首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To identify determinants of attenuation in the poliovirus type 1 Sabin vaccine strain, a series of recombinant viruses were constructed by using infectious cDNA clones of the virulent type 1 poliovirus P1/Mahoney and the attenuated type 1 vaccine strain P1/Sabin. Intracerebral inoculation of these viruses into transgenic mice which express the human receptor for poliovirus identified regions of the genome that conferred reduced neurovirulence. Exchange of smaller restriction fragments and site-directed mutagenesis were used to identify the nucleotide changes responsible for attenuation. P1/Sabin mutations at nucleotides 935 of VP4, 2438 of VP3, and 2795 and 2879 of VP1 were all shown to be determinants of attenuation. The recombinant viruses and site-directed mutants were also used to identify the nucleotide changes which are involved in the temperature sensitivity of P1/Sabin. Determinants of this phenotype in HeLa cells were mapped to changes at nucleotides 935 of VP4, 2438 of VP3, and 2741 of VP1. The 3Dpol gene of P1/Sabin, which contains three amino acid differences from its parent P1/Mahoney, also contributes to the temperature sensitivity of P1/Sabin; however, mutants containing individual amino acid changes grew as well as P1/Mahoney at elevated temperatures, suggesting that either some combination or all three changes are required for temperature sensitivity. In addition, the 3'-noncoding region of P1/Sabin augments the temperature-sensitive phenotype conferred by 3Dpol. Although nucleotide 2741, 3Dpol, and the 3'-noncoding region of P1/Sabin contribute to the temperature sensitivity of P1/Sabin, they do not contribute to attenuation in transgenic mice expressing the poliovirus receptor, demonstrating that determinants of attenuation and temperature sensitivity can be genetically separated.  相似文献   

2.
The complete nucleotide sequence has been determined of a strain of poliovirus type 3, P3/119, isolated from the central nervous system of a victim of fatal vaccine-associated poliomyelitis. Comparison of this sequence with those obtained previously for the Sabin type 3 vaccine, P3/Leon 12a1b and its neurovirulent progenitor, P3/Leon/37, reveals that these three strains are on a direct geneaological lineage and therefore that P3/119 is a bona fide revertant of the vaccine. P3/119 differs in sequence from its attenuated vaccine parent at just seven positions. Only one of these differences, a mutation from U to C at position 472 in the presumed noncoding region of the genome, is a back mutation to the wild type sequence. Of the six other differences, three give rise to coding changes in virus structural proteins, two are silent changes in the major open reading frame of the genome and one affects the 3'-terminus just prior to the poly A tract. These differences indicate that there are three possible types of molecular change which could, singly or collectively, result in attenuation and reversion to neurovirulence of the Sabin type 3 vaccine.  相似文献   

3.
Of the 55 point mutations which distinguish the type 1 poliovirus vaccine strain (Sabin 1) from its neurovirulent progenitor (P1/Mahoney), two have been strongly implicated by previous studies as determinants of the attenuation phenotype. A change of an A to a G at position 480, located within the 5' noncoding region, has been suggested to be the major attenuating mutation, analogous to the mutations at positions 481 and 472 in poliovirus types 2 and 3, respectively. In addition, the change of a U to a C at position 6203, resulting in an amino acid change in the polymerase protein 3D, has also been implicated as a determinant of attenuation, albeit to a lesser extent. To assess the contributions of these mutations to attenuation and temperature sensitivity, reciprocal changes were generated at these positions in infectious cDNA clones of Sabin 1 and P1/Mahoney. Assays in tissue culture and primates indicated that the two mutations make some contribution to the temperature sensitivity of the Sabin 1 strain but that neither is a strong determinant of attenuation.  相似文献   

4.
A base change from C to U at position 472 of the 5' noncoding region of the poliovirus genome is known to be a major determinant of attenuation in the P3/Sabin vaccine strain. To determine the biochemical basis for the attenuated phenotype imparted by this mutation, a cell line in which replication of neurovirulent and attenuated viruses could be distinguished was identified. A pair of P3/Sabin-P2/Lansing viral recombinants that differ only at position 472 was used; the viruses replicated equally well in HeLa cells, but the virus with a U at base 472 was attenuated in mice. In the human neuroblastoma cell line SH-SY5Y, recombinants with a U at base 472 replicated to approximately 10-fold-lower titers than did neurovirulent viruses with a C at this position. Analysis of viral RNA and protein synthesis indicated that translation of the attenuated viral RNA was specifically reduced in SH-SY5Y cells.  相似文献   

