首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By using a purified dengue virus RNA-dependent RNA polymerase and a subgenomic 770-nucleotide RNA template, it was shown previously that the ratio of the de novo synthesis product to hairpin product formed was inversely proportional to increments of assay temperatures (20 to 40 degrees C). In this study, the components of the de novo preinitiation complex are defined as ATP, a high concentration of GTP (500 micro M), the polymerase, and the template RNA. Even when the 3'-terminal sequence of template RNA was mutated from -GGUUCU-3' to -GGUUUU-3', a high GTP concentration was required for de novo initiation, suggesting that high GTP concentration plays a conformational role. Furthermore, utilization of synthetic primers by the polymerase indicated that AGAA is the optimal primer whereas AG, AGA, and AGAACC were inefficient primers. Moreover, mutational analysis of the highly conserved 3'-terminal dinucleotide CU of the template RNA indicated that change of the 3'-terminal nucleotide from U to C reduced the efficiency about fivefold. The order of preference for the 3'-terminal nucleotide, from highest to lowest, is U, A - G, and C. However, change of the penultimate nucleotide from C to U did not affect the template activity. A model consistent with these results is that the active site of the polymerase switches from a "closed" form, catalyzing de novo initiation through synthesis of short primers, to an "open" form for elongation of a double-stranded template-primer.  相似文献   

2.
The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) initiates RNA synthesis in vivo by a de novo mechanism. In vitro, however, the HCV RdRp can initiate de novo or extend from a primed template. A novel beta-loop near the RdRp active site was previously found to prevent the use of primed templates. We found that, in addition to the beta-loop, the C-terminal tail of the HCV RdRp and the de novo initiation GTP are required to exclude the use of primed-templates. GTP binding to the NTPi site of the HCV RdRp orchestrates the participation of other structures. The interactions of the beta-loop, C-terminal tail, and GTP provide an elegant solution to ensure de novo initiation of HCV RNA synthesis.  相似文献   

3.
We functionally analyzed the role of metal ions in RNA-dependent RNA synthesis by three recombinant RNA-dependent RNA polymerases (RdRps) from GB virus-B (GBV), bovine viral diarrhea virus (BVDV), and hepatitis C virus (HCV), with emphasis on the HCV RdRp. Using templates capable of both de novo initiation and primer extension and RdRps purified in the absence of metal, we found that only reactions with exogenously provided Mg(2+) and Mn(2+) gave rise to significant amounts of synthesis. Mg(2+) and Mn(2+) affected the mode of RNA synthesis by the three RdRps. Both metals supported primer-dependent and de novo-initiated RNA by the GBV RdRp, while Mn(2+) significantly increased the amount of de novo-initiated products by the HCV and BVDV RdRps. For the HCV RdRp, Mn(2+) reduced the K(m) for the initiation nucleotide, a GTP, from 103 to 3 micro M. However, it increased de novo initiation even at GTP concentrations that are comparable to physiological levels. We hypothesize that a change in RdRp structure occurs upon GTP binding to prevent primer extension. Analysis of deleted proteins revealed that the C terminus of the HCV RdRp plays a role in Mn(2+)-induced de novo initiation and can contribute to the suppression of primer extension. Spectroscopy examining the intrinsic fluorescence of tyrosine and tryptophan residues in the HCV RdRp produced results consistent with the protein undergoing a conformational change in the presence of metal. These results document the fact that metal can affect de novo initiation or primer extension by flaviviral RdRps.  相似文献   

4.
The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) has several distinct biochemical activities, including initiation of RNA synthesis by a de novo mechanism, extension from a primed template, nontemplated nucleotide addition, and synthesis of a recombinant RNA product from two or more noncovalently linked templates (template switch). All of these activities require specific interaction with nucleoside triphosphates (NTPs). Based on the structure of the HCV RdRp bound to NTP (S. Bressanelli, L. Tomei, F. A. Rey, and R. DeFrancesco, J. Virol. 76:3482-3492, 2002), we mutated the amino acid residues that contact the putative initiation GTP and examined the effects on the various activities. Although all mutations retained the ability for primer extension, alanine substitution at R48, R158, R386, R394, or D225 decreased de novo initiation, and two or more mutations abolished de novo initiation. While the prototype enzyme had a K(m) for GTP of 3.5 microM, all of the mutations except one had K(m)s that were three- to sevenfold higher. These results demonstrate that the affected residues are functionally required to interact with the initiation nucleotide. Unexpectedly, many of the mutations also affected the addition of nontemplated nucleotide, indicating that residues in the initiating NTP (NTPi)-binding pocket are required for nontemplated nucleotide additions. Interestingly, mutations in D225 are dramatically affected in template switch, indicating that this residue of the NTPi pocket also interacts with components in the elongation complex. We also examined the interaction of ribavirin triphosphate with the NTPi-binding site.  相似文献   

