首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Sheng Y  Khanam N  Tsaksis Y  Shi XM  Lu QS  Bognar AL 《Biochemistry》2008,47(8):2388-2396
The folylpolyglutamate synthetase (FPGS) enzyme of Escherichia coli differs from that of Lactobacillus casei in having dihydrofolate synthetase activity, which catalyzes the production of dihydrofolate from dihydropteroate. The present study undertook mutagenesis to identify structural elements that are directly responsible for the functional differences between the two enzymes. The amino terminal domain (residues 1-287) of the E. coli FPGS was found to bind tetrahydrofolate and dihydropteroate with the same affinity as the intact enzyme. The domain-swap chimera proteins between the E. coli and the L. casei enzymes possess both folate or pteroate binding properties and enzymatic activities of their amino terminal portion, suggesting that the N-terminal domain determines the folate substrate specificity. Recent structural studies have identified two unique folate binding sites, the omega loop in L. casei FPGS and the dihydropteroate binding loop in the E. coli enzyme. Mutants with swapped omega loops retained the activities and folate or pteroate binding properties of the rest of the enzyme. Mutating L. casei FPGS to contain an E. coli FPGS dihydropteroate binding loop did not alter its substrate specificity to using dihydropteroate as a substrate. The mutant D154A, a residue specific for the dihydropteroate binding site in E. coli FPGS, and D151A, the corresponding mutant in the L. casei enzyme, were both defective in using tetrahydrofolate as their substrate, suggesting that the binding site corresponding to the E. coli pteroate binding site is also the tetrahydrofolate binding site for both enzymes. Tetrahydrofolate diglutamate was a slightly less effective substrate than the monoglutamate with the wild-type enzyme but was a 40-fold more effective substrate with the D151A mutant. This suggests that the 5,10-methylenetetrahydrofolate binding site identified in the L. casei ternary structure may bind diglutamate and polyglutamate folate derivatives.  相似文献   

2.
In some bacteria, such as Escherichia coli, the addition of L-glutamate to dihydropteroate (dihydrofolate synthetase activity) and the subsequent additions of L-glutamate to tetrahydrofolate (folylpolyglutamate synthetase (FPGS) activity) are catalyzed by the same enzyme, FolC. The crystal structure of E. coli FolC is described in this paper. It showed strong similarities to that of the FPGS enzyme of Lactobacillus casei within the ATP binding site and the catalytic site, as do all other members of the Mur synthethase superfamily. FolC structure revealed an unexpected dihydropteroate binding site very different from the folate site identified previously in the FPGS structure. The relevance of this site is exemplified by the presence of phosphorylated dihydropteroate, a reaction intermediate in the DHFS reaction. L. casei FPGS is considered a relevant model for human FPGS. As such, the presence of a folate binding site in E. coli FolC, which is different from the one seen in FPGS enzymes, provides avenues for the design of specific inhibitors of this enzyme in antimicrobial therapy.  相似文献   

3.
Tomsho JW  Moran RG  Coward JK 《Biochemistry》2008,47(34):9040-9050
Folylpoly-gamma-glutamate synthetase (FPGS, EC 6.3.2.17) is an ATP-dependent ligase that catalyzes formation of poly-gamma-glutamate derivatives of reduced folates and antifolates such as methotrexate and 5,10-dideaza-5,6,7,8-tetrahydrofolate (DDAH 4PteGlu 1). While the chemical mechanism of the reaction catalyzed by FPGS is known, it is unknown whether single or multiple glutamate residues are added following each folate binding event. A very sensitive high-performance liquid chromatography method has been used to analyze the multiple ligation reactions onto radiolabeled DDAH 4PteGlu 1 catalyzed by FPGS to distinguish between distributive or processive mechanisms of catalysis. Reaction time courses, substrate trapping, and pulse-chase experiments were used to assess folate release during multiple glutamate additions. Together, the results of these experiments indicate that hFPGS can catalyze the processive addition of approximately four glutamate residues to DDAH 4PteGlu 1. The degree of processivity was determined to be dependent on the concentration of the folate substrate, thus suggesting a mechanism for the regulation of folate polyglutamate synthesis in cells.  相似文献   

