首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Recent studies have shown that the neurodegenerative process in disorders with Lewy body formation, such as Parkinson's disease and dementia with Lewy bodies, is associated with alpha-synuclein accumulation and that beta-synuclein might protect the central nervous system from the neurotoxic effects of alpha-synuclein. However, the mechanisms are unclear. The main objective of the present study was to investigate the potential involvement of the serine threonine kinase Akt (also known as protein kinase B) signaling pathway in the mechanisms of beta-synuclein neuroprotection. For this purpose, Akt activity and cell survival were analyzed in synuclein-transfected B103 neuroblastoma cells and primary cortical neurons. Beta-synuclein transfection resulted in increased Akt activity and conferred protection from the neurotoxic effects of rotenone. Down-regulation of Akt expression resulted in an increased susceptibility to rotenone toxicity, whereas transfection with a lentiviral vector encoding for beta-synuclein was protective. The effects of beta-synuclein on the Akt pathway appear to be by direct interaction between these molecules and were independent of upstream signaling molecules. Taken together, these results indicate that the mechanisms of beta-synuclein neuroprotection might involve direct interactions between beta-synuclein and Akt and suggest that this signaling pathway could be a potential therapeutic target for neurological conditions associated with parkinsonism and alpha-synuclein aggregation.  相似文献   

2.
3.
Mutations in alpha-synuclein gene cause familial form of Parkinson disease, and deposition of wild-type alpha-synuclein as Lewy bodies occurs as a hallmark lesion of sporadic Parkinson disease and dementia with Lewy bodies, implicating alpha-synuclein in the pathogenesis of Parkinson disease and related neurodegenerative diseases. Dopamine neurons in substantia nigra are the major site of neurodegeneration associated with alpha-synuclein deposition in Parkinson disease. Here we establish transgenic Caenorhabditis elegans (TG worms) that overexpresses wild-type or familial Parkinson mutant human alpha-synuclein in dopamine neurons. The TG worms exhibit accumulation of alpha-synuclein in the cell bodies and neurites of dopamine neurons, and EGFP labeling of dendrites is often diminished in TG worms expressing familial Parkinson disease-linked A30P or A53T mutant alpha-synuclein, without overt loss of neuronal cell bodies. Notably, TG worms expressing A30P or A53T mutant alpha-synuclein show failure in modulation of locomotory rate in response to food, which has been attributed to the function of dopamine neurons. This behavioral abnormality was accompanied by a reduction in neuronal dopamine content and was treatable by administration of dopamine. These phenotypes were not seen upon expression of beta-synuclein. The present TG worms exhibit dopamine neuron-specific dysfunction caused by accumulation of alpha-synuclein, which would be relevant to the genetic and compound screenings aiming at the elucidation of pathological cascade and therapeutic strategies for Parkinson disease.  相似文献   

4.
Abnormal aggregation of human alpha-synuclein in Lewy bodies and Lewy neurites is a pathological hallmark of Parkinson disease and dementia with Lewy bodies. Studies have shown that oxidation and nitration of alpha-synuclein lead to the formation of stable dimers and oligomers through dityrosine cross-linking. Previously we have reported that tyrosine-to-cysteine mutations, particularly at the tyrosine 39 residue (Y39C), significantly enhanced alpha-synuclein fibril formation and neurotoxicity. In the current study, we have generated transgenic mice expressing the Y39C mutant human alpha-synuclein gene controlled by the mouse Thy1 promoter. Mutant human alpha-synuclein was widely expressed in transgenic mouse brain, resulting in 150% overexpression relative to endogenous mouse alpha-synuclein. At age 9-12 months, transgenic mice began to display motor dysfunction in rotarod testing. Older animals aged 15-18 months showed progressive accumulation of human alpha-synuclein oligomers, associated with worse motor function and cognitive impairment in the Morris water maze. By age 21-24 months, alpha-synuclein aggregates were further increased, accompanied by severe behavioral deficits. At this age, transgenic mice developed neuropathology, such as Lewy body-like alpha-synuclein and ubiquitin-positive inclusions, phosphorylation at Ser(129) of human alpha-synuclein, and increased apoptotic cell death. In summary, Y39C human alpha-synuclein transgenic mice show age-dependent, progressive neuronal degeneration with motor and cognitive deficits similar to diffuse Lewy body disease. The time course of alpha-synuclein oligomer accumulation coincided with behavioral and pathological changes, indicating that these oligomers may initiate protein aggregation, disrupt cellular function, and eventually lead to neuronal death.  相似文献   

