首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ryanodine receptor of Jurkat T lymphocytes was phosphorylated on tyrosine residues upon stimulation of the cells via the T cell receptor/CD3 complex. The tyrosine phosphorylation was transient, reaching a maximum at 2 min, and rapidly declined thereafter. In co-immunoprecipitates of the ryanodine receptor, the tyrosine kinases p56(lck) and p59(fyn) were detected. However, only p59(fyn) associated with the ryanodine receptor in a stimulation-dependent fashion. Both tyrosine kinases, recombinantly expressed as glutathione S-transferase (GST) fusion proteins, phosphorylated the immunoprecipitated ryanodine receptor in vitro. In permeabilized Jurkat T cells, GST-p59(fyn), but not GST-p56(lck), GST-Grb2, or GST alone, significantly and concentration-dependently enhanced Ca(2+) release by cyclic ADP-ribose. The tyrosine kinase inhibitor PP2 specifically blocked the effect of GST-p59(fyn). This indicates that intracellular Ca(2+) release via ryanodine receptors may be modulated by tyrosine phosphorylation during T cell activation.  相似文献   

2.
Mice homozygous for the autosomal recessive lpr gene have a disorder that results in autoimmunity and massive accumulation of T lymphocytes lacking CD4 and CD8 surface markers. These abnormal T cells exhibit constitutive tyrosine phosphorylation of a component of the CD3-T-cell receptor complex. We compared membrane tyrosine phosphorylation in lpr/lpr CD4- CD8- T cells and control T cells, lpr membranes exhibited a 7.3-fold increase (n = 16) in tyrosine phosphorylation of a 60-kilodalton protein. The increase was correlated with the Lpr but not the CD4- CD8- phenotype in that p60 phosphorylation was not increased in membranes from normal CD4- CD8- thymocytes. To identify the p60 in lpr cells, we examined the activity of several T-cell tyrosine-specific protein kinases. p56lck phosphorylation was only slightly increased in lpr membranes (2.2-fold; n = 16). Phorbol ester treatment of intact T cells before membrane isolation caused p56lck to migrate as pp60lck; however, pp60lck could be clearly distinguished from the pp60 in lpr cells by two-dimensional gel electrophoresis. The pp60 from lpr cells exhibited several isoforms at pH approximately 6.3 to 6.5. Although on two-dimensional gels pp60c-src had a pI (6.4 to 6.8) within a similar region, p60c-src mRNA, protein, and kinase activities were not increased in lpr cells. In addition, staphylococcal V8 proteolytic cleavage of the lpr pp60 isolated on two-dimensional gels yielded two major fragments, a pattern distinct from that of pp60c-src. However, by using an antiserum against the C-terminal sequence of c-Src and other related kinases, including p59fyn, the pp60 could be immunoprecipitated in greater amounts from lpr than from control T cells. When pp59(fyn) was selectively immunoprecipitated from T-cell membranes with specific antisera, its molecular weight, proteolytic cleavage pattern, and behavior on two-dimensional gels were identical to those of the pp60 from lpr cells. We conclude that p59(fyn) phosphorylation is increased in membranes from lpr/lpr CD4(-) CD8(-) T cells and that the increase is correlated with constitutive tyrosine phosphorylation and perhaps with the expansion of this unusual T-cell population.  相似文献   

3.
Engagement of the clonotypic antigen receptor (TCR) on T lymphocytes provokes an activation response leading to cell proliferation and lymphokine secretion. To examine the molecular basis of T cell signaling, we generated transgenic animals in which a lymphocyte-specific nonreceptor protein-tyrosine kinase p59fyn(T) is 20-fold overexpressed in developing T lineage cells. Thymocytes from these mice, analyzed using both cellular and biochemical assays, were remarkably hyperstimulable. Moreover, the responsiveness of normal thymocytes to TCR-derived signals correlated well with the extent to which p59fyn was expressed in these cells. Overexpression of a catalytically inactive form of p59fyn substantially inhibited TCR-mediated activation in otherwise normal thymocytes. These effects are unique to p59fyn; overexpression of a closely related T cell-specific tyrosine kinase, p56lck, elicits dramatically different phenotypes. Our results suggest that p59fyn is a critically important component of the TCR signal transduction apparatus.  相似文献   

