首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic diversity of crop species in sub-Sahelian Africa is still poorly documented. Among such crops, pearl millet is one of the most important staple species. In Niger, pearl millet covers more than 65% of the total cultivated area. Analyzing pearl millet genetic diversity, its origin and its dynamics is important for in situ and ex situ germplasm conservation and to increase knowledge useful for breeding programs. We developed new genetic markers and a high-throughput technique for the genetic analysis of pearl millet. Using 25 microsatellite markers, we analyzed genetic diversity in 46 wild and 421 cultivated accessions of pearl millet in Niger. We showed a significantly lower number of alleles and lower gene diversity in cultivated pearl millet accessions than in wild accessions. This result contrasts with a previous study using iso-enzyme markers showing similar genetic diversity between cultivated and wild pearl millet populations. We found a strong differentiation between the cultivated and wild groups in Niger. Analyses of introgressions between cultivated and wild accessions showed modest but statistically supported evidence of introgressions. Wild accessions in the central region of Niger showed introgressions of cultivated alleles. Accessions of cultivated pearl millet showed introgressions of wild alleles in the western, central, and eastern parts of Niger.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.Cedric Mariac and Viviane Luong have contributed equally to this work.  相似文献   

2.
Pearl millet (Pennisetum glaucum) is a staple crop in Sahelian Africa. Farmers usually grow varieties with different cycle lengths and complementary functions in Sahelian agrosystems. Both the level of genetic differentiation of these varieties and the domestication history of pearl millet have been poorly studied. We investigated the neutral genetic diversity and population genetic structure of early‐ and late‐flowering domesticated and wild pearl millet populations using 18 microsatellite loci and 8 nucleotide sequences. Strikingly, early‐ and late‐flowering domesticated varieties were not differentiated over their whole distribution area, despite a clear difference in their isolation‐by‐distance pattern. Conversely, our data brought evidence for two well‐differentiated genetic pools in wild pearl millet, allowing us to test scenarios with different numbers and origins of domestication using approximate Bayesian computation (ABC). The ABC analysis showed the likely existence of asymmetric migration between wild and domesticated populations. The model choice procedure indicated that a single domestication from the eastern wild populations was the more likely scenario to explain the polymorphism patterns observed in cultivated pearl millet.  相似文献   

3.
The human diet depends on very few crops. Current diversity in these crops is the result of a long interaction between farmers and cultivated plants, and their environment. Man largely shaped crop biodiversity from the domestication period 12,000 B.P. to the development of improved varieties during the last century. We illustrate this process through a detailed analysis of the domestication and early diffusion of maize. In smallholder agricultural systems, farmers still have a major impact on crop diversity today. We review several examples of the major impact of man on current diversity. Finally, biodiversity is considered to be an asset for adaptation to current environmental changes. We describe the evolution of pearl millet in West Africa, where average rainfall has decreased over the last forty years. Diversity in cultivated varieties has certainly helped this crop to adapt to climate variation.  相似文献   

4.
During the last 12,000 years, different cultures around the world have domesticated cereal crops. Several studies investigated the evolutionary history and domestication of cereals such as wheat in the Middle East, rice in Asia or maize in America. The domestication process in Africa has led to the emergence of important cereal crops like pearl millet in Sahelian Africa. In this study, we used 27 microsatellite loci to analyze 84 wild accessions and 355 cultivated accessions originating from the whole pearl millet distribution area in Africa and Asia. We found significantly higher diversity in the wild pearl millet group. The cultivated pearl millet sample possessed 81% of the alleles and 83% of the genetic diversity of the wild pearl millet sample. Using Bayesian approaches, we identified intermediate genotypes between the cultivated and wild groups. We then analyzed the phylogenetic relationship among accessions not showing introgression and found that a monophyletic origin of cultivated pearl millet in West Africa is the most likely scenario supported by our data set.  相似文献   

5.
The plant domestication process is associated with considerable modifications of plant phenotype. The identification of the genetic basis of this adaptation is of great interest for evolutionary biology. One of the methods used to identify such genes is the detection of signatures of selection. However, domestication is generally associated with major demographic effects. It is therefore crucial to disentangle the effects of demography and selection on diversity. In this study, we investigated selection in a flowering time pathway during domestication of pearl millet. We first used a random set of 20 genes to model pearl millet domestication using approximate Bayesian computation. This analysis showed that a model with exponential growth and wild-cultivated gene flow was well supported by our data set. Under this model, the domestication date of pearl millet is estimated at around 4,800 years ago. We assessed selection in 15 pearl millet DNA sequences homologous to flowering time genes and showed that these genes underwent selection more frequently than expected. We highlighted significant signatures of selection in six pearl millet flowering time genes associated with domestication or improvement of pearl millet. Moreover, higher deviations from neutrality were found for circadian clock-associated genes. Our study provides new insights into the domestication process of pearl millet and shows that a category of genes of the flowering pathway were preferentially selected during pearl millet domestication.  相似文献   