5.
Alpha- and beta-synuclein are closely related proteins, the first of which is associated with deposits formed in neurodegenerative conditions such as Parkinson's disease while the second appears to have no relationship to any such disorders. The aggregation behavior of alpha- and beta-synuclein as well as a series of chimeric variants were compared by exploring the structural transitions that occur in the presence of a widely used lipid mimetic, sodium dodecyl sulfate (SDS). We found that the aggregation rates of all these protein variants are significantly enhanced by low concentrations of SDS. In particular, we inserted the 11-residue sequence of mainly hydrophobic residues from the non-amyloid-beta-component (NAC) region of alpha-synuclein into beta-synuclein and show that the fibril formation rate of this chimeric protein is only weakly altered from that of beta-synuclein. These intrinsic propensities to aggregate are rationalized to a very high degree of accuracy by analysis of the sequences in terms of their associated physicochemical properties. The results begin to reveal that the differences in behavior are primarily associated with a delicate balance between the positions of a range of charged and hydrophobic residues rather than the commonly assumed presence or absence of the highly aggregation-prone region of the NAC region of alpha-synuclein. This conclusion provides new insights into the role of alpha-synuclein in disease and into the factors that regulate the balance between solubility and aggregation of a natively unfolded protein.  相似文献   

6.
Forcing nonamyloidogenic beta-synuclein to fibrillate   总被引:2,自引:0,他引:2  
The fibrillation and aggregation of alpha-synuclein is a key process in the formation of intracellular inclusions, Lewy bodies, in substantia nigral neurons and, potentially, in the pathology of Parkinson's disease and several other neurodegenerative disorders. Alpha-synuclein and its homologue beta-synuclein are both natively unfolded proteins that colocalize in presynaptic terminals of neurons in many regions of the brain, including those of dopamine-producing cells of the substantia nigra. Unlike its homologue, beta-synuclein does not form fibrils and has been shown to inhibit the fibrillation of alpha-synuclein. In this study, we demonstrate that fast and efficient aggregation and fibrillation of beta-synuclein can be induced in the presence of a variety of factors. Certain metals (Zn(2+), Pb(2+), and Cu(2+)) induce a partially folded conformation of beta-synuclein that triggers rapid fibrillation. In the presence of these metals, mixtures of alpha- and beta-synucleins exhibited rapid fibrillation. The metal-induced fibrillation of beta-synuclein was further accelerated by the addition of glycosaminoglycans or high concentrations of macromolecular crowding agents. Beta-synuclein also rapidly formed soluble oligomers and fibrils in the presence of pesticides, whereas the addition of low concentrations of organic solvents induced formation of amorphous aggregates. These new findings demonstrate the potential effect of environmental pollutants in generating an amyloidogenic, and potentially neurotoxic, conformation, in an otherwise benign protein.  相似文献   

7.
Park JY  Lansbury PT 《Biochemistry》2003,42(13):3696-3700
Parkinson's disease (PD) is an age-associated and progressive movement disorder that is characterized by dopaminergic neuronal loss in the substantia nigra and, at autopsy, by fibrillar alpha-synuclein inclusions, or Lewy bodies. Despite the qualitative correlation between alpha-synuclein fibrils and disease, in vitro biophysical studies strongly suggest that prefibrillar alpha-synuclein oligomers, or protofibrils, are pathogenic. Consistent with this proposal, transgenic mice that express human alpha-synuclein develop a Parkinsonian movement disorder concurrent with nonfibrillar alpha-synuclein inclusions and the loss of dopaminergic terminii. Double-transgenic progeny of these mice that also express human beta-synuclein, a homologue of alpha-synuclein, show significant amelioration of all three phenotypes. We demonstrate here that beta- and gamma-synuclein (a third homologue that is expressed primarily in peripheral neurons) are natively unfolded in monomeric form, but structured in protofibrillar form. Beta-synuclein protofibrils do not bind to or permeabilize synthetic vesicles, unlike protofibrils comprising alpha-synuclein or gamma-synuclein. Significantly, beta-synuclein inhibits the generation of A53T alpha-synuclein protofibrils and fibrils. This finding provides a rationale for the phenotype of the double-transgenic mice and suggests a therapeutic strategy for PD.  相似文献   

