首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
A cDNA, recently cloned (by Krieg et al. (1998)) from mouse skin, was shown to encode a 12(R)-lipoxygenase. When expressed in HEK cells, the recombinant protein converted methyl arachidonate into the corresponding 12-HETE ester which was shown to be the R-enantiomer by chiral phase chromatography. Neither arachidonic acid nor linoleic acid were substrates for the recombinant protein. The structure of the 12(R)-lipoxygenase gene is unique among all animal lipoxygenases in that it is divided into 15 exons and 14 introns spanning approximately 12.5 kb. By interspecific backcross analysis, the 12(R)-lipoxygenase gene was localized to the central region of mouse chromosome 11.  相似文献   

2.
Bovine corneal epithelium contains arachidonate 12- and 15-lipoxygenase activity, while human corneal epithelium contains only 15-lipoxygenase activity. Our purpose was to identify the corneal 12- and 15-lipoxygenase isozymes. We used cDNA cloning to isolate the amino acid coding nucleotide sequences of two bovine lipoxygenases. The translated sequence of one lipoxygenase was 82% identical with human 15-lipoxygenase type 2 and 75% identical with mouse 8-lipoxygenase, whereas the other translated nucleotide sequence was 87% identical with human 12-lipoxygenase of the platelet type. Expression of 15-lipoxygenase type 2 and platelet type 12-lipoxygenase mRNAs were detected by Northern analysis. In addition to these two lipoxygenases, 12-lipoxygenase of leukocyte (tracheal) type was detected by polymerase chain reaction (PCR), sequencing, and Northern analysis. Finally, PCR and sequencing suggested that human corneal epithelium contains 15-lipoxygenase types 1 and 2.  相似文献   

3.
Bovine corneal epithelium contains arachidonate 12- and 15-lipoxygenase activity, while human corneal epithelium contains only 15-lipoxygenase activity. Our purpose was to identify the corneal 12- and 15-lipoxygenase isozymes. We used cDNA cloning to isolate the amino acid coding nucleotide sequences of two bovine lipoxygenases. The translated sequence of one lipoxygenase was 82% identical with human 15-lipoxygenase type 2 and 75% identical with mouse 8-lipoxygenase, whereas the other translated nucleotide sequence was 87% identical with human 12-lipoxygenase of the platelet type. Expression of 15-lipoxygenase type 2 and platelet type 12-lipoxygenase mRNAs were detected by Northern analysis. In addition to these two lipoxygenases, 12-lipoxygenase of leukocyte (tracheal) type was detected by polymerase chain reaction (PCR), sequencing, and Northern analysis. Finally, PCR and sequencing suggested that human corneal epithelium contains 15-lipoxygenase types 1 and 2.  相似文献   

4.
We have isolated a murine macrophage cDNA encoding a 12-lipoxygenase, that represents the homolog of the human 15-lipoxygenase. The predicted amino acid sequence of this lipoxygenase is highly similar to the rat 12-lipoxygenase isolated from brain and human 15-lipoxygenase. The recombinant enzyme expressed in Cos-7 cells oxidizes arachidonic acid to 12- and 15-HETE with a profile similar to that obtained from peritoneal macrophages. A polyclonal antibody generated against a putative peptide recognizes a 75 kDa protein in cell extracts from mouse peritoneal macrophages and transfected Cos-7 cells. The lipoxygenase cDNA hybridizes to a 2.5 kb mRNA present in peritoneal macrophages, lung, spleen, heart and liver. RT-PCR analysis indicates that the same lipoxygenase is expressed in mouse reticulocytes. A partial genomic clone for this lipoxygenase has also been characterized. Southern blot analysis of mouse genomic DNA indicates that this is a single copy gene.  相似文献   

