首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
化学-酶法制备L-高苯丙氨酸   总被引:1,自引:0,他引:1  
以苯丙酸乙酯为原料,通过正交设计优化2-氧4-苯基丁酸盐的制备条件:苯丙酸乙酯与草酸二乙酯摩尔比为1:3,缩合反应时间为2.5h,H2SO4质量分数为20%,水解反应时间为15h,优化条件下2-氧-4-苯基丁酸盐的产率为68.24%。随后,利用E.coli A5所产的天冬氨酸转氨酶为生物催化剂制备L-高笨丙氨酸。酶转化反应的最适条件为:游离细胞体系pH、温度、底物质量浓度和细胞质量浓度分别为8.5、37℃、20g/L和30g/L;而固定化细胞体系则分别为7.0—9.0、40℃、10g/L和30g/L。采用廉价的L-谷氨酸(L—Glu)作为氨基供体,添加表面活性剂有利于提高L-HPA产率。通过研究固定化细胞转化反应进程,结果发现8h内90%的底物可转化为L—HPA。  相似文献   

2.
采用Design—Expert软件的Central Composite Design(CCD)响应面设计对环糊精葡萄糖苷转移酶转化合成糖基抗坏血酸(AA-2G)的五个主要因素(转化时间、转化温度、pH、Vc浓度、β-环糊精浓度)进行了研究。采用降维分析方法对pH与转化时间、转化温度、Vc浓度、β-环糊精浓度以及反应温度与反应时间的交互作用对酶法转化合成AA-2G的影响进行了分析。建立了影响因素与响应值之间的回归方程,根据回归方程优化得到最佳转化条件为:转化时间25h,温度36.5℃,pH5.4,Vc72dL,β-环糊精55g/L。在此条件下,AA-2G的理论产量为10.06g/L,在验证实验中AA-2G的产量为9.76g/L,与预测的理论产量接近,比优化前提高了33%。  相似文献   

3.
L-苹果酸产生菌F-871变株合成延胡索酸酶的研究   总被引:7,自引:0,他引:7  
温特曲霉Aspergillus wentii F-871是高效转化延胡索酸为L-苹果酸的变株,通过对其合成延胡索酸酶的因素进行研究,筛选了培养基主要营养元素有L-精氨酸、酪氨酸、丝氨酸、天冬氨酸、苏氨酸、赖氨酸及相应含量丰富的酵母粉、黄豆饼粉和玉米浆。该变株生长阶段条件为:pH6.0,温度2830℃,培养时间为24h,酶合成阶段最适条件:接种量15%,初始pH6.8,培养温度2830℃,装量8090ml/500ml,酶合成周期40h。在优化的培养条件下,F-871变株延胡索酸酶合成水平可达156.33u/g,100ml发酵液中的酶可将延胡索酸转化为L-苹果酸32.06g,比国内一步发酵法产酸88.5%提高约4倍,转化率由85%提高到106.87%,发酵周期由90h缩短至57h。  相似文献   

4.
本研究对AspergillusnigerGlu05生产β-葡萄糖苷酶的培养基组分及培养条件进行了优化。优化后的培养基组成和培养条件分别为:麸皮4%,tryptone4%,1gmolMnSO4,1/zmolNaCl,KH2PO40.2%,pH自然,摇床转速250r/r/min,培养温度30℃,培养周期5d。优化后发酵液中酶活力达到44.11IU/mL,与初始的产酶水平32.87IU/mL相比,提高了36%。  相似文献   

5.
碱性普鲁兰酶产生菌选育和发酵条件的研究   总被引:9,自引:1,他引:8  
从儿童食品中分离筛选到1株产碱性普鲁兰酶活性较高的菌株,编号为SX-12,初步鉴定为芽孢杆菌Bacillus sp.,研究了SX-12原生质体制备与再生最佳条件,其原生质体经紫外线诱变处理,选育出产碱性普鲁兰酶的高产菌株SX-12C67,酶活由出发菌株的2.42U/mL提高到6.87U/mL,提高了约1.8倍,在此基础上对产酶条件进行了优化,优化后的最佳发酵培养基为:可溶性淀粉3%,蛋白胨1.0%,酵母膏0.5%,K2HPO42%,MgSO4.7H2O0.05%MnCl20.0001%,最适p;H9.5,最适温度40℃,初步研究了酶的部分性质,酶反应的最适pH,温度分别为10.0-10.5和55℃,在55摄氏度反应条件下,酶在pH6.0-11.0的范围内都具有一定的活性,Ca^2 ,Mn^2 ,Mg^2 等离子是酶的激活性,Zn^2 ,Hg^2 等离子是抑制剂。  相似文献   