5.
The ability of poliovirus to propagate in neuronal cells can be reduced by introducing appropriate nucleotide substitutions into the viral genome. Specific mutations scattered throughout the poliovirus genome yielded the live attenuated vaccine strains of poliovirus. Neuron-specific propagation deficits of the Sabin strains are partially encrypted within a confined region of the internal ribosomal entry site (IRES), which carries attenuating point mutations in all three serotypes. Recently, high levels of neurovirulence attenuation were achieved with genetically engineered polioviruses containing heterologous IRES elements. This is exemplified with poliovirus recombinants replicating under control of a human rhinovirus type 2 (HRV2) IRES element. We have carried out experiments delineating the genetic basis for neuronal IRES function. Neuronal dysfunction of the HRV2 IRES is determined mainly by IRES stem-loop domain V, the locus for attenuating point mutations within the Sabin strains. Neuronal incompetence associated with HRV2 IRES domain V is substantially more pronounced than that observed with the attenuating IRES point mutation of the Sabin serotype 1 vaccine strain. Mix-and-match recombination of polio and HRV2 IRES domain V suggests that the attenuation phenotype correlates with overall structural features rather than primary sequence. Our experiments have identified HEK 293 cells as a novel system for the study of neuron-specific replication phenotypes of poliovirus. This cell line, originally derived from embryonic human kidney, has recently been described to display neuronal characteristics. We report propagation properties in HEK 293 cells for poliovirus recombinants with attenuated neurovirulence in experimental animals that corroborate this observation.  相似文献   

6.
M Kohara  S Abe  T Komatsu  K Tago  M Arita    A Nomoto 《Journal of virology》1988,62(8):2828-2835
Biological tests including the monkey neurovirulence test performed on recombinants between the virulent Mahoney and attenuated Sabin 1 strains of type 1 poliovirus indicated that the genome region encoding mainly the viral capsid proteins had little correlation with the neurovirulence or attenuation phenotype of the virus. The results suggested that new vaccine strains of type 2 and type 3 polioviruses may be constructed in vitro by replacing the sequence encoding the antigenic determinants in viral capsid proteins of the Sabin 1 genome by the corresponding sequences of the type 2 and type 3 genome, respectively. Accordingly, we constructed recombinants between the Sabin 1 and Sabin 3 strains of poliovirus in which genome sequences of the Sabin 1 strain encoding most or all capsid proteins were replaced by the corresponding genome sequences of the Sabin 3 strain. One of the recombinant viruses thus constructed was fully viable and showed antigenicity and immunogenicity identical to those of type 3 poliovirus. The monkey neurovirulence tests and in vitro phenotypic marker tests (temperature sensitivity of growth, sodium bicarbonate concentration dependency of growth under agar overlay, and size of plaque) were performed on the recombinant virus. The stability of the virus in regard to the temperature sensitivity phenotype was also tested. The results suggested that the recombinant virus is a possible candidate for a new type 3 poliovirus vaccine strain.  相似文献   

7.
The complete nucleotide sequence of the genome of the Sabin vaccine strain of poliovirus type 3 (P3/Leon 12 a1 b) has been determined from cDNA cloned in E. coli. The genome comprises a 5' non-coding region of 742 nucleotides, a large open reading frame of 6618 nucleotides (89% of the sequence) and a 3' non-coding region of 72 nucleotides. There is 77.4% base-sequence homology and 89.6% predicted amino-acid homology between types 1 and 3. Conservation of all glutamine-glycine and tyrosine-glycine cleavage sites suggests a mechanism of polyprotein processing similar to that established for poliovirus type 1.  相似文献   