4.
Cross-linking of glycosyl-phosphatidylinositol (GPI)-anchored membrane proteins on T cells can trigger cell activation. We and others have shown an association between GPI-anchored proteins and the protein tyrosine kinases (PTKs) p56lck and p59fyn, suggesting a pathway for signaling through GPI-anchored proteins. Studies of decay-accelerating factor (DAF) or CD59 in either the C32 cell line or the HeLa cell line transfected with PTK cDNA demonstrated that the GPI-anchored proteins associated noncovalently with p56lck and p59fyn but not with p60src. Nonmyristylated versions of p56lck and p59fyn also failed to associate with the GPI-anchored proteins. Mutational analysis of the PTK demonstrated that the association with the GPI-anchored proteins mapped to the unique amino-terminal domains of the PTK. A chimeric PTK consisting of the 10 amino-terminal residues of p56lck or p59fyn replacing the corresponding amino acids in p60src was sufficient for association with DAF, but the converse constructs containing the first 10 amino acids of p60src plus the remainder of p56lck or p59fyn did not associate with DAF. Mutation of cysteine to serine at positions 3 and 6 in p59fyn or positions 3 and 5 in p56lck abolished the association of these kinases with DAF. Mutation of serine to cysteine at positions 3 and 6 in p60src conferred on p60src the ability to associate with DAF. Direct labeling with [3H]palmitate demonstrated palmitylation of this amino-terminal cysteine motif in p56lck. Thus, palmitylation of the amino-terminal cysteine residue(s) together with myristylation of the amino-terminal glycine residue defines important motifs for the association of PTKs with GPI-anchored proteins.  相似文献   

5.
Several lines of evidence link the protein tyrosine kinase p59fyn to the T-cell receptor. The molecular basis of this interaction has not been established. Here we show that the tyrosine kinase p59fyn can associate with chimeric proteins that contain the cytoplasmic domains of CD3 epsilon, gamma, zeta (zeta), and eta. Mutational analysis of the zeta cytoplasmic domain demonstrated that the membrane-proximal 41 residues of zeta are sufficient for p59fyn binding and that at least two p59fyn binding domains are present. The association of p59fyn with the zeta chain was specific, as two closely related Src family protein tyrosine kinases, p60src and p56lck, did not associate with a chimeric protein that contained the cytoplasmic domain of zeta. Mutational analysis of p59fyn revealed that a 10-amino-acid sequence in the unique amino-terminal domain of p59fyn was responsible for the association with zeta. These findings support evidence that p59fyn is functionally and structurally linked to the T-cell receptor. More importantly, these studies support a critical role for the unique amino-terminal domains of Src family kinases in the coupling of tyrosine kinases to the signalling pathways of cell surface receptors.  相似文献   

6.
The p56lck and p59fyn protein tyrosine kinases are important signal transmission elements in the activation of mature T lymphocytes by ligands to the T-cell antigen receptor (TCR)/CD3 complex. The lack of either kinase results in deficient early signaling events, and pharmacological agents that block tyrosine phosphorylation prevent T-cell activation altogether. After triggering of the TCR/CD3 complex, both kinases are moderately activated and begin to phosphorylate cellular substrates, but the molecular mechanisms responsible for these changes have remained unclear. We recently found that the p72syk protein tyrosine kinase is physically associated with the TCR/CD3 complex and is rapidly tyrosine phosphorylated and activated by receptor triggering also in T cells lacking p56lck. Here we examine the regulation of p72syk and its interaction with p56lck in transfected COS-1 cells. p72syk was catalytically active and heavily phosphorylated on its putative autophosphorylation site, Tyr-518/519. Mutation of these residues to phenylalanines abolished its activity in vitro and toward cellular substrates in vivo and reduced its tyrosine phosphorylation in intact cells by approximately 90%. Coexpression of lck did not alter the catalytic activity of p72syk, but the expressed p56lck was much more active in the presence of p72syk than when expressed alone. This activation was also seen as increased phosphorylation of cellular proteins. Concomitantly, p56lck was phosphorylated at Tyr-192 in its SH2 domain, and a Phe-192 mutant p56lck was no longer phosphorylated by p72syk. Phosphate was also detected in p56lck at Tyr-192 in lymphoid cells. These findings suggest that p56lck is positively regulated by the p72syk kinase.  相似文献   

