首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 236 毫秒
1.
The urinary bile acid profile, obtained by capillary gas chromatography, of a patient suffering from cerebrotendinous xanthomatosis and treated with ursodeoxycholic acid demonstrated, besides the occurrence of 23-norcholic acid and (23R)-hydroxycholic acid (as a consequence of this disease), six additional unknown bile acids and three known bile acids, viz. ursodeoxycholic acid, hyocholic acid and omega-muricholic acid. The structure of two of the unknown bile acids were elucidated and proven by organic syntheses. These were 23-norursodeoxycholic acid and 3 beta-ursodeoxycholic acid. The structures of three bile acids were tentatively elucidated as being 1 beta-hydroxyursodeoxycholic acid, 21-hydroxyursodeoxycholic acid and 22-hydroxyursodeoxycholic acid, and the possibility that the structure of the remaining bile acid is that of 5-hydroxyursodeoxycholic acid is discussed. Two of these bile acids (1 beta-hydroxyursodeoxycholic acid and 5-hydroxyursodeoxycholic acid) also occurred in urine of a healthy individual during oral ursodeoxycholic acid treatment, whereas 23-norcholic acid, 23-norursodeoxycholic acid, (23R)-hydroxycholic acid, 21-hydroxyursodeoxycholic acid and 22-hydroxyursodeoxycholic acid were only present in urine of the patient suffering from cerebrotendinous xanthomatosis. The metabolism of ursodeoxycholic acid, both in the normal state and in the cerebrotendinous xanthomatosis, is discussed.  相似文献   

2.
Biliary and urinary bile alcohol and bile acid composition has been determined by high performance liquid chromatography in patients with cerebrotendinous xanthomatosis before and after treatment with chenodeoxycholic acid. Most of the bile acids and bile alcohols in the bile and urine were separated in less than 30 min using a radial pack C18 muBondapak 5 micron particle size column with a mobile phase of acetonitrile-water-methanol-acetic acid 70:70:20:1 (v/v/v/v) at a flow rate of 2 ml/min, and a refractive index detector. Before treatment, cholic acid (49%) and 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha, 25-tetrol (27%) were the major biliary bile acid and bile alcohol, respectively, but were not detected in the urine of five patients. 5 beta-Cholestane-pentols were, instead, the major urinary bile alcohols with 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha, 23 xi, 25-pentol (56%) predominating. Whereas 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha, 24S,25-pentol was not detected in the bile, it was isolated in the urine of all patients (27%). The only urinary bile acid isolated by high performance liquid chromatography was nor-cholic acid. After 1 month of treatment with chenodeoxycholic acid, 0.75 g/day, chenodeoxycholic acid became the major bile acid in the bile of all patients (71%) along with its metabolite, ursodeoxycholic acid (21%). Cholic acid and 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha, 25-tetrol were drastically reduced and were only 3% each. The excretion of 5 beta-cholestane-pentols in the urine was also drastically reduced from 130 mg/day to 15 mg/day.  相似文献   