5.
Epidermis-type lipoxygenases, a distinct subclass within the multigene family of mammalian lipoxygenases (LOX), comprise recently discovered novel isoenzymes isolated from human and mouse skin including human 15-LOX-2, human and mouse 12R-LOX, mouse 8S-LOX, and mouse e-LOX-3. We have isolated the human homologue of mouse e-LOX-3. The cDNA of 3362 bp encodes a 711-amino-acid protein displaying 89% sequence identity with the mouse protein and exhibiting the same unusual structural feature, i.e., an extra segment of 41 amino acids, which can be located beyond the N-terminal beta-barrel domain at the surface of the C-terminal catalytic domain. The gene encoding e-LOX-3, ALOXE3, was found to be part of a gene cluster of approximately 100 kb on human chromosome 17p13.1 containing in addition the 12R-LOX gene, ALOX12B, the 15-LOX-2 gene, ALOX15B, and a novel 15-LOX pseudogene, ALOX15P. ALOXE3 and ALOX12B are arranged in a head-to-tail fashion separated by 8.5 kb. The genes are split into 15 exons and 14 introns spanning 22 and 15 kb, respectively. ALOX15P was found on the opposite DNA strand directly adjacent to the 3'-untranslated region of ALOX12B. ALOX15B is located in the same orientation 25 kb downstream of ALOX12B, and is composed of 14 exons and 13 introns spanning a total of 9.7 kb of genomic sequence. RT-PCR analysis demonstrated a predominant expression of ALOXE3, ALOX12B, and ALOX15B in skin.  相似文献   

6.
Previous studies in our laboratory revealed a high expression of 15-lipoxygenase-1 in human colorectal carcinomas, suggesting the importance of lipoxygenase in colorectal tumor development. In this report, we have investigated the metabolism of arachidonic and linoleic acid by intestinal tissues of Min mice, an animal model for intestinal neoplasia. The polyp and normal tissues from Min mice intestine were homogenized, incubated with arachidonic or linoleic acid, and analyzed by reverse-, straight-, and chiral-phase HPLC. Arachidonic acid was converted to prostaglandins E2 and F2alpha. Little 12- or 15-hydroxyeicosatetraenoic acid was detected. Cyclooxygenase (COX)-2 was detected in polyps and the adjacent normal tissues by Western immunoblotting, but neither COX-1 nor leukocyte-type 12-lipoxygenase, the murine ortholog to human 15-lipoxygenase-1, was detected. These tissue homogenates converted linoleic acid to an equal mixture of 9(S)- and 13(S)-hydroxyoctadecadienoic acid (HODE). Inhibition of lipoxygenase activity with nordihydroguaiaretic acid blocked HODEs formation, but the COX inhibitor indomethacin did not. Degenerative-nested PCR analyses using primers encoded by highly conserved sequences in lipoxygenases detected 5-lipoxygenase, leukocyte-type 12-lipoxygenase, platelet-type 12-lipoxygenase, 8-lipoxygenase, and epidermis-type lipoxygenase-3 in mouse intestinal tissue. All of these PCR products represent known lipoxygenase that are not reported to utilize linoleic acid preferentially as substrate and do not metabolize linoleic acid to an equal mixture of 9(S)- and 13(S)-HODE. This somewhat unique profile of linoleate product formation in Min mice intestinal tissue suggests the presence of an uncharacterized and potentially novel lipoxygenase(s) that may play a role in intestinal epithelial cell differentiation and tumor development.  相似文献   

7.
A complex mixture of fatty acid-derived aldehydes, ketones, and alcohols is released upon wounding of the moss Physcomitrella patens. To investigate the formation of these oxylipins at the molecular level we isolated a lipoxygenase from P. patens, which was identified in an EST library by sequence homology to lipoxygenases from plants. Sequence analysis of the cDNA showed that it exhibits a domain structure similar to that of type2 lipoxygenases from plants, harboring an N-terminal import signal for chloroplasts. The recombinant protein was identified as arachidonate 12-lipoxygenase and linoleate 13-lipoxygenase with a preference for arachidonic acid and eicosapentaenoic acid. In contrast to any other lipoxygenase cloned so far, this enzyme exhibited in addition an unusual high hydroperoxidase and also a fatty acid chain-cleaving lyase activity. Because of these unique features the pronounced formation of (2Z)-octen-1-ol, 1-octen-3-ol, the dienal (5Z,8Z,10E)-12-oxo-dodecatrienoic acid and 12-keto eicosatetraenoic acid was observed when arachidonic acid was administered as substrate. 12-Hydroperoxy eicosatetraenoic acid was found to be only a minor product. Moreover, the P. patens LOX has a relaxed substrate tolerance accepting C(18)-C(22) fatty acids giving rise to even more LOX-derived products. In contrast to other lipoxygenases a highly diverse product spectrum is formed by a single enzyme accounting for most of the observed oxylipins produced by the moss. This single enzyme might, in a fast and effective way, be involved in the formation of signal and/or defense molecules thus contributing to the broad resistance of mosses against pathogens.  相似文献   