8.
The poliovirus P2/P712 strain is an attenuated virus that is closely related to the type 2 Sabin vaccine strain. By using a mouse model for poliomyelitis, sequences responsible for attenuation of the P2/P712 strain were previously mapped to the 5' noncoding region of the genome and a central region encoding VP1, 2Apro, 2B, and part of 2C. To identify specific determinants that attenuate the P2/P712 strain, recombinants between this virus and the mouse-adapted P2/Lansing were constructed and their neurovirulence in mice was determined. By using this approach, the attenuation determinant in the central region was mapped to capsid protein VP1. Candidate attenuating sequences in VP1 and the 5' noncoding region were identified by comparing the P2/P712 sequence with that of vaccine-associated isolate P2/P117, and the P2/117 sequences were introduced into the P2/Lansing-P2/P712 recombinants by site-directed mutagenesis. Results of neurovirulence assays in mice indicate that an A at nucleotide 481 in the 5' noncoding region and isoleucine (Ile) at position 143 of capsid protein VP1 are the major determinants of attenuation of P2/P712. These determinants also attenuated neurovirulence in transgenic mice expressing human poliovirus receptors, a new model for poliomyelitis in which virulent viruses are not host restricted. These results demonstrate that A-481 and Ile-143 are general determinants of attenuation.  相似文献   

9.
Infectious cDNAs of the Sabin type 2 poliovirus vaccine virus and a vaccine-derived neurovirulent type 2 strain (P2/117) have been cloned in Escherichia coli. Nucleotide sequence analysis revealed that P2/117 differs from the vaccine strain by just 23 point mutations. Three occur in the 5' noncoding region. The remainder result in a total of 5 coding changes located in VP1, VP4, 2B, and 3D. The likely role of these mutations in the evolution to neurovirulence is discussed.  相似文献   

10.
The Sabin3 mutation in the viral RNA plays an important role in directing attenuation phenotype of Sabin vaccine strain of poliovirus type 1 (PV1). We previously described that Sabin3-like mutation introduced in Coxsackievirus B3 (CVB3) genome led to a defective mutant. However, this mutation do not led to destruction of secondary structure motif C within the stem-loop V of CVB3 RNA because of the presence of one nucleotide difference (C → U) in the region encompassing the Sabin3 mutation at nucleotides 471 of PV1 and 475 of CVB3 RNA. In order to reproduce the same sequence of PV1 sabin3 vaccine strain, we introduce in this study an additional mutation (U475 → C) to CVB3 Sabin3-like mutant. Our results demonstrated that Sabin3-like+C mutant displayed a decreased translation initiation defects when translated in cell-free system. This translation initiation defect was correlated with reduced yields of infectious virus particles in HeLa cells in comparison with Sabin3-like mutant and wild-type CVB3 viruses. Inoculation of Swiss mice with mutant viruses resulted in no inflammatory heart disease when compared to heart of mice infected with wild-type. Theses findings indicate that the double mutant could be exploited for the development of a live attenuated vaccine against CVB3.  相似文献   

11.
Three closely related strains of poliovirus type 3 have been used to study the molecular basis of attenuation in the currently used Sabin vaccine of this serotype. Plaque-purified derivatives of these strains possess closely similar serological and biochemical properties yet differ markedly in neurovirulence for monkeys. Molecular cloning via an RNA . cDNA method has facilitated comparative nucleotide sequencing. Initial efforts have concentrated on the region of the genome encoding VP1. Only minor structural differences between neurovirulent and attenuated type 3 strains were detected, in contrast to the major differences observed between the vaccine strains of poliovirus type 1 and its virulent precursor P1/Mahoney. These observations suggest that the molecular basis of attenuation of type 3 Sabin vaccine virus does not involve the VP1 polypeptide and, therefore, that mutations conferring the attenuated phenotype probably lie elsewhere in the genome.  相似文献   

12.
The molecular basis of the temperature-sensitive (ts) phenotype of P3/Sabin, the type 3 vaccine strain of poliovirus, was investigated in light of the known correlation between ts and attenuation phenotypes. A phenylalanine at residue 91 of the capsid protein VP3 was a major determinant of both phenotypes, and attenuation and ts could be reverted by the same second-site mutations. The ts phenotype was due to a defect early in the assembly process that inhibited the formation of 14S pentamers, empty capsids, and virions. It was further shown that capsid proteins that were not incorporated into higher-order structures had short half-lives at the nonpermissive temperature.  相似文献   