7.
M Shiroo  L Goff  M Biffen  E Shivnan    D Alexander 《The EMBO journal》1992,11(13):4887-4897
The role of the CD45 phosphotyrosine phosphatase in coupling the T cell antigen receptor complex (TCR) to intracellular signals was investigated. CD45- HPB-ALL T cells were transfected with cDNA encoding the CD45RA+B+C- isoform. The tyrosine kinase activity of p59fyn was found to be 65% less in CD45- cells than in CD45+ cells, whereas p56lck kinase activity was comparable in both sub-clones. In CD45- cells the TCR was uncoupled from protein tyrosine phosphorylation, phospholipase C gamma 1 regulation, inositol phosphate production, calcium signals, diacylglycerol production and protein kinase C activation. Restoration of TCR coupling to all these pathways correlated with the increased p59fyn activity observed in CD45-transfected cells. Co-aggregation of CD4- or CD8-p56lck kinase with the TCR in CD45- cells restored TCR-induced protein tyrosine phosphorylation, phospholipase C gamma 1 regulation and calcium signals. Receptor-mediated calcium signals were largely due (60-90%) to Ca2+ influx, and only a minor component (10-40%) was caused by Ca2+ release from intracellular stores. Maximal CD3-mediated Ca2+ influx occurred at CD3 mAb concentrations at which inositol phosphate production was non-detectable. These results indicate that CD45-regulated p59fyn plays a critical role in coupling the TCR to specific intracellular signalling pathways and that CD4- or CD8-p56lck can only restore signal transduction coupling in CD45- cells when brought into close association with the TCR.  相似文献   

8.
A newly isolated T-cell line (CB1) derived from a T-acute lymphoblastic leukaemia (T-ALL) patient contained cells (40% of total) which did not express the CD45 phosphotyrosine phosphatase. The cells were sorted into CD45- and CD45+ populations and shown to be clonal in origin. T-cell receptor (TCR) cross-linking or coligation of the TCR with its CD4/CD8 co-receptors induced tyrosine phosphorylation and calcium signals in CD45+ but not in CD45- cells. Unexpectedly, whole cell p56lck and p59fyn tyrosine kinase activities were not reduced in CD45- compared to CD45+ cells. A novel technique was therefore developed to isolated specific pools of aggregated receptors expressed at the cell surface, together with their associated tyrosine kinases. Using this technique it was shown that cell surface CD4-p56lck kinase activity was 78% lower in CD45- than in CD45+ cells. Phosphorylation of TCR zeta- and gamma-chains occurred in TCR immunocomplexes from CD45+ but not CD45- cells, despite comparable levels of p59fyn and TCR proteins. Furthermore, TCR-associated tyrosine kinase activity towards an exogenous substrate was 84% lower in CD45- than in CD45+ cells. Addition of recombinant p59fyn to TCR immunocomplexes isolated from CD45-cells restored the phosphorylation of the TCR zeta- and gamma-chains. Our results demonstrate that CD45 selectively regulates the pools of p59fyn and p56lck kinases which are associated with the TCR and CD4 at the cell surface. Activation by CD45 of these receptor-associated kinase pools correlates with the ability of the TCR and its coreceptors to couple to intracellular signalling pathways.  相似文献   