8.
Lee D  Paik SR  Choi KY 《FEBS letters》2004,576(1-2):256-260
Beta-synuclein exhibits high sequence homology and structural similarity with alpha-synuclein, a protein implicated in the pathogenesis of Parkinson's disease. We investigated the chaperone function of beta-synuclein and its anti-fibrillar activity in comparison with alpha-synuclein. beta-Synuclein suppressed the heat-induced aggregation of aldolase, alcohol dehydrogenase, and citrate synthase, and its anti-aggregative activity was remarkably higher than that of alpha-synuclein. Heat-induced inactivation of citrate synthase was significantly protected by beta-synuclein. Moreover, beta-synuclein inhibited the amyloid formation of both Abeta(1-40) and alpha-synuclein. It is, therefore, suggested that beta-synuclein can prevent abnormal protein aggregations more effectively than alpha-synuclein by acting as a molecular chaperone.  相似文献   

9.
Presenilin-1 null mutation (PS1 -/-) in mice is associated with morphological alterations and defects in cleavage of transmembrane proteins. Here, we demonstrate that PS1 deficiency also leads to the formation of degradative vacuoles and to the aberrant translocation of presynaptic alpha- and beta-synuclein proteins to these organelles in the perikarya of primary neurons, concomitant with significant increases in the levels of both synucleins. Stimulation of autophagy in control neurons produced a similar mislocalization of synucleins as genetic ablation of PS1. These effects were not the result of the loss of PS1 gamma-secretase activity; however, dysregulation of calcium channels in PS1 -/- cells may be involved. Finally, colocalization of alpha-synuclein and degradative organelles was observed in brains from patients with the Lewy body variant of AD. Thus, aberrant accumulation of alpha- and beta-synuclein in degradative organelles are novel features of PS1 -/- neurons, and similar events may promote the formation of alpha-synuclein inclusions associated with neurodegenerative diseases.  相似文献   

10.
Hsp70 Reduces alpha-Synuclein Aggregation and Toxicity   总被引:5,自引:0,他引:5  
Aggregation and cytotoxicity of misfolded alpha-synuclein is postulated to be crucial in the disease process of neurodegenerative disorders such as Parkinson's disease and DLB (dementia with Lewy bodies). In this study, we detected misfolded and aggregated alpha-synuclein in a Triton X-100 insoluble fraction as well as a high molecular weight product by gel electrophoresis of temporal neocortex from DLB patients but not from controls. We also found similar Triton X-100 insoluble forms of alpha-synuclein in an alpha-synuclein transgenic mouse model and in an in vitro model of alpha-synuclein aggregation. Introducing the molecular chaperone Hsp70 into the in vivo model by breeding alpha-synuclein transgenic mice with Hsp70-overexpressing mice led to a significant reduction in both the high molecular weight and detergent-insoluble alpha-synuclein species. Concomitantly, we found that Hsp70 overexpression in vitro similarly reduced detergent-insoluble alpha-synuclein species and protected cells from alpha-synuclein-induced cellular toxicity. Taken together, these data demonstrate that the molecular chaperone Hsp70 can reduce the amount of misfolded, aggregated alpha-synuclein species in vivo and in vitro and protect it from alpha-synuclein-dependent toxicity.  相似文献   

11.
The pathological hallmark of Parkinson's disease is the presence of intracellular inclusions, Lewy bodies, and Lewy neurites, in the dopaminergic neurons of the substantia nigra and several other brain regions. Filamentous alpha-synuclein is the major component of these deposits and its aggregation is believed to play an important role in Parkinson's disease and several other neurodegenerative diseases. Two homologous proteins, beta- and gamma-synucleins, are also abundant in the brain. The synucleins are natively unfolded proteins. beta-Synuclein, which lacks 11 central hydrophobic residues compared with its homologs, exhibited the properties of a random coil, whereas alpha- and gamma-synucleins were slightly more compact and structured. gamma-Synuclein, unlike its homologs, formed a soluble oligomer at relatively low concentrations, which appears to be an off-fibrillation pathway species. Here we show that, although they have similar biophysical properties to alpha-synuclein, beta- And gamma-synucleins inhibit alpha-synuclein fibril formation. Complete inhibition of alpha-synuclein fibrillation was observed at 4:1 molar excess of beta- and gamma-synucleins. No significant incorporation of beta-synuclein into the fibrils was detected. The lack of fibrils formed by beta-synuclein is most readily explained by the absence of a stretch of hydrophobic residues from the middle region of the protein. A model for the inhibition is proposed.  相似文献   