4.
Folylpoly-gamma-glutamate synthetase (FPGS) is the enzyme responsible for metabolic trapping of reduced folate cofactors in cells for use in nucleotide and amino acid biosynthesis. There are two isoforms of FPGS expressed in mouse tissues, one is expressed in differentiated tissue, principally liver and kidney, and the other in all rapidly proliferating cell types. The present study sought the functional difference that would explain the evolution of two mouse FPGS species. Recombinant cytosolic mouse isozymes were compared with respect to steady state kinetics, chain length of polyglutamate derivatives formed, and end-product inhibition by the major reduced folylpentaglutamate cofactors. Both isoforms were equally effective in catalyzing the addition of a mole of glutamic acid to reduced folate monoglutamate substrates. Each isoform was also capable of forming long chain polyglutamate derivatives of the model folate, 5,10-dideazatetrahydrofolate. In contrast, the FPGS isoform derived from rapidly proliferating tissue was much more sensitive to inhibition by (6R)-5,10-CH(2)-H(4)PteGlu(5) and (6S)-H(4)PteGlu(5) than the isoform expressed in differentiated tissues, as demonstrated by 13- and 6-fold lower inhibition constants (K(i)), respectively. Interestingly, each isozyme was equally sensitive to inhibition by (6R)-10-CHO-H(4)PteGlu(5). We drew the conclusion that the decreased sensitivity of the FPGS expressed in mouse liver and kidney to feedback inhibition by 5,10-CH(2)-H(4)PteGlu(5-6) and H(4)PteGlu(5-6) may have evolved to permit accumulation of a larger folate cofactor pool than that found within rapidly proliferating tissue.  相似文献   

5.
The enzyme folylpolyglutamate synthetase (FPGS) catalyzes the conversion of folate (pteroylmonoglutamate) to the polyglutamate forms (pteroylpolyglutamates) that are required for folate retention by mammalian cells. A rapid in situ autoradiographic assay for FPGS was developed which is based on the folate cofactor requirement of thymidylate synthase. Chinese hamster AUX B1 mutant cells lack FPGS activity and are unable to accumulate folate. As a result, the conversion of [6-3H]deoxyuridine to thymidine via the thymidylate synthase reaction is impaired in AUX B1 cells and no detectable label is incorporated into DNA. In contrast, FPGS in wild-type Chinese hamster CHO cells causes folate retention and enables the incorporation of [6-3H]deoxyuridine into DNA. Incorporation may be detected by autoradiography of monolayer cultures or of colonies replica plated onto polyester discs. Introduction of Escherichia coli FPGS into AUX B1 cells restores the activity of the thymidylate synthase pathway and demonstrates that the E. coli FPGS enzyme can provide pteroylpolyglutamates which function in mammalian cells.  相似文献   