3.
Large quantities of C27 bile alcohols hydroxylated at C-25 are excreted in the bile and urine of patients with cerebrotendinous xanthomatosis, a lipid storage disease that results from defective bile acid synthesis. The presence of both biliary and urinary bile alcohols reflects impaired bile acid synthesis. After treatment of samples with beta-glucuronidase, plasma bile alcohols were quantitated by gas-liquid chromatography-mass spectrometry. 5 beta-Cholestane-3 alpha,7 alpha,12 alpha,25-tetrol (334 micrograms/dl) was found to be the major bile alcohol, followed by 5 beta-cholestane-3 alpha,7 alpha,12 alpha,23R,25-pentol (65 micrograms/dl), and 5 beta-cholestane-3 alpha,7 alpha,12 alpha,24(R and S),25-pentols (62.5 micrograms/dl and 64.5 micrograms/dl, respectively) in the plasma of these patients. When compared to biliary and urinary bile alcohol excretions, the plasma pattern resembled bile where 5 beta-cholestane-3 alpha,7 alpha,12 alpha,25-tetrol glucuronide predominated. In contrast, urinary bile alcohols were composed chiefly of 5 beta-cholestanepentol glucuronides with only small amounts of 5 beta-cholestane-3 alpha,7 alpha,12 alpha,25-tetrol glucuronide. Treatment with chenodeoxycholic acid, which suppresses abnormal bile acid synthesis in these patients, reduced plasma bile alcohol concentrations dramatically. These results show that large quantities of bile alcohol glucuronides, particularly 5 beta-cholestane-3 alpha,7 alpha,12 alpha,25-tetrolglucuronide, circulate in plasma of patients with cerebrotendinous xanthomatosis. The plasma bile alcohols closely resemble biliary bile alcohols which indicates their hepatic origin. The large quantities of polyhydroxylated bile alcohols in the urine may suggest their formation, at least in part, from 5 beta-cholestane-3 alpha,7 alpha,12 alpha,25-tetrol by renal hydroxylating mechanisms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Cerebrotendinous xanthomatosis (CTX) is a rare, recessively inherited lipid storage disease characterized by a markedly reduced production of chenodeoxycholic acid and an increased formation of 25-hydroxylated bile alcohols and cholestanol. Patients with this disease are known to have mutations in the sterol 27-hydroxylase (Cyp27) gene. However, one study showed that mice with a disrupted Cyp27 gene did not have any CTX-related clinical or biochemical abnormalities. To explore the reason, hepatic cholesterol, cholestanol, and 12 intermediates in bile acid biosynthetic pathways were quantified in 10 Cyp27(-/-) and 7 Cyp27(+/+) mice, two CTX patients (untreated and treated with chenodeoxycholic acid), and four human control subjects by high resolution gas chromatography-mass spectrometry. Mitochondrial 27-hydroxycholesterol and 5beta-cholestane-3alpha,7alpha,12alpha,27-tetrol were virtually absent in both Cyp27(-/-) mice and CTX patients. In Cyp27(-/-) mice, microsomal concentrations of intermediates in the early bile acid biosynthetic pathway (7alpha-hydroxycholesterol, 7alpha-hydroxy-4-cholesten-3-one, 7alpha,12alpha-dihydroxy-4-cholesten-3-one, and 5beta-cholestane-3alpha,7alpha,12alpha-triol), 25-hydroxylated bile alcohols (5beta-cholestane-3alpha,7alpha,12alpha,25-tetrol, 5beta-cholestane-3alpha,7alpha,12alpha,23R,25-pentol, and 5beta-cholestane-3alpha,7alpha,12alpha,24R, 25-pentol), and cholestanol were all significantly elevated compared with those in Cyp27(+/+) mice, although the levels were lower than those in untreated CTX patients. The intermediate levels in early bile acid biosynthesis were more elevated in male (16;-86% of CTX) than in female Cyp27(-/-) mice (7-30% of CTX). In contrast, 25-hydroxylated bile alcohol concentrations were not significantly different between male and female Cyp27(-/-) mice and were considerably lower (less than 14%) than those in CTX patients.These results suggest that 1) in Cyp27(-/-) mice, especially in females, classic bile acid biosynthesis via 7alpha-hydroxycholesterol is not stimulated as much as in CTX patients; and 2) formed 25-hydroxylated bile alcohols are more efficiently metabolized in Cyp27(-/-) mice than in CTX patients.  相似文献   

5.
Bile acid profiles of bile, urine, and feces obtained from a patient with cerebrotendinous xanthomatosis on the same day have been analyzed by gas-liquid chromatography-mass spectrometry after fractionation into groups by mode of conjugation by an ion-exchange chromatography. The predominant biliary bile acid was cholic acid conjugated with glycine and taurine. Lesser amounts of the amino acid conjugates of chenodeoxycholic acid, ursodeoxycholic acid, 7-ketodeoxycholic acid, allocholic acid, and deoxycholic acid, and of unconjugated norcholic acid and allonorcholic acid were also present in the bile. The major fecal bile acid was 7-epicholic acid. Relatively large amounts of bile acids were excreted in the urine. Unconjugated 7-epicholic acid, norcholic acid, allonorcholic acid, and cholic acid predominated. The bile acid profiles of the patient were different from those of normal subjects and should be useful for the diagnosis.  相似文献   