6.
目的:通过发酵条件优化,提高海洋Cellulophagasp.QY201的l-卡拉胶酶产量。方法:采用正交试验分别对发酵条件、培养基配方进行优化。结果:该菌株最适培养基配方为(w/v):3%NaCl、0.5%MgSO4·7H2O、0.02%CaCl2、0.01%KCl、0.002%FeSO4、0.25%CaSein、0.15%Na2HPO4、0.2%NaNO3、0.25%L-卡拉胶。最佳培养条件为:培养基体积为70ml/250ml三角瓶,接种量为1%,25℃,90r/min培养36h。优化后酶活最高可达2.64U/ml,较优化前提高了22倍。结论:QY201最佳发酵条件的建立,为ι-卡拉胶酶的大规模生产创造了条件。  相似文献   

7.
一种经济高效的禾谷镰孢菌原生质体转化方法(英文)   总被引:1,自引:0,他引:1  
报道一种经济高效的禾谷镰孢菌原生质体的转化方法。制备禾谷镰孢菌原生质体的最佳条件为每毫升2% Drislase和2% Snailase混合酶液中加入0.12g幼殖体,于30℃酶解1.5h。其转化效率约为40–50个转化子/μg片段DNA;转化子的PCR检测结果表明,潮霉素B基因已插入禾谷镰孢菌的基因组中。建立的禾谷镰孢菌原生质体转化系统具有经济和高效的特点,为禾谷镰孢菌基因功能的研究提供了必要的技术支持。  相似文献   

8.
耦合固定化技术在天冬氨酸转氨酶反应体系中的应用   总被引:1,自引:0,他引:1  
对卡拉胶与明胶形成的耦合固定化体系进行了优化,并探讨海藻糖和金属离子(Mg^2+)等辅助因子在该体系中对酶转化过程的影响。结果表明将该法应用于L-苯丙氨酸转化体系中,保护了天冬氨酸转氨酶的活性,显著提高了酶活回收率,天冬氨酸转氨酶的活力回收达到了93.6%,较文献报道有明显提高。  相似文献   

9.
CO2是导致温室效应的主要气体,固定和转化CO2的研究对于温室效应的减缓和环境保护方面具有重要意义。近年来CO2转化的研究取得了迅猛发展,其中生物法固定CO2由于其反应条件温和且绿色无污染的优点而备受关注。本文对转化CO2有关的乳酸脱氢酶(LDH)、苹果酸脱氢酶(MDH)和草酰乙酸脱羧酶(OAADC)进行了初步的固定化分析。首先以碳纳米管、壳聚糖和海藻酸钠为原料,制备了包埋上述CO2转化酶的微胶囊固定化体系,然后分别比较了游离酶和固定化酶的操作稳定性和储存稳定性。研究结果表明,固定化的CO2转化酶的操作稳定性和储存稳定得到明显的提高。本研究对CO2的转化和应用方面具有重要参考价值。  相似文献   

10.
分别从大肠杆菌和化脓链球菌中扩增出编码UDP-葡萄糖脱氢酶基因ecohas B和spyhas B,并将其插入T7表达载体p RX2构建重组质粒p RXEB和p RXSB。在大肠杆菌BL21(DE3)中重组表达,并对经镍柱纯化后的UDP-葡萄糖脱氢酶的酶学性质进行分析。酶学性质研究表明:spy Has B的最适反应温度是30℃,最适p H 10,最适条件下的比活力是12.2 U/mg;eco Has B的最适反应温度是30℃,最适p H 9,最适条件下的比活力是5.55 U/mg。从多杀巴氏杆菌扩增出的透明质酸合成酶基因pmuhas A分别与ecohas B和spyhas B构建共表达载体p BPAEB和p BPASB。将其转化到大肠杆菌BW25113中,经生物转化生产透明质酸(HA),并对转化条件进行了优化。结果表明:重组菌株进行透明质酸转化时,UDP-葡萄糖脱氢酶酶活力越高,稳定性越好,HA产量越高;转化条件优化后,p BPAEB/BW25113和p BPASB/BW25113在摇瓶中的产量分别是1.52和1.70 g/L,比之前报道的提高了2-3倍。  相似文献   