6.
We investigated the role of the T4D bacteriophage gene 28 product in folate metabolism in infected Escherichia coli cells by using antifolate drugs and a newly devised assay for folyl polyglutamate cleavage activity. Preincubation of host E. coli cells with various sulfa drugs inhibited phage production by decreasing the burst size when the phage particles produced an altered gene 28 product (i.e., after infection under permissive conditions with T4D 28ts or T4D am28). In addition, we found that another folate analog, pyrimethamine, also inhibited T4D 28ts production and T4D 28am production, but this analog did not inhibit wild-type T4D production. A temperature-resistant revertant of T4D 28ts was not sensitive to either sulfa drugs or pyrimethamine. We developed an assay to measure the enzymatic cleavage of folyl polyglutamates. The high-molecular-weight folyl polyglutamate substrate was isolated from E. coli B cells infected with T4D am28 in the presence of labeled glutamic acid and was characterized as a folate compound containing 12 to 14 labeled glutamate residues. Extracts of uninfected bacteria liberated glutamate residues from this substrate with a pH optimum of 8.4 to 8.5. Extracts of bacteriophage T4D-infected E. coli B cells exhibited an additional new folyl polyglutamate cleavage activity with a pH optimum of about 6.4 to 6.5, which was clearly distinguished from the preexisting activity in the uninfected host cells. This new activity was induced in E. coli B cells by infection with wild-type T4D and T4D amber mutants 29, 26, 27, 51, and 10, but it was not induced under nonpermissive conditions by T4D am28 or by T4D 28ts. Mutations in gene 28 affected the properties of the induced cleavage enzyme. Wild-type T4D-induced cleavage activity was not inhibited by pyrimethamine, whereas the T4D 28ts activity induced at a permissive temperature was inhibited by this folate analog. Folyl polyglutamate cleavage activity characteristic of the activity induced in host cells by wild-type T4D or by T4D gene 28 mutants was also found in highly purified preparations of these phage ghost particles. The T4D-induced cleavage activity could be inhibited by antiserum prepared against highly purified phage baseplates. We concluded that T4D infection induced the formation of a new folyl polyglutamate cleavage enzyme and that this enzyme was coded for by T4D gene 28. Furthermore, since this gene product was a baseplate tail plug component which had both its antigenic sites and its catalytic sites exposed on the phage particle, it was apparent that this enzyme formed part of the distal surface of the phage baseplate central tail plug.  相似文献   

7.
Cellular folates function as co-enzymes in one-carbon metabolism and are predominantly decorated with a polyglutamate tail that enhances co-enzyme affinity, subcellular compartmentation and stability. Polyglutamylation is catalysed by folylpolyglutamate synthetases (FPGSs) that are specified by three genes in Arabidopsis, FPGS1, 2 and 3, which reportedly encode plastidic, mitochondrial and cytosolic isoforms, respectively. A mutational approach was used to probe the functional importance of folate polyglutamylation in one-carbon metabolism and development. Biochemical analysis of single FPGS loss-of-function mutants established that folate polyglutamylation is essential for organellar and whole-plant folate homeostasis. However, polyglutamylated folates were still detectable, albeit at lower levels, in organelles isolated from the corresponding isozyme knockout lines, e.g. in plastids and mitochondria of the fpgs1 (plastidial) and fpgs2 (mitochondrial) mutants. This result is surprising given the purported single-compartment targeting of each FPGS isozyme. These results indicate redundancy in compartmentalised FPGS activity, which in turn explains the lack of anticipated phenotypic defects for the single FPGS mutants. In agreement with this hypothesis, fpgs1 fpgs2 double mutants were embryo-lethal, fpgs2 fpgs3 mutants exhibited seedling lethality, and fpgs1 fpgs3 mutants were dwarfed with reduced fertility. These phenotypic, metabolic and genetic observations are consistent with targeting of one or more FPGS isozymes to multiple organelles. These data confirm the importance of polyglutamylation in folate compartmentation, folate homeostasis and folate-dependent metabolic processes, including photorespiration, methionine and pantothenate biosynthesis.  相似文献   

8.
Four L1210 murine leukemia cell lines resistant to 5, 10-dideazatetrahydrofolate (DDATHF) and other folate analogs, but sensitive to continuous exposure to methotrexate, were developed by chemical mutagenesis followed by DDATHF selective pressure. Endogenous folate pools were modestly reduced but polyglutamate derivatives of DDATHF and ALIMTA (LY231514, MTA) were markedly decreased in these mutant cell lines. Membrane transport was not a factor in drug resistance; rather, folypolyglutamate synthetase (FPGS) activity was decreased by >98%. In each cell line, FPGS mRNA expression was unchanged but both alleles of the FPGS gene bore a point mutation in highly conserved domains of the coding region. Four mutations were in the predicted ATP-, folate-, and/or glutamate-binding sites of FPGS, and two others were clustered in a peptide predicted to be beta sheet 5, based on the crystal structure of the Lactobacillus casei enzyme. Transfection of cDNAs for three mutant enzymes into FPGS-null Chinese hamster ovary cells restored a reduced level of clonal growth, whereas a T339I mutant supported growth at a level comparable to that of the wild-type enzyme. The two mutations predicted to be in beta sheet 5, and one in the loop between NH(2)- and COOH-terminal domains did not support cell growth. When sets of mutated cDNAs were co-transfected into FPGS-null cells to mimic the genotype of drug-selected resistant cells, clonal growth was restored. These results demonstrate for the first time that single amino acid substitutions in several critical regions of FPGS can cause marked resistance to tetrahydrofolate antimetabolites, while still allowing cell survival.  相似文献   

