首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exogenous [14C]indole-3-acetic acid (IAA) is conjugated in citrus (Citrus sinensis) leaf tissues to one major substance which has been identified as indole-3-acetylaspartic acid (IAAsp). Ethylene pretreatment enhanced the catabolism of [14C]IAA to indole-3-carboxylic acid (ICA), which accumulated as glucose esters (ICGIu). Increased formation of ICGIu by ethylene was accompanied by a concomitant decrease in IAAsp formation. IAAsp and ICGIu were identified by combined gas chromatography-mass spectrometry. Formation of ICGIu was dependent on the concentration of ethylene and the duration of the ethylene pretreatment. It is suggested that the catabolism of IAA to ICA may be one of the mechanisms by which ethylene reduces endogenous IAA levels.  相似文献   

2.
A comparison study was conducted on the effect of glyphosate (N-[phosphonomethyl]glycine) on indole-3-[2-14C]acetic acid (IAA) metabolism, ethylene production, and growth of 7-day-old seedlings of different plants. The plants tested were American germander (Teucrium canadense L.), soybean (Glycine max L. Merr.), pea (Pisum sativum L. cv. Alaska and Little marvel), mungbean (Vigna radiata L.), and buckwheat (Fagopyrum esculentum Moench). A spray with 2 mM glyphosate affected IAA metabolism to a varied degree. The induced increase of IAA metabolism was greater in buckwheat, Alaska pea, and mungbean than soybean, Little marvel pea, and American germander. The increased IAA metabolism was correlated with the inhibition of growth and with the decrease of ethylene production.The natural rate of IAA metabolism was markedly different among the plant species and cultivars tested and appeared to be related to the sensitivity of the plants to glyphosate. American germander and Little marvel pea with high rates of IAA metabolism were more tolerant to glyphosate than buckwheat and Alaska pea, which had low rates of IAA metabolism. Plants with a high natural rate of IAA metabolism were probably less dependent on IAA and thus less susceptible to glyphosate.  相似文献   

3.
A comparison study was conducted on the effect of glyphosate (N-[phosphonomethyl]glycine) on indole-3-[2-14C]acetic acid (IAA) metabolism, ethylene production, and growth of 7-day-old seedlings of different plants. The plants tested were American germander (Teucrium canadense L.), soybean (Glycine max L. Merr.), pea (Pisum sativum L. cv. Alaska and Little marvel), mungbean (Vigna radiata L.), and buckwheat (Fagopyrum esculentum Moench). A spray with 2 mM glyphosate affected IAA metabolism to a varied degree. The induced increase of IAA metabolism was greater in buckwheat, Alaska pea, and mungbean than soybean, Little marvel pea, and American germander. The increased IAA metabolism was correlated with the inhibition of growth and with the decrease of ethylene production. The natural rate of IAA metabolism was markedly different among the plant species and cultivars tested and appeared to be related to the sensitivity of the plants to glyphosate. American germander and Little marvel pea with high rates of IAA metabolism were more tolerant to glyphosate than buckwheat and Alaska pea, which had low rates of IAA metabolism. Plants with a high natural rate of IAA metabolism were probably less dependent on IAA and thus less susceptible to glyphosate.  相似文献   

4.
Indole-3-acetic acid (IAA) labeled with 13C in the six carbons of the benzene ring is described for use as an internal standard for quantitative mass spectral analysis of IAA by gas chromatography/selected ion monitoring. [13C6]IAA was compared to the available deuterium labeled compounds and shown to offer the advantages of nonexchangeability of the isotope label, high isotopic enrichment, and chromatographic properties identical to that of the unlabeled compound. The utility of [13C6]IAA for measurement of endogenous IAA levels was demonstrated by analysis of IAA in Lemna gibba G-3.  相似文献   

5.
Skok J 《Plant physiology》1968,43(2):215-223
Stem applications of indole-3-acetic acid (IAA) or gibberellic acid (GA) did not prevent or alter tumor or teratoma formation in debudded tobacco plants (Nicotiana tabacum L., var. One Sucker). The materials produced intense (in case of GA) and moderate (in case of IAA) stem proliferations when applied to debudded plants but were without effect on intact plants.