8.
We isolated cDNA encoding a novel fibroblast growth factor (FGF-22) (170 amino acids) from human placenta. Of the FGF family members, FGF-22, which appears to be a secreted protein, is most similar to FGF-10 and FGF-7 (approximately 46% and approximately 40% amino acid identities, respectively). The human FGF-22 gene was localized on chromosome 19p13.3. We also isolated mouse cDNA encoding FGF-22 (162 amino acids) from the skin. Mouse FGF-22 shows high homology (87% amino acid identity) to human FGF-22. Mouse FGF-22 mRNA was found to be preferentially expressed in the skin among the mouse adult tissues examined by Northern blotting analysis. By in situ hybridization, FGF-22 mRNA in the skin was found to be preferentially expressed in the inner root sheath of the hair follicle. Therefore, FGF-22 is expected to be a unique FGF that plays a role in hair development.  相似文献   

9.
Molecular cloning and primary structure of human 15-lipoxygenase   总被引:20,自引:0,他引:20  
A full-length cDNA encoding 15-lipoxygenase has been isolated from a human reticulocyte cDNA library. The predicted primary structure of the enzyme exhibits a sequence similarity of 61% and 45% with human 5-lipoxygenase and the soybean lipoxygenase isoenzyme I, respectively. When all three lipoxygenases are aligned, there are two distinct regions of significant sequence identity including a cluster of five histidine residues conserved in all three lipoxygenases. Because histidines can serve as ligands for the enzymatically active iron, this region may be critical to enzymatic function. These results provide a basis for exploring functional domains of lipoxygenases.  相似文献   

10.
The unstable epoxide leukotriene (LT) A(4) is a key intermediate in leukotriene biosynthesis, but may also be transformed to lipoxins via a second lipoxygenation at C-15. The capacity of various 12- and 15-lipoxygenases, including porcine leukocyte 12-lipoxygenase, a human recombinant platelet 12-lipoxygenase preparation, human platelet cytosolic fraction, rabbit reticulocyte 15-lipoxygenase, soybean 15-lipoxygenase and human eosinophil cytosolic fraction, to catalyze conversion of LTA(4) to lipoxins was investigated and standardized against the ability of the enzymes to transform arachidonic acid to 12- or 15-hydroxyeicosatetraenoic acids (HETE), respectively. The highest ratio between the capacity to produce lipoxins and HETE (LX/HETE ratio) was obtained for porcine leukocyte 12-lipoxygenase with an LX/HETE ratio of 0.3. In addition, the human platelet 100000xg supernatant 12-lipoxygenase preparation and the human platelet recombinant 12-lipoxygenase and human eosinophil 100000xg supernatant 15-lipoxygenase preparation possessed considerable capacity to produce lipoxins (ratio 0.07, 0.01 and 0.02 respectively). In contrast, lipoxin formation by the rabbit reticulocyte and soybean 15-lipoxygenases was much less pronounced (LX/HETE ratios <0.002). Kinetic studies of the human lipoxygenases revealed lower apparent K(m) for LTA(4) (9-27 microM), as compared to the other lipoxygenases tested (58-83 microM). The recombinant human 12-lipoxygenase demonstrated the lowest K(m) value for LTA(4) (9 microM) whereas the porcine leukocyte 12-lipoxygenase had the highest V(max). The profile of products was identical, irrespective of the lipoxygenase used. Thus, LXA(4) and 6S-LXA(4) together with the all-trans LXA(4) and LXB(4) isomers were isolated. Production of LXB(4) was not observed with any of the lipoxygenases. The lipoxygenase inhibitor cinnamyl-3,4-dihydroxy-alpha-cyanocinnamate was considerably more efficient to inhibit conversion of LTA(4) to lipoxins, as compared to the inhibitory effect on 12-HETE formation from arachidonic acid (IC(50) 1 and 50 microM, respectively) in the human platelet cytosolic fraction.  相似文献   