9.
Methylenetetrahydrofolate dehydrogenase, which is one of the activities of a trifunctional folate-dependent enzyme isolated from pig liver, displays an ordered bi-bi kinetic mechanism when methylenetetrahydropteroylmonoglutamate is used as the folate substrate [Cohen, L., & MacKenzie, R. E. (1978) Biochim. Biophys. Acta 522, 311-317]. We have studied the inhibition of this activity by a series of pteroylglutamates containing one to seven glutamyl residues. Inhibitors with one to four glutamyl residues exhibit a kinetically determined KD of about 56 microM for binding at the folate site of the enzyme, while inhibitors with five to seven glutamyl residues exhibit a KD of about 16 microM. These results suggest that folylpolyglutamates are bound to the trifunctional enzyme relatively weakly, with the major interaction involving the fifth glutamyl residue of the polyglutamate "tail". A free energy decrease of about 0.74 kcal (3.1 kJ) is associated with this interaction. The possibility of a swinging arm mechanism for the trifunctional enzyme is discussed. We have also measured the kinetic parameters Vmax and the Km values for NADP+ and the folate substrate associated with catalysis using a series of methylenetetrahydropteroylpolyglutamate substrates. The variation in these parameters with the length of the polyglutamate tail is small.  相似文献   

10.
Sheng Y  Ip H  Liu J  Davidson A  Bognar AL 《Biochemistry》2003,42(6):1537-1543
Folylpolyglutamate synthetase (FPGS) catalyzes the addition of glutamate to folate derivatives to form folate polyglutamates. FPGS is essential for folate biosynthesis in bacteria and retention of folate pools in eukaryotes. X-ray crystallographic analyses of binary and ternary complexes of Lactobacillus casei FPGS suggest that binding of folate triggers a conformational change that activates FPGS. We used EPR and CD spectroscopy to further characterize the conformational change in the FPGS reaction. For EPR spectroscopy, two cysteine residues were introduced into FPGS by site-directed mutagenesis, K172C in the N-terminal domain and D345C in the C-terminal domain. The mutant protein was expressed, purified, and labeled with methanethiosulfonate. Addition of ATP, tetrahydrofolate, or 5,10-methylenetetrahydrofolate but not glutamate to FPGS showed broadening of EPR spectra, which is due to stronger spin-spin interactions, suggesting that both ATP and tetrahydrofolates cause a conformational change. ATP binding had an EPR spectrum distinct from that of tetrahydrofolate binding, indicating that it caused a different conformational change. When both ATP and THF were bound, the spectrum was identical to that seen when THF alone bound to the enzyme, showing that the THF-induced conformation was dominant. The spectral broadening suggests that the conformation change involves the two domains moving closer together, which is consistent with the rigid-body rotation of the C-terminal domain observed in the FPGS crystal structure with AMPPCP and 5,10-methylenetetrahydrofolate bound. No changes in the CD spectra were observed with the addition of FPGS substrates, suggesting that the conformational changes did not affect the secondary structure elements of the enzyme. These studies confirm the conformational change seen in the crystal structure by an independent method but also show that ATP binds to the free enzyme and affects its conformation.  相似文献   