12.
Beta-synuclein is a neuronal protein that accumulates in the plaques that characterize neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. It has been proposed that immunization to peptides of plaque-forming proteins might be used therapeutically to help dissociate pathogenic plaques in the brain. We now report that immunization of Lewis rats with a peptide from beta-synuclein resulted in acute paralytic encephalomyelitis and uveitis. T cell lines and clones reactive to the peptide adoptively transferred the disease to naive rats. Immunoblotting revealed the presence of beta-synuclein in heavy myelin, indicating that the expression of beta-synuclein is not confined to neurons. These results add beta-synuclein to the roster of encephalitogenic self Ags, point out the potential danger of therapeutic autoimmunization to beta-synuclein, and alert us to the unsuspected possibility that autoimmunity to beta-synuclein might play an inflammatory role in the pathogenesis of neurodegeneration.  相似文献   

13.
The accumulation of aggregated alpha-synuclein is thought to contribute to the pathogenesis of Parkinson's disease. Recent studies indicate that aggregated alpha-synuclein binds to S6', a component of the 19 S subunit in the 26 S proteasome and inhibits 26 S proteasomal degradation, both ubiquitin-independent and ubiquitin-dependent. The IC(50) of aggregated alpha-synuclein for inhibition of the 26 S ubiquitin-independent proteasomal activity is approximately 1 nm. alpha-Synuclein has two close homologues, termed beta-synuclein and gamma-synuclein. In the present study we compared the effects of the three synuclein homologues on proteasomal activity. The proteasome exists as a 26 S and a 20 S species, with the 26 S proteasome containing the 20 S core and 19 S cap. Monomeric alpha- and beta-synucleins inhibited the 20 S and 26 S proteasomal activities only weakly, but monomeric gamma-synuclein strongly inhibited ubiquitin-independent proteolysis. The IC(50) of monomeric gamma-synuclein for the 20 S proteolysis was 400 nm. In monomeric form, none of the three synuclein proteins inhibited 26 S ubiquitin-dependent proteasomal activity. Although beta-synuclein had no direct effect on proteasomal activity, co-incubating monomeric beta-synuclein with aggregated alpha-synuclein antagonized the inhibition of the 26 S ubiquitin-independent proteasome by aggregated alpha-synuclein when added before the aggregated alpha-synuclein. Co-incubating beta-synuclein with gamma-synuclein had no effect on the inhibition of the 20 S proteasome by monomeric gamma-synuclein. Immunoprecipitation and pull-down experiments suggested that antagonism by beta-synuclein resulted from binding to alpha-synuclein rather than binding to S6'. Pull-down experiments demonstrated that recombinant monomeric beta-synuclein does not interact with the proteasomal subunit S6', unlike alpha-synuclein, but beta-synuclein does bind alpha-synuclein and competes with S6' for binding to alpha-synuclein. Based on these data, we hypothesize that the alpha- and gamma-synucleins regulate proteasomal function and that beta-synuclein acts as a negative regulator of alpha-synuclein.  相似文献   

14.
The aggregation of alpha-synuclein (alpha-syn) is believed to play a critical role in the pathogenesis of disorders such as dementia with Lewy bodies and Parkinson's disease. The function of alpha-syn remains unclear, although several lines of evidence suggest that alpha-syn is involved in synaptic vesicle trafficking, probably via lipid binding, and interactions with lipids have been shown to regulate alpha-syn aggregation. In this context, the main objective of this study was to determine whether methyl-beta-cyclodextrin (MbetaCD), a cholesterol-extracting agent, interfered with alpha-syn accumulation in models of synucleinopathy. For this purpose, we studied the effects of MbetaCD on the accumulation of alpha-syn in a transfected neuronal cell line and in transgenic mice. Immunoblot analysis showed that MbetaCD reduced the level of alpha-syn in the membrane fraction and detergent-insoluble fraction of transfected cells. In agreement with the in vitro studies, treatment of mice with MbetaCD resulted in decreased levels of alpha-syn in membrane fractions and reduced accumulation of alpha-syn in the neuronal cell body and synapses. Taken together, these results suggest that changes in cholesterol and lipid composition using cholesterol-lowering agents may be used as a tool for the treatment of synucleinopathies.  相似文献   