9.
Src family protein tyrosine kinases (PTKs) play an essential role in antigen receptor-initiated lymphocyte activation. Their activity is largely regulated by a negative regulatory tyrosine which is a substrate for the activating action of the CD45 phosphotyrosine phosphatase (PTPase) or, conversely, the suppressing action of the cytosolic p50csk PTK. Here we report that CD45 was phosphorylated by p50csk on two tyrosine residues, one of them identified as Tyr-1193. This residue was not phosphorylated by T-cell PTKs p56lck and p59fyn. Tyr-1193 was phosphorylated in intact T cells, and phosphorylation increased upon treatment with PTPase inhibitors, indicating that this tyrosine is a target for a constitutively active PTK. Cotransfection of CD45 and csk into COS-1 cells caused tyrosine phosphorylation of CD45 in the intact cells. Tyrosine-phosphorylated CD45 bound p56lck through the SH2 domain of the kinase. Finally, p50csk-mediated phosphorylation of CD45 caused a severalfold increase in its PTPase activity. Our results show that direct tyrosine phosphorylation of CD45 can affect its activity and association with Src family PTKs and that this phosphorylation could be mediated by p50csk. If this is also true in the intact cells, it adds a new dimension to the physiological function of p50csk in T lymphocytes.  相似文献   

10.
The receptor-like protein tyrosine phosphatase CD45 is essential for TCR signal transduction. Substrates of CD45 include the protein tyrosine kinases p56(lck) and p59(fyn), both of which have been shown to be enriched in detergent-insoluble microdomains. Here we find that there is a cholesterol-dependent association between CD45 and the raft-associated protein linker for activation of T cells, suggesting that CD45 and linker for activation of T cells may colocalize in lipid rafts. Consistent with this observation, we find that approximately 5% of total CD45 can be detected in Triton X-100-insoluble buoyant fractions of sucrose gradients, demonstrating that CD45 is not excluded from lipid rafts. Upon stimulation of T cells with anti-CD3, there is a reduction in the amount of CD45 found associating with lipid rafts. Our data suggest that CD45 is present in lipid rafts in T cells before activation, perhaps to activate raft-associated p56(lck), allowing membrane-proximal signaling events to proceed. Furthermore, the reduction in CD45 content of lipid rafts after CD3 stimulation may serve to limit the amounts of activated p56(lck) in rafts and thus possibly the duration of T cell responses.  相似文献   

11.
Tolerance in T lymphocytes can result from clonal anergy, or paralysis, of Ag-specific T cells. To investigate the molecular mechanisms responsible for anergy, a system in which tolerance can be induced in vitro was employed. Anergy, as defined by long-lived nonresponsiveness to normal antigenic stimulation for IL-2 production, was produced in cloned murine CD4+ Th1 cells. Here we report that such anergic Th1 cells express constitutively reduced amounts of the protein tyrosine kinase p56lck and constitutively elevated levels of the protein tyrosine kinase p59fyn. Because protein tyrosine phosphorylation is known to be important for the normal induction of IL-2 synthesis, these results suggest that T cell anergy may be maintained, at least in part, by alterations in tyrosine phosphorylation signaling events.  相似文献   

12.
Expression of the CD45 tyrosine protein phosphatase is required for the response of functional lymphocytes to stimulation through the antigen receptor. One or more of its substrates may therefore be essential for signal transduction during lymphocyte activation. We have studied the phosphorylation of the closely related lck, fyn, and c-src tyrosine protein kinases in leukemic murine T-cell lines that have lost the expression of CD45. The phosphorylation of the lck kinase at an inhibitory site of tyrosine phosphorylation, Tyr-505, was increased by two-, six-, and eightfold in three different cell lines. Phosphorylation of the fyn kinase at the homologous site, Tyr-531, was unaltered in one of these cell lines, but increased by 2.5-fold in the two others. The phosphorylation of p60c-src at the homologous tyrosine was essentially unchanged in the one CD45-negative cell line in which it was examined. The expression of CD45 therefore regulates the phosphorylation and potentially the activity of the lck and fyn tyrosine protein kinases, but the effect on the lck kinase is much greater than on the fyn kinase. This finding and the observation that CD45 had no effect on the phosphorylation of p60c-src suggest that CD45 exhibits polypeptide substrate specificity in vivo. Additionally, these findings are consistent with the hypothesis that the unresponsiveness of CD45-negative lymphoid cells to antigenic stimulation is due largely to hyperphosphorylation of the lck kinase.  相似文献   