6.
Bile alcohols in bile, urine, and feces of a patient with cerebrotendinous xanthomatosis have been analyzed by a combination of capillary gas-liquid chromatography and mass spectrometry after fractionation into groups according to mode of conjugation. The presence of at least 18 bile alcohols, which were excreted mainly as glucurono-conjugates in bile and urine, and as unconjugated forms in feces, was demonstrated. The following bile alcohols were identified with certainty by direct comparison with reference compounds: 5 beta-cholestane-3 alpha,7 alpha,12 alpha-triol; (23R)-5 beta-cholestane-3 alpha,7 alpha,12 alpha,23-tetrol; 5 alpha- and 5 beta-cholestane-3 alpha,7 alpha,12 alpha,24-tetrols; 5 alpha- and 5 beta-cholestane-3 alpha,7 alpha,12 alpha,25-tetrols; 27-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha,24,25-pentol; (22R)-5 beta-cholestane-3 alpha,7 alpha,12 alpha,22,25-pentol; (23R)- and (23S)-5 beta-cholestane-3 alpha,7 alpha, 12 alpha,23,25-pentols; 3 alpha,12 alpha,25-trihydroxy-5 beta-cholestane-7-one; (24R)- and (24S)-5 beta-cholestane-3 alpha,7 alpha,12 alpha,24,25-pentols; 5 beta-cholestane-3 alpha,7 alpha,12 alpha,25,26-pentol. Although the bile alcohol profile in urine was quite different from those in bile and feces, the determination of urinary bile alcohols as well as of biliary and fecal bile alcohols could be used for diagnosis of cerebrotendinous xanthomatosis.  相似文献   

7.
In patients with cerebrotendinous xanthomatosis (CTX), diminished cholic acid production is associated with incomplete oxidation of the cholesterol side chain and the excretion of C(25)-hydroxy bile alcohols. The aims of this investigation were 1) to provide quantitative information on the pool size and production rate of chenodeoxycholic acid by the isotope dilution technique; and 2) to investigate the possible existence of a block in chenodeoxycholic acid synthesis and explain the absence of chenodeoxycholic acid precursors in CTX. After the injection of [24-(14)C]chenodeoxycholic acid, measurements of chenodeoxycholic acid pool size and production rate in a CTX subject were, respectively, 1/20 and 1/6 as great as controls. Further, three potential precursors of chenodeoxycholic acid, namely [G-(3)H]7alpha-hydroxy-4-cholesten-3-one, [G-(3)H]5beta-cholestane-3alpha,7alpha,25-triol, and [G-(3)H]5beta-cholestane-3alpha,7alpha,26-triol, were administered to the CTX and control subjects and the specific activity curves of [G-(3)H]cholic acid and [G-(3)H]chenodeoxycholic acid were constructed and compared. In the control subjects, the two bile acids decayed exponentially, but in the CTX patient maximum specific activities were abnormally delayed, indicating the hindered transformation of precursor into bile acid. These results show that chenodeoxycholic acid synthesis is small in CTX and that the conversion of 7alpha-hydroxy-4-cholesten-3-one, 5beta-cholestane-3alpha,7alpha,25-triol, and 5beta-cholestane-3alpha,7alpha,26-triol to both chenodeoxycholic acid and cholic acid were similarly impaired.  相似文献   