13.
In the current model of poliovirus entry, the initial interaction of the native virion with its cellular receptor is followed by a transition to an altered form, which then acts as an intermediate in viral entry. While the native virion sediments at 160S in a sucrose gradient, the altered particle sediments at 135S, has lost the coat protein VP4, and has become more hydrophobic. Altered particles can be found both associated with cells and in the culture medium. It has been hypothesized that the cell-associated 135S particle releases the viral genome into the cell cytoplasm and that nonproductive transitions to the 135S form are responsible for the high particle-to-PFU ratio observed for polioviruses. At 25 degrees C, a temperature at which the transition to 135S particles does not occur, the P1/Mahoney strain of poliovirus was unable to replicate, and cold-adapted (ca) mutants were selected from the population. These mutants have not gained the ability to convert to 135S particles at 25 degrees C, and the block to wild-type (wt) infection at low temperatures is not at the level of cellular entry. The particle-to-PFU ratio of poliovirus does not change at 25 degrees C in the absence of alteration. Three independent amino acid changes in the 2C coding region were identified in ca mutants, at positions 218 (Val to Ile), 241 (Arg to Ala), and 309 (Met to Val). Introduction of any of these mutations individually into wt poliovirus by site-directed mutagenesis confers the ca phenotype. All three serotypes of the Sabin vaccine strains and the P3/Leon strain of poliovirus also exhibit the ca phenotype. These results do not support a model of poliovirus entry into cells that includes an obligatory transition to the 135S particle.  相似文献   

14.
The attenuated phenotype of Sabin 3 poliovirus compared with its neurovirulent progenitor strain has been largely accounted for by mutations in the genome at positions 472 and 2034 (G. D. Westrop, K. A. Wareham, D. M. A. Evans, G. Dunn, P. D. Minor, D. I. Magrath, F. Taffs, S. Marsden, M. A. Skinner, G. C. Schild, and J. W. Almond, J. Virol. 63:1338-1344, 1989). By sequencing vaccine virus RNA, we recently identified another Sabin 3-specific mutation at position 2493 (U----C), which predicts an Ile----Thr change at the sixth residue of VP1 (C. Weeks-Levy, J. M. Tatem, S. J. DiMichele, W. Waterfield, A. F. Georgiu, and S. J. Mento, Virology 185:934-937, 1991). Viruses generated by using cDNAs which represent the vaccine sequence (LED3) and a derivative (VR318) possessing a single base change to the wild-type nucleotide (U) at 2493 were used to determine the impact of the 2493 mutation on virus phenotype. The VP1 proteins of LED3 and VR318 viruses were distinguishable by denaturing electrophoretic analysis. LED3 produced smaller plaques in Vero cells than VR318 virus did. Neurovirulence testing of these cDNA-derived viruses in monkeys demonstrated that the 2493 mutation in LED3 virus is attenuating.  相似文献   

15.
The genome of a candidate dengue type 2 (DEN-2) vaccine virus, strain PDK-53, differs from its DEN-2 16681 parent by nine nucleotides. Using infectious cDNA clones, we constructed 18 recombinant 16681/PDK-53 viruses to analyze four 16681-to-PDK-53 mutations, including 5' noncoding region (5'NC)-57 C-to-T, premembrane (prM)-29 Asp-to-Val (the only mutation that occurs in the structural proteins), nonstructural protein 1 (NS1)-53 Gly-to-Asp, and NS3-250 Glu-to-Val. The viruses were studied for plaque size, growth rate, and temperature sensitivity in LLC-MK(2) cells, growth rate in C6/36 cells, and neurovirulence in newborn mice. All of the viruses replicated to peak titers of 10(7.3) PFU/ml or greater in LLC-MK(2) cells. The crippled replication of PDK-53 virus in C6/36 cells and its attenuation for mice were determined primarily by the 5'NC-57-T and NS1-53-Asp mutations. The temperature sensitivity of PDK-53 virus was attributed to the NS1-53-Asp and NS3-250-Val mutations. The 5'NC-57, NS1-53, and NS3-250 loci all contributed to the small-plaque phenotype of PDK-53 virus. Reversions at two or three of these loci in PDK-53 virus were required to reconstitute the phenotypic characteristics of the parental 16681 virus. The prM-29 locus had little or no effect on viral phenotype. Sequence analyses showed that PDK-53 virus is genetically identical to PDK-45 virus. Restriction of the three major genetic determinants of attenuation markers to nonstructural genomic regions makes the PDK-53 virus genotype attractive for the development of chimeric DEN virus vaccine candidates.  相似文献   