The results suggest that debudding-tumors are probably not related to or a result of an auxin or gibberellin deficit and that total debudding has a marked physiological effect on the plant. The altered physiological condition of the debudded plant, indicated by its responses to IAA and GA, may likely be related to tumor and teratoma formation.

  相似文献   

6.
Ethylene has been shown to stimulate the degradation of indole-3-acetic acid (IAA) in citrus leaf tissues via the oxidative decarboxylation pathway, resulting in the accumulation of indole-3-carboxylic acid (ICA). Preliminary data indicated that ethylene stimulates only the first step of this pathway, i.e. the decarboxylation of IAA which leads to the formation of indole-3-methanol. The effect of ethylene seems to be a specific one since 2,5-norbornadiene, an ethylene action inhibitor, significantly inhibited the stimulation of IAA decarboxylation by ethylene. It has long been suggested that peroxidase or a specific form of the peroxidase complex (`IAA oxidase') catalyse this step. However, we did not observe a clear effect of ethylene on the peroxidase system. An alternative possibility, that the stimulatory effect of ethylene on IAA catabolism results from increased formation of hydrogen peroxide (H2O2), a co-factor for peroxidase activity, was verified by direct measurements of H2O2 in the tissues or by assaying the activity of gluthathione reductase, which has been shown to be induced by oxygen species. This possibility is further supported by the observations showing that IAA decarboxylation in control tissues was enhanced to the level detected in ethylene-treated tissues by application of H2O2.  相似文献   

7.
Indole-3-methanol is a product of indole-3-acetic acid metabolism in wheat leaves ( Triticum compactum Host., cv. Little Club). It leads either to the production of the corresponding aldehyde and carboxylic acid, to the production of a polar glucoside which releases indole-3-methanol on β-glucosidase treatment, or to an unidentified apolar product on mild alkaline hydrolysis in aqueous methanol. With reference to a published pathway of indole-3-acetic acid degradation, the results provide evidence for a prominent role of indole-3-methanol and also for the occurrence of co-oxidation processes in wheat leaves involving indole-3-acetic acid and phenolic cosubstrates.  相似文献   

8.
Transport and metabolism of radiolabeled indole-3-butyric acid (IBA) were studied in midrib sections of Cleopatra mandarin (Citrus reticulata Blanco) and compared to that of indole-3-acetic acid (IAA). Exogenous IBA was metabolized by the midribs to a polar compound, probably an ester conjugate. Ethylene pretreatment of the midribs reduced their capacity to metabolize IBA by ca. 70% as compared to air pretreatment. IBA transport capacity in the leaf midribs was ca. two times greater in the basipetal direction than the acropetal. The basipetal transport capacity of 3H-IBA was lower than that of 14C-IAA (ca. 24% and 39% of the uptake, respectively). While ethylene treatment reduced basipetal transport of IAA by ca. 70% it did not affect the transport of IBA. Most of the transported label was found as free IBA, but the reduction of IBA conjugation by ethylene treatment did not affect the transport capacity.  相似文献   

9.
Abstract The relationship between ethylene-induced leaf abscission and ethylene-induced inhibition of auxin transport in midrib sections of the leaf blade of Citrus sinensis L. Osbeck, Populus deltoides Bart, and Eucalyptus camaldulensis Dehn. was studied. These species differed greatly in their abscission response to ethylene. The kinetic trend of abscission resembled that of the inhibition of auxin transport in all three species. It is suggested that one of the main actions of ethylene in the leaf blade is to inhibit auxin transport in the veinal tissues, thus reducing the amount of auxin transported from the leaf blade to the abscission zone. Ethylene inhibited transport of both IAA (indole-3-acetic acid) and NAA (α-naphthaleneacetic acid) in the midrib sections. However, while ethylene enhanced the conjugation of IAA with aspartic acid and glucose in the apical (absorbing) segment of the midrib sections, it had little effect on the conjugation of NAA. The data indicate that auxin destruction through conjugation does not play a major role in the inhibition of auxin transport by ethylene.  相似文献   