11.
A recessive Arabidopsis (Arabidopsis thaliana) mutant with short primary roots and root hairs was identified from a forward genetic screen. The disrupted gene in the mutant encoded the plastidial isoform of folylpolyglutamate synthetase (FPGS), previously designated as AtDFB, an enzyme that catalyzes the addition of glutamate residues to the folate molecule to form folylpolyglutamates. The short primary root of atdfb was associated with a disorganized quiescent center, dissipated auxin gradient in the root cap, bundled actin cytoskeleton, and reduced cell division and expansion. The accumulation of monoglutamylated forms of some folate classes in atdfb was consistent with impaired FPGS function. The observed cellular defects in roots of atdfb underscore the essential role of folylpolyglutamates in the highly compartmentalized one-carbon transfer reactions (C1 metabolism) that lead to the biosynthesis of compounds required for metabolically active cells found in the growing root apex. Indeed, metabolic profiling uncovered a depletion of several amino acids and nucleotides in atdfb indicative of broad alterations in metabolism. Methionine and purines, which are synthesized de novo in plastids via C1 enzymatic reactions, were particularly depleted. The root growth and quiescent center defects of atdfb were rescued by exogenous application of 5-formyl-tetrahydrofolate, a stable folate that was readily converted to metabolically active folates. Collectively, our results indicate that AtDFB is the predominant FPGS isoform that generates polyglutamylated folate cofactors to support C1 metabolism required for meristem maintenance and cell expansion during postembryonic root development in Arabidopsis.  相似文献   

12.
Folate plays a critical role in maintaining normal metabolic, energy, differentiation and growth status of all mammalian cells. The steady-state accumulation of folate seems to depend on the activity of two enzymes: folylpolyglutamate synthetase (FPGS), which adds glutamate residues, and gamma-glutamyl hydrolase (GGH), which removes them, enabling it to be transported across the biological membranes. Overexpression of GGH and downregulation of FPGS would be expected to decrease intracellular folate in its polyglutamylated form, thereby increasing efflux of folate and its related molecules, which might lead to resistance to drugs or folate deficiency. The study was sought to delineate the activity of GGH and expression FPGS in tissues involved in folate homeostasis during alcoholism and the epigenetic regulation of these enzymes and transporters regulating intracellular folate levels. We determined the activity of GGH and expression of FPGS in tissues after 3 months of ethanol feeding to rats at 1 g/kg body weight/day. The results showed that there was not any significant change in the activity of folate hydrolyzing enzyme GGH in ethanol-fed rats while there was significant down regulation in the expression of FPGS. Ethanol feeding decreased the total as well as polyglutamated folate levels. There was tissue-specific hyper/hypo methylation of folate transporter genes viz. PCFT and RFC by chronic ethanol feeding. Moreover, hypermethylation of FPGS gene was observed in intestine and kidney without any change in methylation levels of GGH in the ethanol-fed rats. In conclusion, the initial deconjugation of polyglutamylated folate by GGH was not impaired in ethanol-fed rats while the conversion of monoglutamylated folate to polyglutamylated form might be impaired. There was tissue-specific altered methylation of folate transporter genes by chronic ethanol feeding.  相似文献   

13.
Summary Derivatives of folic acid occur in nature predominantly as poly (-glutamyl) derivatives containing 2–8 glutamate residues. The data regarding the function of these derivatives, and their biosynthesis by eucaryotic and procaryotic folylpolyglutamate synthetases, is reviewed.The most universal functions of folylpolyglutamates appear to be (a) as the actual cofactors in vivo for folate dependent enzymes, (b) as inhibitors of folate dependent enzymes for which they are not substrates, and (c) to increase retention of folates after they are transported into cells as monoglutamates. Folylpolyglutamates also have numerous specialized functions in specific organisms, e.g. as structural components of some coliphage, and as allosteric regulators in Neurospora crassa.A single enzyme appears responsible for synthesis of all polyglutamate derivatives, regardless of length. With the recent introduction of sensitive assays this folylpolyglutamate synthetase has begun to be characterized. Although procaryotic and eucaryotic synthetases have many dissimilar properties, both types catalyze the ATP-dependent addition of L-glutamate to the -carboxyl of the glutamate present in the folate. Both types also require a monovalent cation and a relatively high pH. The most significant differences between the two types are in their folate substrate specificity and the product lengths derived from various folates.The mechanism of the bacterial enzyme has been studied and an acyl phosphate intermediate is indicated.  相似文献   