16.
The temperature-sensitive and attenuated phenotypes of the Sabin type 1 vaccine strain of poliovirus result from numerous point mutations which occurred in the virulent Mahoney virus parent. One of these mutations is located in a 3D polymerase (3Dpol) codon (U-6203-->C, Tyr-73-->His) and is involved in attenuation in common mice (M. Tardy-Panit, B. Blondel, A. Martin, F. Tekaia, F. Horaud, and F. Delpeyroux, J. Virol. 67:4630-4638, 1993). This mutation also appears to contribute to temperature sensitivity, in association with at least 1 other of the 10 mutations of the 3'-terminal part of the genome including the 3Dpol coding and 3' noncoding regions. To map the other mutation(s), we constructed poliovirus mutants by mutagenesis and recombination of Mahoney and Sabin 1 cDNAs. Characterization of these poliovirus mutants showed that a second mutation in a 3Dpol codon (C-7071-->U, Thr-362-->Ile) contributes to temperature sensitivity. A mutation in the 3' noncoding region of the genome (A-7441-->G), alone or linked to another mutation (U-7410-->C), also appeared to be involved in this phenotype. The temperature-sensitive effect associated with the 3'-terminal part of the Sabin 1 genome results from the cumulative and/or synergistic effects of at least three genetic determinants, i.e., the His-73 and Ile-362 codons of 3Dpol and nucleotide G-7441. Sequence analysis of strains isolated from patients with vaccine-associated paralytic poliomyelitis showed that these genetic determinants are selected against in vivo, although the Ile-362 codon appeared to be more stable than either the His-73 codon or G-7441. These genetic determinants may contribute to the safety of Sabin 1 in vaccines.  相似文献   

17.
Poliovirus isolates types 1 and 3 were obtained from five and seven successive passages respectively, in infants who had been fed monovalent OPV in two separate clinical trials conducted in 1960. The purpose of these trials was to answer the question how much the vaccine virus would revert to its original neurovirulent phenotype following multiplication in the intestinal tract. Human passages were performed either by contact exposure or by feeding the excreted virus while the infants were maintained in isolation. Several virus isolates were obtained at each passage level. Infants participating in both studies showed no symptoms of disease. Antigenic studies (McBride, van Wezel) and protein analysis (PAGE) of the isolates, reported earlier from this laboratory, had shown that the isolates remained vaccine-like, although isolates from the later passages revealed some differences. Monkey neurovirulence test results showed that for both types 1 and 3 viruses the loss of attenuation of the vaccine strain upon passage was gradual, although the loss was faster for type 3. Examination of the oligonucleotide maps demonstrated that the oligonucleotide configuration of the isolates remained the same as for the vaccine strain but there was an increase of individual spot differences with increasing passage. The nucleotide sequence analysis of selected regions of the virus genomes revealed that there was no change from a G to A in nucleotide 480 of type 1 isolates; however, nucleotide 476 changed from a U to an A in type 1 passages 3, 4 and 5. Conversely, for type 3 the change of nucleotide 472 from a U to a C changed at the early first passage (4 days following administration of OPV), and remained a C in the six following passages; type 3 nucleotide 2034 did not change in the first passage from a U to a C, but it became a C in all further passages tested. The nucleotide changes mentioned for both virus types remained stable in successive passages. However, there was another nucleotide change for type 3 from a U to a C at position 1973 only for passages 5 and 6 which reverted to a U for passages 7L and 7LL. Study of selected human passage virus strains could further contribute to the identification of the critical nucleotides that are responsible for the attenuation of these two polio types of vaccine viruses.  相似文献   