15.
Accumulation of alpha-synuclein resulting in the formation of oligomers and protofibrils has been linked to Parkinson's disease and Lewy body dementia. In contrast, beta-synuclein (beta-syn), a close homologue, does not aggregate and reduces alpha-synuclein (alpha-syn)-related pathology. Although considerable information is available about the conformation of alpha-syn at the initial and end stages of fibrillation, less is known about the dynamic process of alpha-syn conversion to oligomers and how interactions with antiaggregation chaperones such as beta-synuclein might occur. Molecular modeling and molecular dynamics simulations based on the micelle-derived structure of alpha-syn showed that alpha-syn homodimers can adopt nonpropagating (head-to-tail) and propagating (head-to-head) conformations. Propagating alpha-syn dimers on the membrane incorporate additional alpha-syn molecules, leading to the formation of pentamers and hexamers forming a ring-like structure. In contrast, beta-syn dimers do not propagate and block the aggregation of alpha-syn into ring-like oligomers. Under in vitro cell-free conditions, alpha-syn aggregates formed ring-like structures that were disrupted by beta-syn. Similarly, cells expressing alpha-syn displayed increased ion current activity consistent with the formation of Zn(2+)-sensitive nonselective cation channels. These results support the contention that in Parkinson's disease and Lewy body dementia, alpha-syn oligomers on the membrane might form pore-like structures, and that the beneficial effects of beta-synuclein might be related to its ability to block the formation of pore-like structures.  相似文献   

16.
alpha-Synuclein is a major component of aggregates forming amyloid-like fibrils in diseases with Lewy bodies and other neurodegenerative disorders, yet the mechanism by which alpha-synuclein is intracellularly aggregated during neurodegeneration is poorly understood. Recent studies suggest that oxidative stress reactions might contribute to abnormal aggregation of this molecule. In this context, the main objective of the present study was to determine the potential role of the heme protein cytochrome c in alpha-synuclein aggregation. When recombinant alpha-synuclein was coincubated with cytochrome c/hydrogen peroxide, alpha-synuclein was concomitantly induced to be aggregated. This process was blocked by antioxidant agents such as N-acetyl-L-cysteine. Hemin/hydrogen peroxide similarly induced aggregation of alpha-synuclein, and both cytochrome c/hydrogen peroxide- and hemin/hydrogen peroxide-induced aggregation of alpha-synuclein was partially inhibited by treatment with iron chelator deferoxisamine. This indicates that iron-catalyzed oxidative reaction mediated by cytochrome c/hydrogen peroxide might be critically involved in promoting alpha-synuclein aggregation. Furthermore, double labeling studies for cytochrome c/alpha-synuclein showed that they were colocalized in Lewy bodies of patients with Parkinson's disease. Taken together, these results suggest that cytochrome c, a well known electron transfer, and mediator of apoptotic cell death may be involved in the oxidative stress-induced aggregation of alpha-synuclein in Parkinson's disease and related disorders.  相似文献   

17.
The deposition of alpha-synuclein and other cellular proteins in Lewy bodies in midbrain dopamine neurons is a pathological hallmark of Parkinson's disease. Nitrative and oxidative stress can induce alpha-synuclein protein aggregation, possibly initiated by the formation of stable cross-linking dimers. To determine whether enhanced dimer formation can accelerate protein aggregation and increase cellular toxicity, we have substituted cysteine for tyrosine at positions 39, 125, 133, and 136 in human wild-type (WT) alpha-synuclein, and in A53T and A30P mutant alpha-synuclein. To reduce the likelihood of cross-linking, phenylalanine was substituted for tyrosine at the same sites. We have found that overexpression of Y39C or Y125C mutant proteins leads to increased intracellular inclusions and apoptosis in a rat dopaminergic cell line (N27 cells) and in human embryonic kidney 293 cells. Expression of Y133C, Y136C, and all four Tyr-to-Phe mutations were not more cytotoxic than WT control. Exposure to oxidative stress increased Y39C and Y125C alpha-synuclein aggregation and toxicity. Dimers and oligomers were found in Triton X-100-soluble fractions from adenovirus-mediated overexpression of Y39C and Y125C in N27 cells. In contrast, WT beta-synuclein and all four Tyr-to-Cys mutant beta-synucleins did not cause protein aggregation and cell death. We conclude that cysteine substitution at critical positions in the alpha-synuclein molecule can increase dimer formation and accelerate protein aggregation and cellular toxicity of alpha-synuclein.  相似文献   