8.
This paper describes the identification of a new bile alcohol possessing the 5 alpha-cholestane structure that was found in the urine of patients with cerebrotendinous xanthomatosis. The urine samples were extracted with reversed-phase resin, treated with beta-glucuronidase, and separated on silica gel and reversed-phase column chromatography. The new bile alcohol isolated was the second component of the urinary bile alcohols and was identified as (23S)-5 alpha-cholestane-3 alpha,7 alpha,12 alpha,23,25-pentol by means of gas-liquid chromatography/mass spectrometry and nuclear magnetic resonance spectroscopic studies.  相似文献   

9.
Absolute configuration at C-23 of 5 beta-cholestane-3 alpha,7 alpha,12 alpha,23,25-pentol, one of the bile alcohols isolated from the patients with cerebrotendinous xanthomatosis, was unequivocally determined as 23S by conversion of a key intermediate, (23S)-5 beta-cholest-25-ene-3 alpha,7 alpha,12 alpha,23-tetrol to either the bile alcohol of known absolute configuration, (23R)-5 beta-cholestane-3 alpha,7 alpha,12 alpha,23-tetrol, or the naturally occurring 23,25-pentol.  相似文献   

10.
Cerebrotendinous xanthomatosis is an autosomal recessive disorder of bile acid synthesis, characterized by mutation in the mitochondrial enzyme 27-hydroxylase that leads to an accumulation of cholestanol and cholesterol. Characterized clinically by premature bilateral cataracts, slowly progressive neurological deterioration with dementia, cerebellar and brainstem signs, peripheral neuropathy, and seizures, the disease presents pathologically with lipid granulomata with foamy histiocytes and cholesterol clefts. Replacement therapy with chenodeoxycholic acid slows progression of the disease but does not reverse neurological deficits. Here, we present the case of a 49-year-old woman diagnosed at autopsy with cerebrotendinous xanthomatosis, on the basis of bilateral Achilles tendon granulomas, and typical foamy histiocytic infiltration of the brain, most severe in the dentate nucleus, and a typical clinical presentation. To investigate the pathological manifestations of this disease further, we performed immunohistochemistry for N(epsilon)-(carboxymethyl)-lysine, an indicator of oxidative damage, and found strong labeling of cytoplasmic material within histiocytes. In summary, this case of undiagnosed cerebrotendinous xanthomatosis during life emphasizes the need for a greater awareness of the disease, and early diagnosis and treatment. Further, the involvement of oxidative stress in cerebrotendinous xanthomatosis indicates that combined therapy with chenodeoxycholic acid and antioxidants may improve clinical outcome.  相似文献   

11.
Bile acid synthesis from cholesterol is tightly regulated via a feedback mechanism mediated by the farnesoid X receptor (FXR), a nuclear receptor activated by bile acids. Synthesis via the classic pathway is initiated by a series of cholesterol ring modifications and followed by the side chain cleavage. Several intermediates accumulate or are excreted as end products of the pathway in diseases involving defective bile acid biosynthesis. In this study, we investigated the ability of these intermediates to activate human FXR. In a cell-based reporter assay and coactivator recruitment assays in vitro, early intermediates possessing an intact cholesterol side chain were inactive, whereas 26- or 25-hydroxylated bile alcohols and C27 bile acids were highly efficacious ligands for FXR at a level comparable to that of the most potent physiological ligand, chenodeoxycholic acid. Treatment of HepG2 cells with these precursors repressed the rate-limiting cholesterol 7alpha-hydroxylase mRNA level and induced the small heterodimer partner and the bile salt export pump mRNA, indicating the ability to regulate bile acid synthesis and excretion. Because 26-hydroxylated bile alcohols and C27 bile acids are known to be evolutionary precursors of bile acids in mammals, our findings suggest that human FXR may have retained affinity to these precursors during evolution.  相似文献   