11.
验证了荧光假单胞菌(Pseudomonas fluorescensATCC13525)香兰素脱氢酶基因(vanillin dehydrogenasegene,vdh)的功能。基因vdh表达产物(Vdh)的活性测定结果显示Vdh具有很高的活性,而且不经IPTG诱导的Vdh也具有同样高的活性。经过4 h的体外酶促反应,重组蛋白Vdh能把95%以上的香兰素转化为香兰素酸,从而验证了vdh基因的表达产物具有香兰素脱氢酶的功能。同时发现NAD 是从香兰素到香兰素酸体外转化必不可少的因素。  相似文献   

12.
Enzymatic degradation of dehydrodivanillin (DDV) was studied using high performance liquid chromatography (HPLC) with an anaerobic DDV-degrading recombinant FE7 under both aerobic and anaerobic conditions. When 200 mg of FE7 cells were mixed with 40 μg DDV in 1 ml phosphate buffer (0.01 M, pH 7.0) and 10 mM mercaptoethanol and incubated at 37°C for 24 h under an O2-free CO2 atmosphere, about 20 μg of DDV was decomposed. Only 12 μg DDV could be degraded when the same reaction was done under aerobic conditions, suggesting that the reaction occurs more easily under anaerobic than aerobic conditions. Enzymatic degradation of DDV was performed using a cell-free extract as a crude enzyme solution under aerobic conditions in a similar way. A reaction product detected and analysed by thin layer, high performance liquid and gas chromatographies and mass spectrometry was found to be vanillin from enzymatic reaction mixture. This enzymatic activity was not detected in either the culture supernatant or the heat-inactivated control. These results suggest that there may be an intracellular enzyme system which is involved in the conversion of DDV to vanillin. This is the first report to study the enzymatic degradation of DDV by anaerobes.  相似文献   

13.
Isoeugenol is a starting material for both the synthetic and biotechnological production of vanillin and vanillic acid. Nocardia iowensis DSM 45197 (formerly Nocardia species NRRL 5646) resting cells catalyze the conversion of isoeugenol to vanillic acid, vanillin, vanillyl alcohol and guaiacol. The present study used a variety of chemical, microbial and enzymatic approaches to probe the pathways used by N. iowensis in the oxidation of isoeugenol to these products. Of three possible pathways considered, initial side-chain olefin epoxidation, epoxide hydrolysis to a vicinal diol, and diol cleavage to vanillin and subsequently further oxidation to vanillic acid appears as the most likely route. Isoeugenol was not oxidized to ferulic acid, a well-known microbial transformation precursor for vanillin and vanillic acid. 18O-Labeled oxygen (one atom) and water (two oxygen atoms) were incorporated into vanillic acid during the whole-cell biotransformation reaction with isoeugenol indicating the likely involvement of oxygenase and hydrolase systems in the bioconversion reaction. Vanillin was converted to singly labeled vanillic acid in the presence of H218O suggesting the presence of an aldehyde oxidase. Cell extracts achieved the conversion of isoeugenol to vanillic acid and vanillin without cofactors. Partial fractionation of two enzyme activities supported the presence of isoeugenol monooxygenase and vanillin oxidase activities in N. iowensis.  相似文献   