5.
The hepatitis C virus (HCV) NS5B protein is an RNA-dependent RNA polymerase (RdRp) essential for replication of the viral RNA genome. Purified NS5B has been reported to exhibit multiple activities in vitro. Using a synthetic heteropolymeric RNA template with dideoxycytidine at its 3'-end, we examined de novo initiation and primer extension in a system devoid of self-priming and terminal nucleotide transferase activities. Products predominantly of template size and its multiples were detected. High concentrations of nucleoside triphosphates (K(app)(m) approximately 100-400 mum) corresponding to the first three incorporated nucleotides were found to be required for efficient de novo RNA synthesis. In the presence of initiating di- or trinucleotides, however, the amount of NTP needed to achieve maximal activity dropped 10(3)- to 10(4)-fold, revealing a much reduced nucleotide requirement for elongation (K(app)(m) approximately 0.03-0.09 microm). Accordingly, single round extension from an exogenous primer following preincubation of the enzyme with template and primer could also be supported by <0.1 microm levels of NTP. De novo synthesis at high NTP concentrations was shown to be preferred over primer extension. On a dideoxycytidine-blocked synthetic RNA template derived from the 3'-end of the HCV(-)UTR, the addition of the corresponding initiating trinucleotide also dramatically reduced the NTP levels needed to achieve efficient RNA synthesis. Thus, distinct nucleotide requirements exist for initiation and elongation steps catalyzed by the HCV NS5B polymerase.  相似文献   

6.
RNA-dependent RNA polymerases (RdRps) that initiate RNA synthesis by a de novo mechanism should specifically recognize the template initiation nucleotide, T1, and the substrate initiation nucleotide, the NTPi. The RdRps from hepatitis C virus (HCV), bovine viral diarrhea virus (BVDV), and GB virus-B all can initiate RNA synthesis by a de novo mechanism. We used RNAs and GTP analogs, respectively, to examine the use of the T1 nucleotide and the initiation nucleotide (NTPi) during de novo initiation of RNA synthesis. The effects of the metal ions Mg(2+) and Mn(2+) on initiation were also analyzed. All three viral RdRps require correct base pairing between the T1 and NTPi for efficient RNA synthesis. However, each RdRp had some distinct tolerances for modifications in the T1 and NTPi. For example, the HCV RdRp preferred an NTPi lacking one or more phosphates regardless of whether Mn(2+) was present or absent, while the BVDV RdRp efficiently used GDP and GMP for initiation of RNA synthesis only in the presence of Mn(2+). These and other results indicate that although the three RdRps share a common mechanism of de novo initiation, each has distinct preferences.  相似文献   

7.
Shim JH  Larson G  Wu JZ  Hong Z 《Journal of virology》2002,76(14):7030-7039
De novo RNA synthesis by hepatitis C virus (HCV) nonstructural protein 5B (NS5B) RNA-dependent RNA polymerase has been investigated using short RNA templates. Various templates including those derived from the HCV genome were evaluated by examining the early steps of de novo RNA synthesis. NS5B was shown to be able to produce an initiation dinucleotide product from templates as short as 4-mer and from the 3'-terminal sequences of both plus and minus strands of the HCV RNA genome. GMP, GDP, and guanosine were able to act as an initiating nucleotide in de novo RNA synthesis, indicating that the triphosphate moiety is not absolutely required by an initiating nucleotide. Significant amounts of the initiation product accumulated in de novo synthesis, and elongation from the dinucleotide was observed when large amounts of dinucleotide were available. This result suggests that NS5B, a template, and incoming nucleotides are able to form an initiation complex that aborts frequently by releasing the dinucleotide product before transition to an elongation complex. The transition is rate limiting. Furthermore, we discovered that the secondary structure of a template was not essential for de novo initiation and that 3'-terminal bases of a template conferred specificity in selection of an initiation site. Initiation can occur at the +1, +2, or +3 position numbered from the 3' end of a template depending on base composition. Pyrimidine bases at any of the three positions are able to serve as an initiation site, while purine bases at the +2 and +3 positions do not support initiation. This result implies that HCV possesses an intrinsic ability to ensure that de novo synthesis is initiated from the +1 position and to maintain the integrity of the 3' end of its genome. This assay system should be an important tool for investigating the detailed mechanism of de novo initiation by HCV NS5B as well as other viral RNA polymerases.  相似文献   