18.
The evolution of the Sabin strain of type 1 poliovirus in a hypogammaglobulinemia patient for a period of 649 days is described. Twelve poliovirus isolates from sequential stool samples encompassing days 21 to 649 after vaccination with Sabin 1 were characterized in terms of their antigenic properties, virulence in transgenic mice, sensitivity for growth at high temperatures, and differences in nucleotide sequence from the Sabin 1 strain. Poliovirus isolates from the immunodeficient patient evolved gradually toward non-temperature-sensitive and neurovirulent phenotypes, accumulating mutations at key nucleotide positions that correlated with the observed reversion to biological properties typical of wild polioviruses. Analysis of plaque-purified viruses from stool samples revealed complex genetic and evolutionary relationships between the poliovirus strains. The generation of various coevolving genetic lineages incorporating different mutations was observed at early stages of virus excretion. The main driving force for genetic diversity appeared to be the selection of mutations at attenuation sites, particularly in the 5' noncoding region and the VP1 BC loop. Recombination between virus strains from the two main lineages was observed between days 63 and 88. Genetic heterogeneity among plaque-purified viruses at each time point seemed to decrease with time, and only viruses belonging to a unique genotypic lineage were seen from day 105 after vaccination. The relevance of vaccine-derived poliovirus strains for disease surveillance and future polio immunization policies is discussed in the context of the Global Polio Eradication Initiative.  相似文献   

19.
A number of recombinants between the virulent Mahoney and attenuated Sabin strains of type 1 poliovirus were constructed by using infectious cDNA clones of the two strains. To identify a strong neurovirulence determinant(s) residing in the genome region upstream of nucleotide position 1122, these recombinant viruses were subjected to biological tests, including monkey neurovirulence tests. The results of the monkey neurovirulence tests suggested the important contribution of an adenine residue (Mahoney type) at position 480 to the expression of the neurovirulence phenotype of type 1 poliovirus. This nucleotide, however, had only a minor effect, if any, on viral temperature sensitivity. Monkey neurovirulence tests on the recombinant virus whose genome had a guanine residue (Sabin type) at position 480 and variants generated from this recombinant virus in the central nervous system of monkeys strongly suggested that only one nucleotide change, from adenine to guanine, was not sufficient for full expression of the attenuation phenotype encoded by this genome region. These results suggest that the expression of the attenuation phenotype depends on the highly ordered structure formed in the 5' noncoding sequence and that the formation of such a structure is possibly influenced by the nucleotide at position 480. Furthermore, in vitro biological tests performed on viruses recovered from the central nervous system of monkeys injected with a temperature-sensitive recombinant virus showing the small-plaque and d phenotypes revealed that most of the recovered viruses had even higher temperature sensitivities and that all of the recovered viruses that had acquired the large-plaque phenotype had lost the d phenotype to some extent. These results indicate that there may be an unknown selection pressure(s) in the central nervous system and that common determinants might be involved in the expression of the small-plaque and d phenotypes.  相似文献   

20.
The attenuated Sabin strain of poliovirus type 1 (PV-1) differs from the neurovirulent PV-1 Mahoney strain by 55 nucleotide mutations. Only one of these mutations (A-480-->G, in the 5' noncoding (5' NC) region of the genome, is well characterized, and it confers a strong attenuating effect. We attempted to identify genetic attenuation determinants in the 3'-terminal part of the Sabin 1 genome including the 3D polymerase (3Dpol) gene and the 3' NC region. Previous studies suggested that some of the 11 mutations in this region of the Sabin 1 genome, and in particular a mutation in the polymerase gene (U-6203-->C, Tyr-73-->His), are involved to some extent in the attenuation of PV-1. We analyzed the attenuating effect in the mouse model by using the mouse-adapted PV-1/PV-2 chimeric strain v510 (a Mahoney strain carrying nine amino acids of the VP1 capsid protein from the Lansing strain of PV-2). Mutagenesis of locus 6203 was performed on the original v510 (U-6203-->C) and also on a hybrid v510/Sabin 1 (C-6203-->U) carrying the downstream 1,840 nucleotides of the Sabin 1 genome including the 3Dpol and 3' NC regions. Statistical analysis of disease incidence and time to disease onset in numerous mice inoculated with these strains strongly suggested that nucleotide C-6203 is involved in the attenuation of the Sabin 1 strain. Results also suggested that, among the mutations located in the 3Dpol and 3' NC regions, nucleotide C-6203 may be the principal or the only one to be involved in attenuation in this mouse model. We also found that the effect of C-6203 was weaker than that of nucleotide G-480; the two nucleotides acted independently and may have a cumulative effect on attenuation. The U-6203-->C substitution also appeared to contribute to the thermosensitivity of the Sabin 1 strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号