13.
Two src family kinases, lck and fyn, participate in the activation of T lymphocytes. Both of these protein tyrosine kinases are thought to function via their interaction with cell surface receptors. Thus, lck is associated with CD4, CD8, and Thy-1, whereas fyn is associated with the T cell antigen receptor and Thy-1. In this study, the intracellular localization of these two protein tyrosine kinases in T cells was analyzed by immunofluorescence and confocal microscopy. Lck was present at the plasma membrane, consistent with its proposed role in transmembrane signalling, and was also associated with pericentrosomal vesicles which co-localized with the cation-independent mannose 6- phosphate receptor. Surprisingly, fyn was not detected at the plasma membrane in either Jurkat T cells or T lymphoblasts but was closely associated with the centrosome and to microtubule bundles radiating from the centrosome. In mitotic cells, fyn co-localized with the mitotic spindle and poles. The essentially non-overlapping intracellular distributions of lck and fyn suggest that these kinases may be accessible to distinct regulatory proteins and substrates and, therefore, may regulate different aspects of T cell activation. Anti- phosphotyrosine antibody staining at the plasma membrane increases dramatically after CD3 cross-linking of Jurkat T cells. The localization of lck to the plasma membrane suggests that it may participate in mediating this increase in tyrosine phosphorylation, rather than fyn. Furthermore, the distribution of fyn in mitotic cells raises the possibility that it functions at the M phase of the cell cycle.  相似文献   

14.
Src-related protein tyrosine kinases and T-cell receptor signalling.   总被引:4,自引:0,他引:4  
Upon antigen stimulation, the T-cell receptor for antigen transduces an intracellular protein tyrosine phosphorylation signal that is critical for subsequent T-lymphocyte activation. As the antigen receptor does not possess an intrinsic protein tyrosine kinase activity, the mechanism by which it regulates protein tyrosine phosphorylation is unconventional. Evidence is increasing that the Src-related protein tyrosine kinases P56lck and p59fyn, as well as the protein tyrosine phosphatase CD45, are involved in this process.  相似文献   

15.
Decay-accelerating factor (DAF or CD55) is a 70-kDa glycosyl-phosphatidylinositol (GPI)-anchored protein that protects cells from complement-mediated lysis by either preventing the formation of or dissociating C3 convertases. Cross-linking of DAF on human peripheral T cells by polyclonal antibodies has previously been reported to lead to lymphocyte proliferation. Two mAb, both mapping to the third short consensus repeat region of DAF, were able to trigger proliferation of human peripheral T cells. To determine the role of the GPI anchor in cell activation, we transfected EL-4 murine thymoma cells with cDNA encoding either DAF or a transmembrane form of DAF (DAF-TM). The DAF-transfected cells were able to transduce late activation events as evidenced by IL-2 production, whereas DAF-TM transfected cells were unable to do so. The GPI-anchored DAF was able to transduce early activation events leading to the tyrosine phosphorylation of a 40-kDa protein and several proteins in the 85-95 kDa range--an event absent in DAF-TM-transfected cells. Furthermore, anti-DAF immunoprecipitates of DAF-transfected cells contain tyrosine kinase activity leading to the phosphorylation of 40-, 56-60-, and 85-kDa proteins, whereas anti-DAF immunoprecipitates of DAF-TM-transfected cells did not have an associated kinase activity. Both p56lck and p59fyn were associated with DAF in DAF-transfected EL-4 cells. In HeLa cells transfected with fyn, DAF associated with p59fyn. This complex of DAF with src family protein tyrosine kinases requires the GPI anchor and suggests a pathway for signaling through GPI-anchored membrane proteins.  相似文献   