18.
The expression of alpha-synuclein, a synaptic molecule implicated in the pathogenesis of neurodegenerative disorders such as Parkinson's disease and Lewy body disease is increased upon injury to the nervous system, indicating that it might play a role in regeneration and plasticity; however, the mechanisms are unclear. Because c-Jun N-terminal kinase (JNK), a member of the mitogen-activated protein kinase family, plays an important role in stress response, the main objective of the present study was to better understand the involvement of this pathway in the signaling responses associated with resistance to injury in cells expressing alpha-synuclein. For this purpose, the JNK-signaling pathway was investigated in alpha-synuclein-transfected neuronal cell line glucose transporter (GT) 1-7 under oxidative stress conditions. Although hydrogen peroxide challenge resulted in JNK activation and cell death in cells transfected with vector control or beta-synuclein, alpha-synuclein-transfected cells were resistant to hydrogen peroxide, and JNK was not activated. The inactivation of JNK in the alpha-synuclein-transfected cells was associated with increased expression and activity of JNK-interacting protein (JIP)-1b/islet-brain (IB)1, the scaffold protein for the JNK pathway. Similarly, cells transfected with JIP-1b/IB1 were resistant to hydrogen peroxide associated with inactivation of the JNK pathway. In these cells, expression of endogenous alpha-synuclein was significantly increased at the protein level. Furthermore, alpha-synuclein was co-localized with JIP-1b/IB1 in the growth cones. Taken together, these results suggest that increased alpha-synuclein expression might protect cells from oxidative stress by inactivation of JNK via increased expression of JIP-1b/IB1. Furthermore, interactions between alpha-synuclein and JIP-1b/IB1 may play a mutual role in the neuronal response to injury and neurodegeneration.  相似文献   

19.
We had previously reported that systemic overexpression of the alpha(1B)-adrenergic receptor (AR) in a transgenic mouse induced a neurodegenerative disease that resembled the parkinsonian-like syndrome called multiple system atrophy (MSA). We now report that our mouse model has cytoplasmic inclusion bodies that colocalize with oligodendrocytes and neurons, are positive for alpha-synuclein and ubiquitin, and therefore may be classified as a synucleinopathy. Alpha-synuclein monomers as well as multimers were present in brain extracts from both normal and transgenic mice. However, similar to human MSA and other synucleinopathies, transgenic mice showed an increase in abnormal aggregated forms of alpha-synuclein, which also increased its nitrated content with age. However, the same extracts displayed decreased phosphorylation of alpha-synuclein. Other traits particular to MSA such as Purkinje cell loss in the cerebellum and degeneration of the intermediolateral cell columns of the spinal cord also exist in our mouse model but differences still exist between them. Interestingly, long-term therapy with the alpha(1)-AR antagonist, terazosin, resulted in protection against the symptomatic as well as the neurodegeneration and alpha-synuclein inclusion body formation, suggesting that signaling of the alpha(1B)-AR is the cause of the pathology. We conclude that overexpression of the alpha(1B)-AR can cause a synucleinopathy similar to other parkinsonian syndromes.  相似文献   

20.
Tubulin seeds alpha-synuclein fibril formation.   总被引:5,自引:0,他引:5  
Increasing evidence suggests that alpha-synuclein is a common pathogenic molecule in several neurodegenerative diseases, particularly in Parkinson's disease. To understand alpha-synuclein pathology, we investigated molecules that interact with alpha-synuclein in human and rat brains and identified tubulin as an alpha-synuclein binding/associated protein. Tubulin co-localized with alpha-synuclein in Lewy bodies and other alpha-synuclein-positive pathological structures. Tubulin initiated and promoted alpha-synuclein fibril formation under physiological conditions in vitro. These findings suggest that an interaction between tubulin and alpha-synuclein might accelerate alpha-synuclein aggregation in diseased brains, leading to the formation of Lewy bodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号