10.
Reverse-phase high-performance liquid chromatography was used to analyse 14C-labelled metabolites of indole-3-acetic acid (IAA) formed in the cortical and stelar tissues of Zea mays roots. After a 2-h incubation in [14C]IAA, stelar segments had metabolised between 1–6% of the methanol-extractable radioactivity compared with 91–92% by the cortical segments. The pattern of metabolites produced by cortical segments was similar to that produced by intact segments bathed in aqueous solutions of [14C]IAA. In contrast, when IAA was supplied in agar blocks to stelar tissue protruding from the basal ends of segments, negligible metabolism was evident. On the basis of its retention characteristics both before and after methylation, the major metabolite of [14C]IAA in Zea mays root segments was tentatively identified by high-performance liquid chromatography as oxindole-3-acetic acid.Abbreviations HPLC High-performance liquid chromatography - IAA Indole-3-acetic acid  相似文献   

11.
Rayle DL  Purves WK 《Plant physiology》1967,42(8):1091-1093
Indoleethanol-14C was applied to intact cucumber seedlings and to hypocotyl segments. The presence of indoleacetic acid-14C in tissue extracts was demonstrated by thin layer radiochromatography. There was no evidence of conversion of indoleacetic acid to indoleethanol. It is suggested that the growth-promoting activity of indoleethanol is due to its conversion to indoleacetic acid.  相似文献   

12.
W. Hartung  I. D. J. Phillips 《Planta》1974,118(4):311-322
Summary Movement of both [3H]GA1 and [14C]GA3 through root segments from P. coccineus seedlings was basipetally polarised. The basipetal/acropetal ratio of radioactivity from [3H]GA1 in agar receiver blocks was 9.2 for apical, elongating segments, and 4.0 for more basal, non-elongating segments. Polarity of gibberellin transport was restricted to the stele, and absent from cortical tissues. Transport of [14C]IAA through root segments to agar receivers was preferentially acropetal, particularly so in the stele. Despite the existence of basipetal polarity of gibberellin transport in the root, [3H]GA1 injected into cotyledons moved into and acropetally along the seedling root.  相似文献   

13.
Veen H  Jacobs WP 《Plant physiology》1969,44(8):1157-1162
Transport and metabolism of IAA-1-14C in Coleus blumei Benth. was studied by means of a combination of liquid scintillation counting, autoradiography and thin-layer chromatography. Transport of IAA in petiole segments of increasing age (No. 2-8) was strictly polar in a basipetal direction. No acropetal movement occurred in either young or old tissues. The greatest amount, expressed as a percentage of the radioactivity lost from the donor block, was found in basal receivers on petiole number 2. There was gradually less transport in older segments. The recovery as a percentage of the radioactivity not accounted for by donor and receiver blocks, measured by counting the radioactivity in an acetonitrile-extract of petiole segments, was low: 25 to 50%. In this acetonitrile-soluble fraction evidence for different radioactive compounds was found, depending on the age of the tissue. A possible relationship between the amounts of auxin transported in the tissue and its corresponding metabolism is discussed.  相似文献   

14.
Meudt WJ  Gaines TP 《Plant physiology》1967,42(10):1395-1399
The method described here is based on a brief report by Harley-Mason and Archer. It involves the use of p-dimethylaminocinnamaldehyde (DMACA), a vinylogue of Ehrlich's reagent, as a color reagent for indoles. Colorimetric analyses of indoleacetic acid (IAA) oxidation reaction mixtures were made with the DMACA reagent as a solution rather than a spray. DMACA reagent will yield a wine-red color with IAA oxidation products in solution. Under similar conditions DMACA reacts with authentic IAA to yield only slight coloration at best. In comparison with other indoles, DMACA is more relative with IAA oxidation reaction products than either Salkowski or Ehrlich's reagents. Data discussed support a concept that the color produced with DMACA is due to the presence of tautomeric oxidation product(s) of IAA.  相似文献   

15.
Esters of indole-3-acetic Acid from Avena seeds   总被引:1,自引:7,他引:1       下载免费PDF全文
The present studies showed that about 80% of the indole-3-acetic acid extractable from Avena kernels by aqueous acetone was esterified to polymers precipitable by ammonium sulfate and ethanol or acetone. The polymers were positively charged, being adsorbed to cation exchange columns at a pH of 3, or below, and eluted at a pH greater than 4. The polymers were heterogeneous with respect to size, about 5,000 to 20,000 daltons, and charge, exhibiting apparent pKa values of 4.2 and 4.7. The polymer fractions contained esterified IAA, anthrone-reactive material that liberated glucose upon acid hydrolysis, phenolic compounds, and peptidic material with a high proportion of hydrophobic amino acids. Since the esterified IAA was unstable, establishing polymer purity was not possible, and the designation IAA-glucoprotein fraction was adopted.  相似文献   