14.
Abstract

The popular demand for natural food additives has resulted in a number of processes for producing natural vanillin. Although there are chemical procedures and plant sources for vanillin production, microbial bioconversions are being sought as a suitable ‘natural’ alternative. The present paper describes the conversion of isoeugenol to vanillin by a novel bacterial strain isolated from soil. The strain was identified as Pseudomonas sp. strain KOB10 based on morphological and physiochemical characteristics and its 16S rDNA gene sequence. We optimized medium composition for vanillin production using a Taguchi experimental design. Eight factors, i.e. isoeugenol, glycerol, tryptone, K2HPO4, KH2PO4, Cu2+, Mg2+ and Ca2+ concentrations, were selected and experiments based on an orthogonal array layout of L18 (22 × 36) were performed. Analysis of the experimental data using the Taguchi method indicated that Cu2+ and glycerol concentrations had the highest impact on isoeugenol conversion into vanillin at a substrate concentration of 0.9 g L?1. Under the optimized conditions, growing cells of Pseudomonas sp. strain KOB10 produced 0.153 g vanillin L?1 from 0.9 g isoeugenol L?1, with a molar yield of 18.3% after incubation for 48 h. To improve the vanillin yield, the effect of other bioconversion parameters including time of isoeugenol addition, initial isoeugenol concentration and conversion time was studied; the results showed a maximum concentration of 3.14 g vanillin L?1 after a total incubation time of 88 h with 15 g isoeugenol L?1, which corresponded to a molar yield of 22.5%. Further standardization and optimization for vanillin production was challenging.  相似文献   

15.
Oxidation of isoeugenol by Nocardia iowensis   总被引:1,自引:0,他引:1  
Isoeugenol is a starting material for both the synthetic and biotechnological production of vanillin and vanillic acid. Nocardia iowensis DSM 45197 (formerly Nocardia species NRRL 5646) resting cells catalyze the conversion of isoeugenol to vanillic acid, vanillin, vanillyl alcohol and guaiacol. The present study used a variety of chemical, microbial and enzymatic approaches to probe the pathways used by N. iowensis in the oxidation of isoeugenol to these products. Of three possible pathways considered, initial side-chain olefin epoxidation, epoxide hydrolysis to a vicinal diol, and diol cleavage to vanillin and subsequently further oxidation to vanillic acid appears as the most likely route. Isoeugenol was not oxidized to ferulic acid, a well-known microbial transformation precursor for vanillin and vanillic acid. 18O-Labeled oxygen (one atom) and water (two oxygen atoms) were incorporated into vanillic acid during the whole-cell biotransformation reaction with isoeugenol indicating the likely involvement of oxygenase and hydrolase systems in the bioconversion reaction. Vanillin was converted to singly labeled vanillic acid in the presence of H218O suggesting the presence of an aldehyde oxidase. Cell extracts achieved the conversion of isoeugenol to vanillic acid and vanillin without cofactors. Partial fractionation of two enzyme activities supported the presence of isoeugenol monooxygenase and vanillin oxidase activities in N. iowensis.  相似文献   

16.
The amplification of gltA gene encoding citrate synthase of TCA cycle was required for the efficient conversion of acetyl-CoA, generated during vanillin production from ferulic acid, to CoA, which is essential for vanillin production. Vanillin of 1.98 g/L was produced from the E. coli DH5alpha (pTAHEF-gltA) with gltA amplification in 48 h of culture at 3.0 g/L of ferulic acid, which was about twofold higher than the vanillin production of 0.91 g/L obtained by the E. coli DH5alpha (pTAHEF) without gltA amplification. The icdA gene encoding isocitrate dehydrogenase of TCA cycle was deleted to make the vanillin producing E. coli utilize glyoxylate bypass which enables more efficient conversion of acetyl-CoA to CoA in comparison with TCA cycle. The production of vanillin by the icdA null mutant of E. coli BW25113 harboring pTAHEF was enhanced by 2.6 times. The gltA amplification of the glyoxylate bypass in the icdA null mutant remarkably increased the production rate of vanillin with a little increase in the amount of vanillin production. The real synergistic effect of gltA amplification and icdA deletion was observed with use of XAD-2 resin reducing the toxicity of vanillin produced during culture. Vanillin of 5.14 g/L was produced in 24 h of the culture with molar conversion yield of 86.6%, which is the highest so far in vanillin production from ferulic acid using recombinant E. coli.  相似文献   