12.
Abstract

Cerebrotendinous xanthomatosis is an autosomal recessive disorder of bile acid synthesis, characterized by mutation in the mitochondrial enzyme 27-hydroxylase that leads to an accumulation of cholestanol and cholesterol. Characterized clinically by premature bilateral cataracts, slowly progressive neurological deterioration with dementia, cerebellar and brainstem signs, peripheral neuropathy, and seizures, the disease presents pathologically with lipid granulomata with foamy histiocytes and cholesterol clefts. Replacement therapy with chenodeoxycholic acid slows progression of the disease but does not reverse neurological deficits. Here, we present the case of a 49-year-old woman diagnosed at autopsy with cerebrotendinous xanthomatosis, on the basis of bilateral Achilles tendon granulomas, and typical foamy histiocytic infiltration of the brain, most severe in the dentate nucleus, and a typical clinical presentation. To investigate the pathological manifestations of this disease further, we performed immunohistochemistry for N?-(carboxymethyl)-lysine, an indicator of oxidative damage, and found strong labeling of cytoplasmic material within histiocytes. In summary, this case of undiagnosed cerebrotendinous xanthomatosis during life emphasizes the need for a greater awareness of the disease, and early diagnosis and treatment. Further, the involvement of oxidative stress in cerebrotendinous xanthomatosis indicates that combined therapy with chenodeoxycholic acid and antioxidants may improve clinical outcome.  相似文献   

13.
Urine from patients with cerebrotendinous xanthomatosis (CTX) was found to contain a number of minor bile acids along with three major bile acids, 7-epicholic acid, norcholic acid, and cholic acid. The following minor bile acids were identified by combined gas-liquid chromatography-mass spectrometry: 7-ketobisnordeoxycholic acid; 12-ketobisnorchenodeoxycholic acid; 7-ketonordeoxycholic acid; 12-ketochenodeoxycholic acid; 7-ketodeoxycholic acid; 12-ketochendeoxycholic acid; bisnorcholic acid; allonorcholic acid; allocholic acid; 1 beta-hydroxybisnorcholic acid; 1 beta-hydroxynorcholic acid; 1 beta-hydroxycholic acid; 2 beta-hydroxybisnorcholic acid; 2 beta-hydroxy-norcholic acid; 2 beta-hydroxycholic acid. The presence of C22 and C23 bile acids in urine of the CTX patients suggests that bile alcohols having a hydroxyl group at C22 or C23 in the side chain may be further degraded to these bile acids.  相似文献   

14.
This paper describes studies dealing with the nature of the C27 pentahydroxy bile alcohols present in the bile and feces of two patients with cerebrotendinous xanthomatosis (CTX). The presence of a bile alcohol having the structure 5beta-cholestane-3alpha,7alpha,12alpha,24alpha,25-pentol was confirmed by separation of the two 24-hydroxy epimers of 5beta-cholestane-3alpha,7alpha,12alpha,24,25-pentol and characterization of the dpimers by gas-liquid chromatography and infrared and mass spectrometry. Tentative assignment of the 24alpha and 24beta configuration was made on the basis of molecular rotation differences. A second major bile alcohol excreted by the CTX subjects was 5beta-cholestane-3alpha,7alpha,12alpha,23xi,25-pentol. Its structure was determined by infrared spectrometry, proton magnetic resonance spectrometry, and mass spectrometry because a reference compound was not available.  相似文献   

15.
The bile alcohols present in the feces of a patient with cerebrotendinous xanthomatosis were studied. Three bile alcohols which are different from any known natural bile alcohol were isolated as minor components of the fecal bile alcohol fraction. The structures of these compounds were established as 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha, 23 beta-tetrol, 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha, 24 alpha-tetrol, and 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha, 24 beta-tetrol by comparison with synthetic samples.  相似文献   