11.
A full-length cDNA of rice lipoxygenase L-2 was cloned from 3-day-old seedlings. The identity of the clone was determined by amino acid sequencing of selected peptides of the purified enzyme and immunological characterization of an active enzyme that was produced from the cDNA in Escherichia coli by cultivation at 15 degrees C. The nucleotide sequence showed a strong bias toward G and C in the selection of nucleotides, especially at the third position of the codons (93% G/C). The complete amino acid sequence of the enzyme was deduced from the nucleotide sequence. The molecular mass of the enzyme was calculated to be 96,657 Da based on 865 amino acids. The amino acid sequence shares similarity with those of dicot lipoxygenases throughout the enzyme at a level of 50%. A hydropathy profile calculated from the amino acid sequence resembled those of dicot lipoxygenases, suggesting conservation of the secondary structure of these enzymes. The active enzyme, expressed in Escherichia coli, was characterized for pH dependence of the enzyme activity, intramolecular specificity, heat stability and Km. The enzyme had the same properties as the L-2 enzyme that was isolated from seedlings, but differed from the lipoxygenase L-3 isolated from mature plants.  相似文献   

12.
Four oxygenases of the arachidonic acid cascade (cyclooxygenase, 5-lipoxygenase, 12-lipoxygenase and 15-lipoxygenase) were investigated by the method of computer-assisted sequence comparison. From the calculations, some aspects of evolution and function of these enzymes were revealed. (1) The evolutionary origin of cyclooxygenase was different from that of lipoxygenases. (2) Cyclooxygenase was a distantly related member of a peroxidase family. (3) Enzymes with 12-lipoxygenase activity were created independently twice by gene duplication.  相似文献   

13.
15-lipoxygenase-1: a prooxidant enzyme   总被引:2,自引:0,他引:2  
Schewe T 《Biological chemistry》2002,383(3-4):365-374
Human and rabbit reticulocyte 15-lipoxygenase (15-lipoxygenase-1) and the leukocyte-type 12-lipoxygenases (12/15-lipoxygenases) of pig, beef, mouse and rat constitute a particular subfamily of mammalian lipoxygenases (reticulocyte-type lipoxygenases) with unique properties and functions. They catalyze enzymatic lipid peroxidation in complex biological structures via direct dioxygenation of phospholipids and cholesterol esters of biomembranes and plasma lipoproteins. Moreover, they are a source of free radicals initiating non-enzymatic lipid peroxidation and other oxidative processes. Expression and activity of reticulocyte-type lipoxygenases are highly regulated. Moreover, the susceptibility of intracellular membranes toward these lipoxygenases is controlled and may be increased together with lipoxygenase activity under conditions of oxidative stress. Thus, oxidative stress may favor a concerted package of lipoxygenase-mediated enzymatic and non-enzymatic lipid peroxidation and co-oxidative processes. Reaction of reticulocyte-type lipoxygenases with low-density lipoprotein renders the latter atherogenic and appears to be involved in the formation of atherosclerotic lesions.  相似文献   

14.
Wound-responsive lipoxygenase full-length cDNA from Zea mays was used to heterologously express the lipoxygenase enzyme and positional specificity of the lipoxygenase reaction was determined. The purified lipoxygenase catalyzed the conversion of α-linolenic acid into both 13-hydroperoxylinolenic acid and 9-hydroperoxylinolenic acid with a ratio of 6 to 4. The phylogenetic tree analysis indicated that the lipoxygenase is a type 1-lipoxygenase and belongs to 9-lipoxygenase subfamily with exceptional positional specificity. Dual positional specificity of the wound-responsive lipoxygenase indicates the versatile utilization of a singular lipoxygenase species as both 13-lipoxygenase and 9-lipoxygenase.  相似文献   