16.
p56lck, a lymphocyte-specific tyrosine protein kinase, binds to the cytoplasmic tails of the T-cell surface molecules CD4 and CD8. Cross-linking of CD4 expressed on the surface of murine thymocytes, splenocytes, and CD4+ T-cell lines induced tyrosine phosphorylation of p56lck dramatically. Cross-linking of CD8 stimulated tyrosine phosphorylation of p56lck strongly in murine L3 and GA4 cells, slightly in splenocytes, but not detectably in thymocytes. Differing effects of cross-linking on in vitro tyrosine kinase activity of p56lck were observed. An increase in the in vitro kinase activity of p56lck, when assayed with [Val5]-angiotensin II as an exogenous substrate, was found to accompany cross-linking of CD4 in three cell lines. No stimulation of the in vitro kinase activity, however, was observed after cross-linking of CD8 in L3 cells. The phosphorylation of p56lck at Tyr-394, the autophosphorylation site, was stimulated by cross-linking in all cell lines examined. Tyr-394 was the predominant site of increased tyrosine phosphorylation in two leukemic cell lines. In the other two cell lines, the phosphorylation of both Tyr-394 and an inhibitory site, Tyr-505, was found to increase. In contrast to cross-linking with antibodies, no striking increase in the tyrosine phosphorylation of p56lck was stimulated by antigenic stimulation. Therefore, the effect of antibody-induced aggregation of CD4 and CD8 on the tyrosine phosphorylation of p56lck differs, at least quantitatively, from what occurs during antigen-induced T-cell activation.  相似文献   

17.
The catalytic activity of p56lck is repressed by phosphorylation of a conserved carboxy-terminal tyrosine residue (tyrosine 505). Accumulating data show that this phosphorylation is mediated by the tyrosine protein kinase p50csk and that it is reversed by the transmembrane tyrosine protein phosphatase CD45. Recent studies have indicated that dephosphorylation of tyrosine 505 in resting T cells is necessary for the initiation of antigen-induced T-cell activation. To better understand this phenomenon, we have characterized the factors regulating tyrosine 505 phosphorylation in an antigen-specific T-cell line (BI-141). As is the case for other T-cell lines, Lck molecules from unstimulated BI-141 cells exhibited a pronounced dephosphorylation of the inhibitory carboxyl-terminal tyrosine. This state could be corrected by incubation of cells with the tyrosine protein phosphatase inhibitor pervanadate, suggesting that it reflected the unrestricted action of tyrosine protein phosphatases. In structure-function analyses, mutation of the site of Lck myristylation (glycine 2) partially restored phosphorylation at tyrosine 505 in BI-141 cells. Since the myristylation-defective mutant also failed to stably associate with cellular membranes, this effect was most probably the consequence of removal of p56lck from the vicinity of membrane phosphatases like CD45. Deletion of the unique domain of Lck, or its replacement by the equivalent sequence from p59fyn, also increased the extent of tyrosine 505 phosphorylation in vivo. This effect was unrelated to changes in Lck membrane association and therefore was potentially related to defects in crucial protein-protein interactions at the membrane. In contrast, deletion of the SH3 or SH2 domain, or mutation of the phosphotransfer motif (lysine 273) or the site of autophosphorylation (tyrosine 394), had no impact on phosphate occupancy at tyrosine 505. In combination, these results indicated that the hypophosphorylation of the inhibitory tyrosine of p56(lck) in T lymphocytes is likely the result of the predominant action of tyrosine protein phosphatases. Moreover, they showed that both the amino-terminal myristylation signal and the unique domain of p56(lck) play critical roles in this process.  相似文献   