16.
We have studied the effect of ursodeoxycholic acid on the serum and urinary bile acids in seven patients with moderate to severe primary biliary cirrhosis. Bile acids were characterized by gas-liquid chromatography-mass spectrometry and quantified by capillary gas-liquid chromatography. Serum bile acids were elevated 26-fold over control values, with 2.2 times more cholic acid than chenodeoxycholic acid. Urinary bile acid output was elevated 22-fold over control values with a cholic acid:chenodeoxycholic acid ratio of 1.6. In addition, lithocholic acid, deoxycholic acid, ursodeoxycholic acid, 1 beta-hydroxycholic acid, 1 beta-hydroxydeoxycholic acid, and hyocholic acid were identified in both serum and urine; the proportions of the 1- and 6-hydroxylated bile acids were much higher in urine than in serum of the patients (32.1% versus 4.2%). Three months of placebo administration did not change the serum and urinary bile acid composition. In contrast, ursodeoxycholic acid feeding (12-15 mg/kg body weight per day) for 6 months resulted in a 25% decline in the total serum bile acid concentration from the pretreatment values. The proportion of ursodeoxycholic acid increased from 2.1 to 41.2% of total bile acids, so that total fasting serum endogenous bile acid levels decreased 62.4%. Ursodeoxycholic acid feeding substantially increased urinary bile acid output, with ursodeoxycholic acid comprising 58.1%. The proportion of 1- and 6- hydroxylated endogenous bile acids was reduced by 45.5% from pretreatment levels and approximately 4.5% of the urinary bile acids were omega-muricholic acid, 1 beta-hydroxyursodeoxycholic acid, and 21-hydroxyursodeoxycholic acid. These results demonstrate significant changes in the serum and urinary bile acid pattern in primary biliary cirrhosis during ursodeoxycholic acid treatment. The beneficial effect of ursodeoxycholic acid may be due to reduction of the hydroxylated derivatives of endogenous bile acids together with the appearance of hydroxylated derivatives of ursodeoxycholic acid or it may be due to displacement of the more hydrophobic endogenous bile acids by the hydrophilic ursodeoxycholic acid.  相似文献   

17.
In order to define the effect of a side chain hydroxy group on bile acid (BA) physicochemical and biological properties, 23-hydroxylated bile acids were synthesized following a new efficient route involving the alpha-oxygenation of silylalkenes. 22-Hydroxylated bile acids were also studied. The synthesized bile acids included R and S epimers of 3 alpha,7 alpha,23-trihydroxy-5 beta-cholan-24-oic acid (23R epimer: phocaecholic acid), 3 alpha,12 alpha,23-trihydroxy-5 beta-cholan-24-oic (23R epimer: bitocholic acid), and 3 alpha,7 beta,23-trihydroxy-5 beta-cholan-24-oic acid. A 3 alpha,7 alpha,22-trihydroxy-5 beta-cholan-24-oic acid (haemulcholic acid) was also studied. The presence of a hydroxy group on the side chain slightly modified the physicochemical behavior in aqueous solution with respect to common BA: the critical micellar concentration (CMC) and the hydrophilicity were similar to naturally occurring trihydroxy BA such as cholic acid. The pKa value was lowered by 1.5 units with respect to common BA, being 3.8 for all the C-23 hydroxy BA. C-22 had a higher pKa (4.2) as a result of the increased distance of the hydroxy group from the carboxy group. When the C-23 hydroxylated BA were intravenously administered to bile fistula rats, they were efficiently recovered in bile (more than 80% unmodified) while the corresponding analogs, lacking the 23- hydroxy group, were almost completely glycine- or taurine-conjugated. On the other hand, the C-22 hydroxylated BA were extensively conjugated with taurine and less than 40% of the administered dose was secreted without being conjugated. In the presence of intestinal bacteria, they were mostly metabolized to the corresponding 7-dehydroxylated compound similar to common BA with the exception of bitocholic acid which was relatively stable. The presence of a hydroxy group at the C-23 position increased the acidity of the BA and this accounted for poor absorption within the biliary tree and efficient biliary secretion without the need for conjugation. 3 alpha,7 beta-23 R/S trihydroxy-5 beta-cholan-24-oic acids could improve the efficiency of ursodeoxycholic acid (UDCA) for gallstone dissolution or cholestatic syndrome therapy, as it is relatively hydrophilic and efficiently secreted into bile without altering the glycine and taurine hepatic pool.  相似文献   