8.
Classical swine fever virus nonstructural protein 5B (NS5B) encodes an RNA-dependent RNA polymerase, a key enzyme of the viral replication complex. To better understand the initiation of viral RNA synthesis and to establish an in vitro replication system, a recombinant NS5B protein, lacking the C-terminal 24-amino acid hydrophobic domain, was expressed in Escherichia coli. The truncated fusion protein (NS5Bdelta24) was purified on a Ni-chelating HisTrap affinity column and demonstrated to initiate either plus- or minus-strand viral RNA synthesis de novo in a primer-independent manner but not by terminal nucleotidyle transferase activity. De novo RNA synthesis represented the preferred mechanism for initiation of classical swine fever virus RNA synthesis by RNA-dependent RNA polymerase in vitro. Both Mg2+ and Mn2+ supported de novo initiation, however, RNA synthesis was more efficient in the presence of Mn2+ than in the presence of Mg2+. De novo initiation of RNA synthesis was stimulated by preincubation with 0.5 mm GTP, and a 3'-terminal cytidylate on the viral RNA template was preferred for de novo initiation. Furthermore, the purified protein was also shown, by North-Western blot analysis, to specifically interact with the 3'-end of both plus- and minus-strand viral RNA templates.  相似文献   

9.
The 65 kDa RNA-dependent RNA polymerase (NS5B), encoded by the hepatitis C virus (HCV) genome, is a key component involved in viral replication. Here we provide the direct evidence that purified HCV polymerase catalyzed de novo RNA synthesis in a primer-independent manner using homopolymers and HCV RNA as templates. The enzyme could utilize both polyC and polyU as templates for de novo RNA synthesis, suggesting that NS5B specifically recognized pyrimidine bases for initiation. More importantly, NS5B also catalyzed de novo RNA synthesis with an HCV RNA template; the resulting nascent RNA products, smaller than the template used, contained ATP as the first nucleotide. These results indicate that the newly synthesized RNAs did not result from template self-priming and suggest that a replication initiation site in the HCV RNA genome is a uridylate.  相似文献   

10.
Like most RNA polymerases, the polymerase of double-strand RNA bacteriophage phi6 (phi6pol) is capable of primer-independent initiation. Based on the recently solved phi6pol initiation complex structure, a four-amino acid-long loop (amino acids 630-633) has been suggested to stabilize the first two incoming NTPs through stacking interactions with tyrosine, Tyr(630). A similar loop is also present in the hepatitis C virus polymerase, another enzyme capable of de novo initiation. Here, we use a series of phi6pol mutants to address the role of this element. As predicted, mutants at the Tyr(630) position are inefficient in initiation de novo. Unexpectedly, when the loop is disordered by changing Tyr(630)-Lys(631)-Trp(632) to GSG, phi6pol becomes a primer-dependent enzyme, either extending complementary oligonucleotide or, when the template 3' terminus can adopt a hairpin-like conformation, utilizing a "copy-back" initiation mechanism. In contrast to the wild-type phi6pol, the GSG mutant does not require high GTP concentration for its optimal activity. These findings suggest a general model for the initiation of de novo RNA synthesis.  相似文献   