14.
Two classical antifolates, a 2,4-diamino-5-substituted furo[2,3-d]pyrimidine and a 2-amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidine, were synthesized as potential inhibitors of dihydrofolate reductase (DHFR) and thymidylate synthase (TS). The syntheses were accomplished by condensation of 2,6-diamino-3(H)-4-oxo-pyrimidine with alpha-chloro-ketone 21 to afford two key intermediates 23 and 24, followed by hydrolysis, coupling with l-glutamate diethyl ester and saponification of the diethyl ester to afford the classical antifolates 13 and 14. Compounds 13 and 14 with a single carbon atom bridge are both substrates for folylpoly-gamma-glutamate synthetase (FPGS), the enzyme responsible for forming critical poly-gamma-glutamate antifolate metabolites with increased potency and/or increased cell retention. Compound 14 is a highly efficient FPGS substrate demonstrating that 2,4-diamino-5-substituted furo[2,3-d]pyrimidines are important lead structures for the design of antifolates with FPGS substrate activity. It retains inhibitory potency for DHFR and TS compared to the two atom bridged analog 5. Compound 13 is a poor inhibitor of purified DHFR and TS, and both 13 and 14 are poor inhibitors of the growth of CCRF-CEM human leukemia cells in culture, indicating that single carbon bridged compounds in these series though conducive to FPGS substrate activity were not potent inhibitors.  相似文献   

15.
A simple procedure for the measurement of gamma-glutamyl hydrolase (conjugase) activity is described. Glutamic acid released from pteroylpenta-gamma-glutamate by hog kidney and chicken pancreas conjugases was quantitated using the dye 4,4'-bis(dimethylamino)benzophenone hydrazone. The procedure involves hydrolysis of the folylpoly-gamma-glutamate substrate by conjugase, conversion of glutamate to alpha-ketoglutarate by L-glutamate dehydrogenase and colorimetric measurement of the BDBH derivative of alpha-ketoglutarate. The release of as little as one nmol of glutamic acid from the substrate can be measured by this procedure, which is well suited for the assay of a variety of conjugase preparations. In addition, the method should provide a general assay for the enzymatic hydrolysis of various folate and antifolate polyglutamates.  相似文献   

16.
Folylpoly-gamma-glutamate synthetase activity is central to the operation of folate metabolism and is essential for the survival of mammalian stem cell populations but the very low levels of endogenous expression of this enzyme have greatly limited its study. We now report the expression of cytosolic folylpoly-gamma-glutamate synthetase (FPGS) cloned from human leukemic cells in baculovirus-infected insect cells at levels of 4-5% of the total soluble protein of the cells. As was the case with endogenously expressed mammalian FPGS, recombinant enzyme was quantitatively blocked at the amino terminus in spite of the large-scale production in insect cells. A three-step purification procedure resulted in an overall yield of 7-35 mg per liter of culture with a recovery of about 50% and purity approximately 95%; pure enzyme was stable to storage for extended periods. Pure protein had a specific activity of 25 micromol h(-1)mg(-1) with aminopterin as a substrate and used a broad spectrum of folates as substrates. The pure enzyme also carried out ATP hydrolysis in the absence of a folate substrate or glutamic acid; this partial reaction occurred at a k(cat) about 0.4% that of the full reaction. In vitro, this single protein added several (1-8) moles of glutamic acid per mole of folate analog, the same spectrum of folate polyglutamates as seen in vivo. The quantities of pure enzyme achievable in insect cells should allow functional and structural studies on this enzyme.  相似文献   

17.
Phosphonate and phosphinate analogues of N-acylated gamma-glutamylglutamate were tested for the ability to inhibit glutamate carboxypeptidase II (GCP II). All of the compounds inhibit GCP II with IC(50) values in the low nanomolar range. The comparison of the results to previously reported inhibitory studies of the same compounds toward folylpoly-gamma-glutamyl synthetase (FPGS) and gamma-glutamyl hydrolase (gamma-GH) provides insight into structural and mechanistic features of each enzyme. Potential utility of these compounds as diagnostic agents and probes to understand folate or antifolate poly-gamma-glutamates metabolism is also described.  相似文献   