18.
1. Bile samples of different animals were analysed and the percentage content of classical bile acids was determined. 2. Herbivorous birds mostly excreted a large proportion of chenodeoxycholic acid. 3. The anteater (Myrmecophaga tridactyla) excreted deoxycholic acid most probably as a primary bile acid. 4. In the bile of ducks (Anas platyrhynchos) a large amount of (23R)3 alpha, 7 alpha, 23-trihydroxy-5 beta-cholan-24-oic acid (beta-phocaecholic acid) was found.  相似文献   

19.
We measured the cholestanol, cholesterol precursor (lathosterol), and plant sterol (campesterol and sitosterol) concentrations of serum and bile in 11 patients with cerebrotendinous xanthomatosis. The mean values of serum cholestanol, lathosterol, campesterol, and sitosterol were, respectively, 8.4-, 2.5-, 2.7-, and 1.4-times higher in the patients than in normal control subjects (n = 26). Cholestanol (6.7-fold) and campesterol (3.7-fold) levels in bile (n = 4) were also elevated in the patients. There was no significant difference of serum sterol levels between patients with coronary artery disease and those without it. Chenodeoxycholic acid treatment for periods ranging from 6 months to 3 years and 4 months lowered serum lathosterol (57.7% reduction) and campesterol (57.8%) levels in parallel with cholestanol (70.8%) level, but the sitosterol level (19.7%) decreased less. Thus, increased levels of cholesterol precursor (lathosterol), plant sterols (campesterol and sitosterol), and cholestanol were found in the serum and bile in cerebrotendinous xanthomatosis. Chenodeoxycholic acid treatment effectively reduced the levels of these sterols, except for sitosterol.  相似文献   

20.
The accumulation of various 25-hydroxylated C(27)-bile alcohols in blood and their excretion in urine are characteristic features of cerebrotendinous xanthomatosis (CTX) a recessively inherited inborn error of bile acid synthesis caused by mutations in the mitochondrial sterol 27-hydroxylase (CYP27) gene. These bile alcohols may be intermediates in the alternative cholic acid side chain cleavage pathway. The present study was undertaken to identify enzymes and reactions responsible for the formation of these bile alcohols and to explain why Cyp27(-/-) mice do not show CTX-related abnormalities. Microsomal activities of 5beta-cholestane-3alpha,7alpha,12alpha-triol 25- and 26-hydroxylases, 5beta-cholestane-3alpha,7alpha,12alpha,25-tetrol 23R-, 24S-, and 27-hydroxylases and testosterone 6beta-hydroxylase, a marker enzyme for CYP3A, in Cyp27(-/-) mice livers were markedly up-regulated (5.5-, 3.5-, 6.5-, 7.5-, 2.9-, and 5.4-fold, respectively). In contrast, these enzyme activities were not increased in CTX. The activities of 5beta-cholestane-3alpha,7alpha,12alpha-triol 25- and 26-hydroxylases and 5beta-cholestane-3alpha,7alpha,12alpha,25-tetrol 23R-, 24R-, 24S-, and 27-hydroxylases were strongly correlated with the activities of testosterone 6beta-hydroxylase in control human liver microsomes from eight unrelated donors. Troleandomycin, a specific inhibitor of CYP3A, markedly suppressed these microsomal side chain hydroxylations in both mouse and human livers in a dose-dependent manner. In addition, experiments using recombinant overexpressed human CYP3A4 confirmed that these microsomal side chain hydroxylations were catalyzed by a single enzyme, CYP3A4. The results demonstrate that microsomal 25- and 26-hydroxylations of 5beta-cholestane-3alpha,7alpha,12alpha-triol and microsomal 23R-, 24R-, 24S-, and 27-hydroxylations of 5beta-cholestane-3alpha,7alpha,12alpha,25-tetrol are mainly catalyzed by CYP3A in both mice and humans. Unlike Cyp27(-/-) mice, CYP3A activity was not up-regulated despite marked accumulation of 5beta-cholestane-3alpha,7alpha,12alpha-triol in CTX.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号