11.
12.
13.
We report here the results of a systematic high-resolution X-ray crystallographic analysis of complexes of the hepatitis C virus (HCV) RNA polymerase with ribonucleoside triphosphates (rNTPs) and divalent metal ions. An unexpected observation revealed by this study is the existence of a specific rGTP binding site in a shallow pocket at the molecular surface of the enzyme, 30 A away from the catalytic site. This previously unidentified rGTP pocket, which lies at the interface between fingers and thumb, may be an allosteric regulatory site and could play a role in allowing alternative interactions between the two domains during a possible conformational change of the enzyme required for efficient initiation. The electron density map at 1.7-A resolution clearly shows the mode of binding of the guanosine moiety to the enzyme. In the catalytic site, density corresponding to the triphosphates of nucleotides bound to the catalytic metals was apparent in each complex with nucleotides. Moreover, a network of triphosphate densities was detected; these densities superpose to the corresponding moieties of the nucleotides observed in the initiation complex reported for the polymerase of bacteriophage phi6, strengthening the proposal that the two enzymes initiate replication de novo by similar mechanisms. No equivalent of the protein stacking platform observed for the priming nucleotide in the phi6 enzyme is present in HCV polymerase, however, again suggesting that a change in conformation of the thumb domain takes place upon template binding to allow for efficient de novo initiation of RNA synthesis.  相似文献   

14.
DNA primase-DNA polymerase alpha, purified 53,000-fold from CV-1 cells, synthesized predominantly (p)ppA(pA)6-primed DNA on a poly(dT) template. About 80% of the RNA primers synthesized on an M13 DNA template were (p)ppA/G(pN)5-7, and 20% were (p)ppA/G(pN)0-4. RNA primer size was determined by gel electrophoresis after removing nascent DNA with phage T4 DNA polymerase 3'-5' exonuclease, leaving a single dNMP at the 3'-end of the RNA primer, and the terminal 5'-(p)ppN residue was determined by "capping" with [alpha-32P]GTP using vaccinia guanylyl-transferase. The processivity of DNA synthesis initiated by de novo synthesis of RNA primers was the same as that initiated on pre-existing RNA primers (10-15 dNMPs), although initiation on pre-existing primers was strongly preferred. Primers always began with A or G, even at high levels of CTP or UTP, although the ratio of A to G varied from 4:1 to 1:1 depending on the relative concentrations of ATP and GTP in the assay. ATP and GTP had no effect on primer length, but the fraction of shorter RNA primers increased 2-fold with higher concentrations of CTP or UTP. Nearest-neighbor analysis revealed a preference for purine ribonucleotides at RNA covalently linked to the 5'-end of DNA (RNA-p-DNA) junctions, and increasing the concentration of a single rNTP increased slightly its presence at RNA-p-DNA junctions. Thus, the base composition and size of RNA primers synthesized by DNA primase-DNA polymerase alpha is modulated by the relative concentrations of ribonucleoside triphosphates.  相似文献   

15.
Little is known about the mechanism of HCV polymerase-catalyzed nucleotide incorporation and the individual steps employed by this enzyme during a catalytic cycle. In this paper, we applied various biochemical tools and examined the mechanism of polymerase catalysis. We found that formation of a productive RNA-enzyme complex is the slowest step followed by RNA dissociation and initiation of primer strand synthesis. Various groups have reported several classes of small molecule inhibitors of hepatitis C virus NS5B polymerase; however, the mechanism of inhibition for many of these inhibitors is not clear. We undertook a series of detailed mechanistic studies to characterize the mechanisms of inhibition for these HCV polymerase inhibitors. We found that the diketoacid derivatives competitively bind to the elongation NTP pocket in the active site and inhibit both the initiation and elongation steps of polymerization. While both benzimidazoles and benzothiadiazines are noncompetitive with respect to the active site elongation NTP pocket, benzothiadiazine compounds competitively bind to the initiation pocket in the active site and inhibit only the initiation step of de novo RNA polymerization. The benzimidazoles bind to the thumb allosteric pocket and inhibit the conformational changes during RNA synthesis. We also observed a cross interaction between the thumb allosteric pocket and the initiation pocket using inhibitor-inhibitor cross competition studies. This information will be very important in designing combination therapies using two small molecule drugs to treat hepatitis C virus.  相似文献   