18.
Antifolates, which are among the first antimicrobial agents invented, inhibit cell growth by creating an intracellular state of folate deficiency. Clinical resistance to antifolates has been mainly attributed to mutations that alter structure or expression of enzymes involved in de novo folate synthesis. We identified a Mycobacterium smegmatis mutant, named FUEL (which stands for folate utilization enzyme for leucovorin), that is hypersusceptible to antifolates. Chemical complementation indicated that FUEL is unable to metabolize folinic acid (also known as leucovorin or 5-formyltetrahydrofolate), whose metabolic function remains unknown. Targeted mutagenesis, genetic complementation, and biochemical studies showed that FUEL lacks 5,10-methenyltetrahydrofolate synthase (MTHFS; also called 5-formyltetrahydrofolate cyclo-ligase; EC 6.3.3.2) activity responsible for the only ATP-dependent, irreversible conversion of folinic acid to 5,10-methenyltetrahydrofolate. In trans expression of active MTHFS proteins from bacteria or human restored both antifolate resistance and folinic acid utilization to FUEL. Absence of MTHFS resulted in marked cellular accumulation of polyglutamylated species of folinic acid. Importantly, MTHFS also affected M. smegmatis utilization of monoglutamylated 5-methyltetrahydrofolate exogenously added to the medium. Likewise, Escherichia coli mutants lacking MTHFS became susceptible to antifolates. These results indicate that folinic acid conversion by MTHFS is required for bacterial intrinsic antifolate resistance and folate homeostatic control. This novel mechanism of antimicrobial antifolate resistance might be targeted to sensitize bacterial pathogens to classical antifolates.  相似文献   

19.
Ingestion by healthy humans of small amounts of polyglutamate folates from yeast, equivalent to 300 mug of monoglutamate folate and containing 30 mug of "free folate," resulted in an appreciable elevation of the serum folate corresponding to 300 mug of synthetic pteroylmonoglutamate (PGA). Ingestion of higher amounts of polyglutamate folate did not result in higher serum folate elevations than did 300 mug. It is concluded that small amounts of polyglutamate folate from yeast are fully utilized, presumably by deconjugation in the gut prior to absorption. The relative ineffectiveness of larger doses of polyglutamate folates from yeast may be due to limiting conjugase activity in the gut, unfavorable conditions for its activity (such as unsuitable pH) or to an inhibitor of the enzyme present in impure preparations.  相似文献   

20.
Folylpolyglutamate synthetase (FPGS) catalyzes the synthesis of the poly-gamma-glutamate forms of tetrahydrofolate and its co-enzyme adducts, as well as of the folate-analogue drugs. This paper reviews current knowledge of the preparations of FPGS from mammalian sources (rat, hog, mouse, and beef liver). Kinetic constants for the substrates and activators of FPGS are compared. Tetrahydrofolate and 5-formyltetrahydrofolate are excellent substrates for the enzyme. The Km values for the antifolates and their 7-hydroxy metabolites are much higher than those for the tetrahydrofolates. Aminopterin has higher activity with FPGS than does methotrexate, which partially explains its greater toxicity. 5-Formyltetrahydrofolate, which is used as a rescue agent in high-dose methotrexate-rescue chemotherapy, is a better alternate substrate of FPGS than is methotrexate and therefore is a potent competitive inhibitor of the glutamylation of methotrexate. Thus, low concentrations of the rescue agent prevent formation of cytotoxic polyglutamates of methotrexate. The pathway of the reaction is the addition of a glutamate residue to the terminal gamma-carboxyl of the pteridine substrate. That longer folylpolyglutamates are poorer substrates possibly is a result of this addition pathway. Pteroic acid activates FPGS by lowering the Km value of the pteridine substrate. It also greatly increases the activity of the synthetase at physiological pH values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号