15.
Mammalian lipoxygenases (LOXs) have been implicated in cell differentiation and in the pathogenesis of inflammatory and hyperproliferative diseases. The available structural information indicated that lipoxygenases constitute single polypeptide chain enzymes consisting of a small N-terminal β-barrel domain and a larger C-terminal subunit that harbors the catalytic non-heme iron. Because of its structural similarity to C2-domains of lipases the N-terminal β-barrel domain of lipoxygenases, which comprises about 110 amino acids, has been implicated in membrane binding and activity regulation. To explore the functional relevance of the C2-domain in more detail and to develop a more comprehensive hypothesis on the biological role of this structural subunit we performed gene technical truncation on various mammalian LOX isoforms (12/15-LOXs of various species, human 15-LOX2, mouse 5-LOX) and quantified catalytic activity and membrane binding properties of the truncated recombinant enzyme species. We found that the C2-domain is not essential for catalytic activity and does hardly impact reaction specificity. Truncated enzyme species exhibit impaired membrane binding properties and altered reaction kinetics. Taken together, our data suggests a regulatory importance of the N-terminal β-barrel domain for mammalian lipoxygenase isoforms.  相似文献   

16.
Four oxygenases of the arachidonic acid cascade (cyclooxygenase, 5-lipoxygenase, 12-lipoxygenase and 15-lipoxygenase) were investigated by the method of computer-assisted sequence comparison. From the calculations, some aspects of evolution and function of these enzymes were revealed. (1) The evolutionary origin of cyclooxygenases was different from that of lipoxygenases. (2) Cyclooxygenase was a distantly related member of a peroxidase family. (3) Enzymes with 12-lipoxygenase activity were created independently twice by gene duplication.  相似文献   

17.
A full length cDNA sequence for a barley grain lipoxygenase was obtained. It includes a 5′ untranslated region of 69 nucleotides, an open reading frame of 2586 nucleotides encoding a protein of 862 amino acid residues and a 3′ untranslated region of 142 nucleotides. The molecular mass of the encoded polypeptide was calculated to be 96.392. Its amino acid sequence shows a high homology with that of other plant lipoxygenases identified to date.  相似文献   

18.
We isolated mouse cDNA encoding a novel FGF (251 amino acids). As this is the 23rd documented FGF, we termed it FGF-23. FGF-23 has a hydrophobic amino terminus ( approximately 24 amino acids), which is a typical signal sequence. As expected, recombinant mouse FGF-23 was efficiently secreted by High Five insect cell-infected recombinant baculovirus containing the cDNA, indicating that FGF-23 is a secreted protein. We also isolated human cDNA encoding FGF-23 (251 amino acids), which is highly identical ( approximately 72% amino acid identity) to mouse FGF-23. Of human FGF family members, FGF-23 is most similar to FGF-21 and FGF-19 ( approximately 24% and approximately 22% amino acid identities, respectively). Human FGF-23 gene was localized on the chromosome 12p13 and found to be tandem linked (within 5.5 kb) to human FGF-6 gene. The expression of FGF-23 mRNA in mouse adult tissues was examined by real-time quantitative polymerase chain reaction. FGF-23 mRNA was mainly expressed in the brain and thymus at low levels. The localization of FGF-23 mRNA in the brain was examined by in situ hybridization. FGF-23 mRNA in the brain was found to be preferentially expressed in the ventrolateral thalamic nucleus. Therefore, FGF-23 is expected a unique FGF that plays roles in the function of the ventrolateral thalamic nucleus.  相似文献   

19.
20.
Soybean leaves contain three proteins (the vegetative storage proteins or VSPs) that respond to nitrogen status and are believed to be involved in the temporary storage of nitrogen. One of these proteins, with a molecular mass of 94 kD and termed vsp94, was microsequenced. Partial amino acid sequence indicated that vsp94 was highly homologous to the lipoxygenase protein family. Further evidence that vsp94 is a lipoxygenase was obtained by demonstrating that vsp94 cross-reacted with a lipoxygenase antibody. Also, a lipoxygenase cDNA coding region was able to detect changes in an mRNA that closely parallel changes in vsp94 protein levels resulting from alteration of nitrogen sinks. Extensive immunocytochemical data indicate that this vsp94/lipoxygenase is primarily expressed in the paraveinal mesophyll cells and is subcellularly localized in the vacuole. These observations are significant in that they suggest that plant lipoxygenases may be bifunctional proteins able to function enzymatically in the hydroperoxidation of lipids and also to serve a role in the temporary storage of nitrogen during vegetative growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号