16.
The hepatitis C virus (HCV) NS5B protein is an RNA-dependent RNA polymerase essential for replication of the viral RNA genome. In vitro and presumably in vivo, NS5B initiates RNA synthesis by a de novo mechanism and then processively copies the whole RNA template. Dissections of de novo RNA synthesis by genotype 1 NS5B proteins previously established that there are two successive crucial steps in de novo initiation. The first is dinucleotide formation, which requires a closed conformation, and the second is the transition to elongation, which requires an opening of NS5B. We also recently published a combined structural and functional analysis of genotype 2 HCV-NS5B proteins (of strains JFH1 and J6) that established residue 405 as a key element in de novo RNA synthesis (P. Simister et al., J. Virol. 83:11926-11939, 2009; M. Schmitt et al., J. Virol 85:2565-2581, 2011). We hypothesized that this residue stabilizes a particularly closed conformation conducive to dinucleotide formation. Here we report similar in vitro dissections of de novo synthesis for J6 and JFH1 NS5B proteins, as well as for mutants at position 405 of several genotype 1 and 2 strains. Our results show that an isoleucine at position 405 can promote both dinucleotide formation and the transition to elongation. New structural results highlight a molecular switch of position 405 with long-range effects, resolving the implied paradox of how the same residue can successively favor both the closed conformation of the dinucleotide formation step and the opening necessary to the transition step.  相似文献   

17.
The enzymatic activity of hepatitis C virus (HCV) RNA-dependent RNA polymerase NS5B is modulated by the molar ratio of NS5B enzyme and RNA template. Depending on the ratio, either template or enzyme can inhibit activity. Inhibition of NS5B activity by RNA template exhibited characteristics of substrate inhibition, suggesting the template binds to a secondary site on the enzyme forming an inactive complex. Template inhibition was modulated by primer. Increasing concentrations of primer restored NS5B activity and decreased the affinity of template for the secondary site. Conversely, increasing template concentration reduced the affinity of primer binding. The kinetic profiles suggest template inhibition results from the binding of template to a site that interferes with primer binding and the formation of productive replication complexes.  相似文献   

18.
Xu Z  Chao Y  Si Y  Wang J  Jin M  Guo A  Qian P  Zhou R  Chen H 《In silico biology》2008,8(1):21-32
The NS5B protein of classical swine fever virus (CSFV) is an important enzyme bearing a unique RNA-dependent RNA polymerase (RdRp) activity. The RdRp plays a crucial role in the viral replication cycle and in forming a replicase complex. However, the initiating synthesis mechanism of the CSFV RNA polymerase is unclearly described at present. Our aim is to reveal the RdRp-GTP docking sites and the effective modules of GTP initially bound to the polymerase in starting initiation of replication according to a well predicted CSFV RdRp model. Based on some known crystal structures of RNA polymerase, computational methods were used to establish the model of a CSFV RdRp. An analogous mechanism of CSFV RNA polymerase in de novo initiation was subsequently represented through docking a GTP into the structure model. The unique GTP binding pocket of the polymerase was pointed out: five residues E227, S408, R427, K435, and R439 involved in steady hydrogen bonds and two residues C407 and L232 involved in hydrophobic contact with the GTP. From a genetic evolutionary point of view, three residues C407, S408 and R427 have been suggested to be of particular importance by analysis of residue conservation. It is suggested that these crucial residues should have very significant function in the de novo initiation of the rigorous CSFV polymerase model, which can lead us to design experiments for studying the mechanism of viral replication and develop valid anti-viral drugs.  相似文献   

19.
20.
Mutational analysis of the hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) template channel identified two residues, Trp(397) and His(428), which are required for de novo initiation but not for extension from a primer. These two residues interact with the Delta1 loop on the surface of the RdRp. A deletion within the Delta1 loop also resulted in comparable activities. The mutant proteins exhibit increased double-stranded RNA binding compared with the wild type, suggesting that the Delta1 loop serves as a flexible locking mechanism to regulate the conformations needed for de novo initiation and for elongative RNA synthesis. A similar locking motif can be found in other viral RdRps. Products associated with the open conformation of the HCV RdRp were inhibited by interaction with the retinoblastoma protein but not cyclophilin A. Different conformations of the HCV RdRp can thus affect RNA synthesis and interaction with cellular proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号