18.
《The Journal of cell biology》1996,133(5):1007-1015
The src family tyrosine kinase p59fyn binds to a signaling motif contained in subunits of the TCR known as the immune-receptor tyrosine- based activation motif (ITAM). This is a specific property of p59fyn because two related src family kinases, p60src and p56lck, do not bind to ITAMs. In this study, we identify the residues of p59fyn that are required for binding to ITAMs. We previously demonstrated that the first 10 residues of p59fyn direct its association with the ITAM. Because this region of src family kinases also directs their fatty acylation and membrane association (Resh, M.D. 1993, Biochim. Biophys. Acta 1155:307-322; Resh, M.D. 1994. Cell. 76:411-413), we determined whether fatty acylation and membrane association of p59fyn correlates with its ability to bind ITAMs. Four residues (Gly2, Cys3, Lys7, and Lys9) were required for efficient binding of p59fyn to the TCR. Interestingly, the same four residues are present in p56lyn, the other src family tyrosine kinase known to bind to the ITAM, suggesting that this set of residues constitutes an ITAM recognition motif. These residues were also required for efficient fatty acylation (myristoylation at Gly2 and palmitoylation at Cys3), and plasma membrane targeting of p59fyn. Thus, the signals that direct p59fyn fatty acylation and plasma membrane targeting also direct its specific ability to bind to TCR proteins.  相似文献   

19.
CD5 is a T-cell-specific antigen which binds to the B-cell antigen CD72 and acts as a coreceptor in the stimulation of T-cell growth. CD5 associates with the T-cell receptor zeta chain (TcR zeta)/CD3 complex and is rapidly phosphosphorylated on tyrosine residues as a result of TcR zeta/CD3 ligation. However, despite this, the mechanism by which CD5 generates intracellular signals is unclear. In this study, we demonstrate that CD5 is coupled to the protein-tyrosine kinase p56lck and can act as a substrate for p56lck. Coexpression of CD5 with p56lck in the baculovirus expression system resulted in the phosphorylation of CD5 on tyrosine residues. Further, anti-CD5 and anti-p56lck coprecipitated each other in a variety of detergents, including Nonidet P-40 and Triton X-100. Anti-CD5 also precipitated the kinase from various T cells irrespective of the expression of TcR zeta/CD3 or CD4. No binding between p59fyn(T) and CD5 was detected in T cells. The binding of p56lck to CD5 induced a 10- to 15-fold increase in p56lck catalytic activity, as measured by in vitro kinase analysis. In vivo labelling with 32P(i) also showed a four- to fivefold increase in Y-394 occupancy in p56lck when associated with CD5. The use of glutathione S-transferase-Lck fusion proteins in precipitation analysis showed that the SH2 domain of p56lck could recognize CD5 as expressed in the baculovirus expression system. CD5 interaction with p56lck represents a novel variant of a receptor-kinase complex in which receptor can also serve as substrate. The CD5-p56lck interaction is likely to play roles in T-cell signalling and T-B collaboration.  相似文献   

20.
Peripheral T lymphocyte activation in response to TCR/CD3 stimulation is reduced in type 1 diabetic patients. To explore the basis of this deficiency, a comprehensive analysis of the signal transduction pathway downstream of the TCR/CD3 complex was performed for a cohort of patients (n = 38). The main result of the study shows that T cell hyporesponsiveness is positively correlated with a reduced amount of p56(lck) in resting T lymphocytes. Upon CD3-mediated activation, this defect leads to a hypophosphorylation of the CD3zeta-chain and few other polypeptides without affecting the recruitment of ZAP70. Other downstream effectors of the TCR/CD3 transduction machinery, such as phosphatidylinositol 3-kinase p85alpha, p59(fyn), linker for activation of T cells (LAT), and phospholipase C-gamma1, are not affected. In some patients, the severity of this phenotypic deficit could be linked to low levels of p56(lck) mRNA and resulted in the failure to efficiently induce the expression of the CD69 early activation marker. We propose that a primary deficiency in human type 1 diabetes is a defect in TCR/CD3-mediated T cell activation due to the abnormal expression of the p56(lck) tyrosine kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号