16.
17.
Free and conjugated indole-3-acetic Acid in developing bean seeds   总被引:2,自引:6,他引:2       下载免费PDF全文
The changes in conjugated indole-3-acetic acid (IAA) levels compared to the levels of free IAA have been analyzed during the development of bean (Phaseolus vulgaris L.) seed using quantitative mass spectrometry. Free and ester-linked IAA levels are both relatively high in the early stages of seed development but drop during seed maturation. Concomitantly, the amide-linked IAA becomes the major form of IAA present as the seed matures. In fully mature seed, amide IAA accounts for 80% of the total IAA. The total IAA pool in the seed is maintained at approximately the same level (150-170 nanograms/seed) once the level of free IAA has attained its maximum. Thus, the amount of amide IAA conjugates that accumulate in mature seed is closely related to the amounts of free and ester-linked IAA that disappeared from the rapidly growing seed. Analysis of developing bean pods, from which the seeds were taken for analysis, showed very low levels of both ester and amide-linked IAA conjugates. The pattern of changes seen in the levels of free and conjugated IAA in developing bean seed supports our prior hypothesis suggesting a role of IAA conjugates in the storage of the phytohormone in the seed.  相似文献   

18.
A radioimmunoassay technique for indole-3-acetic acid is described. The method has successfully been used to measure extractable indole-3-acetic acid in fungal and plant materials and is able to detect as little as 0.3 pmol. As non-radioactive antigen the methyl ester of indole-3-acetic acid is used and the radioactive antigen is tritiated. An acid-catalyzed esterification of indole-3-acetic acid is used for conversion into methyl ester. The measuring range of the assay is 0.3–10 pmol. In the assay, separation of free and bound fractions is achieved by dextran-coated charcoal, leaving the bound fraction in the supernatant.  相似文献   

19.
The production of phytohormones by plant-growth promoting rhizobacteria is considered to be an important mechanism by which these bacteria promote plant growth. In this study the importance of indole-3-acetic acid (IAA) produced by Azospirillum brasilense Sp245 in the observed plant growth stimulation was investigated by using Sp245 strains genetically modified in IAA production. Firstly wild-type A. brasilense Sp245 and an ipdC knock-out mutant which produces only 10% of wild-type IAA levels (Vande Broek et al., J Bacteriol 181:1338–1342, 1999) were compared in a greenhouse inoculation experiment for a number of plant parameters, thereby clearly demonstrating the IAA effect in plant growth promotion. Secondly, the question was addressed whether altering expression of the ipdC gene, encoding the key enzyme for IAA biosynthesis in A. brasilense, could also contribute to plant growth promotion. For that purpose, the endogenous promoter of the ipdC gene was replaced by either a constitutive or a plant-inducible promoter and both constructs were introduced into the wild-type strain. Based on a greenhouse inoculation experiment it was found that the introduction of these recombinant ipdC constructs could further improve the plant-growth promoting effect of A. brasilense. These data support the possibility of constructing Azospirillum strains with better performance in plant growth promotion.  相似文献   

20.
Park RD  Park CK 《Plant physiology》1987,84(3):826-829
The stability of 21 amino acid conjugates of indole-3-acetic acid (IAA) toward horseradish peroxidase (HRP) was studied. The IAA conjugates of Arg, Ile, Leu, Tyr, and Val were oxidized readily by peroxidase. Those of Ala, β-Ala, Asp, Cys, Gln, Glu, Gly, and Lys were not degraded and their recovery was above 92% after 1 hour incubation with HRP. A correlation between the stability of IAA conjugates toward peroxidase-catalyzed oxidation and the hydrophobicity of the amino acid moiety conjugated to IAA was demonstrated. Polar amino acid conjugates of IAA are more resistant to HRP-catalyzed oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号