17.
Candida galli strain PGO6 isolated from oil-contaminated water is the first isolated yeast strain which is capable to form vanillin and vanillic acid during isoeugenol biotransformation. The products were confirmed by thin-layer chromatography (TLC), changes in the UV absorption pattern and high-performance liquid chromatography (HPLC). The phenotypic and physiochemical characteristics as well as molecular phylogenetic analysis based on amplification the ITS1-5.8S-ITS2 rDNA regions indicated the isolated strain PGO6 was identified as C. galli (GenBank accession number HM641231). Resting cells of C. galli PGO6 from the late-exponential of growth phase were used as biocatalysts for the biotransformation of isoeugenol. The optimal molar conversion of vanillin (48%) and vanillic acid (19%) was obtained after a 30 h incubation using 0.1% (v/v) of isoeugenol and 6 mg of dry weight of cells per ml without further optimization. Under these conditions, the total amount of vanillin and vanillic acid was 583 mg l(-1). Further biotransformation was carried out using 0.5% (v/v) of isoeugenol under the resting cells conditions, yielding a vanillin concentration of 1.12 g l(-1) (molar yield 25.7%) after 60 h incubation. This study brings the first evidence for biotransformation of isoeugenol to vanillin and vanillic acid by a yeast strain.  相似文献   

18.
Enzyme catalyzing the cleavage of the phenylpropanoid side chain was partially purified by ion exchange and gel filtration column chromatography after (NH4)2SO4 precipitation. Enzyme activities were dependent on the concentration of dithiothreitol (DTT) or glutathione (GSH) and activated by addition of 0.5 mM Fe2+. Enzyme activity for ferulic acid was as high as for 4-coumaric acid in the presence of GSH, suggesting that GSH acts as an endogenous reductant in vanillin biosynthesis. Analyses of the enzymatic reaction products with quantitative NMR (qNMR) indicated that an amount of glyoxylic acid (GA) proportional to vanillin was released from ferulic acid by the enzymatic reaction. These results suggest that phenylpropanoid 2,3-dioxygenase is involved in the cleavage of the ferulic acid side chain to form vanillin and GA in Vanilla planifolia.  相似文献   

19.
Vanillin is one of the most important flavors in the food industry and there is great interest in its production through biotechnological processes starting from natural substrates such as ferulic acid. Among bacteria, recombinant Escherichia coli strains are the most efficient vanillin producers, whereas Pseudomonas spp. strains, although possessing a broader metabolic versatility, rapidly metabolize various phenolic compounds including vanillin. In order to develop a robust Pseudomonas strain that can produce vanillin in high yields and at high productivity, the vanillin dehydrogenase (vdh)-encoding gene of Pseudomonas fluorescens BF13 strain was inactivated via targeted mutagenesis. The results demonstrated that engineered derivatives of strain BF13 accumulate vanillin if inactivation of vdh is associated with concurrent expression of structural genes for feruloyl-CoA synthetase (fcs) and hydratase/aldolase (ech) from a low-copy plasmid. The conversion of ferulic acid to vanillin was enhanced by optimization of growth conditions, growth phase and parameters of the bioconversion process. The developed strain produced up to 8.41 mM vanillin, which is the highest final titer of vanillin produced by a Pseudomonas strain to date and opens new perspectives in the use of bacterial biocatalysts for biotechnological production of vanillin from agro-industrial wastes which contain ferulic acid.  相似文献   

20.
In this review we examine the fascinating array of microbial and enzymatic transformations of ferulic acid. Ferulic acid is an extremely abundant, preformed phenolic aromatic chemical found widely in nature. Ferulic acid is viewed as a commodity scale, renewable chemical feedstock for biocatalytic conversion to other useful aromatic chemicals. Most attention is focused on bioconversions of ferulic acid itself. Topics covered include cinnamoyl side-chain cleavage; nonoxidative decarboxylation; mechanistic details of styrene formation; purification and characterization of ferulic acid decarboxylase; conversion of ferulic acid to vanillin;O-demethylation; and reduction reactions. Biotransformations of vinylgualacol are discussed, and selected biotransformations of vanillic acid including oxidative and nonoxidative decarboxylation are surveyed. Finally, enzymatic oxidative dimerization and polymerization reactions are reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号