 214. Differences between the protonophores in their relative activities at pHs 7.0 and 8.5 were attributed to differences in their pK values. 3,3',4',5-Tetrachlorosalicylanilide, carbonyl cyanide m-chlorophenylhydrazone, 2-heptyl-4-hydroxyquinoline-N-oxide, and NaCN all inhibited Na+ extrusion from Na+-loaded cells of V. alginolyticus 118 at pH 8.5. The results support the conclusion that Na+ extrusion from this organism at pH 8.5 occurs as a result of Na+/H+ antiport activity. Data are presented indicating the presence in V. alginolyticus 118 of an NADH oxidase which is stimulated by Na+ at pH 8.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号