6.
Several studies conducted under high input conditions have indicatedlittle susceptibility of pearl millet to water deficit untillearly grain filling, because the losses in main shoot productionwere fully compensated by increased tiller fertility. The presentstudy assessed the impact of water deficits at three developmentstages: prior to flowering (S30), at the beginning of flowering(S45), and at the end of flowering (S60) in pearl millet grownin experimental conditions similar to Sahelian farming conditions.It included a control irrigation treatment simulating the naturaldistribution of rainfall throughout the cropping season. Bothbiomass production and grain yield were severely reduced byS30 and S45, while S60 had no effect. In S30 and S45, the floweringof tillers was delayed or totally inhibited. In both of thesetreatments, the low number of productive tillers did not compensatefor damage to panicle initiation and flowering of the main shoot.All treatments maintained green leaves on the main shoot duringthe grain filling period, and in S30 leaf growth recovered frommid-season drought. These results illustrate how pearl milletmostly escapes drought by matching its phenology to the meanrainfall distribution in the Sahel. In the case of mid-seasondrought, some late productive tillers and the maintenance ofgreen leaf biomass of the main shoots limited, but did not overcome,the yield losses. This study stresses the importance of agro-ecologicalconditions in control treatments, particularly the water regimeand crop density, when assessing crop drought resistance. Key words: Drought resistance strategy, experimental conditions, main shoots, tillers, Pennisetum glaucum  相似文献   

7.
Morphometric and isozymic analyses of adjacent cultivated and spontaneous populations of pearl millet in Niger revealed in the field a unique continuous distribution of phenotypes ranging from the most cultivated one to a typical cultivated × wild hybrid. The natural population was subdivided into a major wild group and a hybrid wild × cultivated group. Cultivated millet displayed an equilibrium state between recombined domesticated and wild genes. The natural population, in spite of a high rate of immigration by pollen from cultivated plants, retained its structure by apparently reproducing itself exclusively from the major wild group.  相似文献   

8.
The dynamics of crop genetic diversity need to be assessed to draw up monitoring and conservation priorities. However, few surveys have been conducted in centres of diversity. Sub-Saharan Africa is the centre of origin of sorghum. Most Sahel countries have been faced with major human, environmental and social changes in recent decades, which are suspected to cause genetic erosion. Sorghum is the second staple cereal in Niger, a centre of diversity for this crop. Niger was submitted to recurrent drought period and to major social changes during these last decades. We report here on a spatio-temporal analysis of sorghum genetic diversity, conducted in 71 villages covering the rainfall gradient and range of agro-ecological conditions in Niger’s agricultural areas. We used 28 microsatellite markers and applied spatial and genetic clustering methods to investigate change in genetic diversity over a 26-year period (1976–2003). Global genetic differentiation between the two collections was very low (F st = 0.0025). Most of the spatial clusters presented no major differentiation, as measured by F st, and showed stability or an increase in allelic richness, except for two of them located in eastern Niger. The genetic clusters identified by Bayesian analysis did not show a major change between the two collections in the distribution of accessions between them or in their spatial location. These results suggest that farmers’ management has globally preserved sorghum genetic diversity in Niger.  相似文献   

9.

Background  

Identification of genes underlying drought tolerance (DT) quantitative trait loci (QTLs) will facilitate understanding of molecular mechanisms of drought tolerance, and also will accelerate genetic improvement of pearl millet through marker-assisted selection. We report a map based on genes with assigned functional roles in plant adaptation to drought and other abiotic stresses and demonstrate its use in identifying candidate genes underlying a major DT-QTL.  相似文献   

10.
11.
We studied the regional genetic diversity and seed exchange dynamics of pearl millet landraces in south-western Niger. The genetic study was based on AFLP markers. We found significant genetic differentiation between landraces in different geographical areas of south-western Niger. However, the degree of differentiation was low insofar as only 1.9% of the total molecular diversity was due to regional differentiation, suggesting a relatively high gene flow. Anthropologic studies on farming practices have suggested that seed exchanges between farmers on a large geographical scale probably make a considerable contribution to this result. In order to test this hypothesis, the effects of seed exchange on the genetic diversity of landraces was analyzed on seed samples from two distant villages in contrasting areas of south-western Niger. Seeds imported by farmers into the southern village of Sina Koara did not differ significantly from locally grown landraces. By contrast, in the northern village of Alzou, several samples were genetically different from locally grown landraces and closer to southern accessions. These data suggest that the seed flow is preferentially from south to north, i.e. from an area with more favorable rainfall conditions. The potential consequences for the genetic diversity and adaptation of northern pearl millet landraces are discussed.  相似文献   

12.
Drought stress during the reproductive stage is one of the most important environmental factors reducing the grain yield and yield stability of pearl millet. A QTL mapping approach has been used in this study to understand the genetic and physiological basis of drought tolerance in pearl millet and to provide a more-targeted approach to improving the drought tolerance and yield of this crop in water-limited environments. The aim was to identify specific genomic regions associated with the enhanced tolerance of pearl millet to drought stress during the flowering and grain-filling stages. Testcrosses of a set of mapping-population progenies, derived from a cross of two inbred pollinators that differed in their response to drought, were evaluated in a range of managed terminal drought-stress environments. A number of genomic regions were associated with drought tolerance in terms of both grain yield and its components. For example, a QTL associated with grain yield per se and for the drought tolerance of grain yield mapped on linkage group 2 and explained up to 23% of the phenotypic variation. Some of these QTLs were common across stress environments whereas others were specific to only a particular stress environment. All the QTLs that contributed to increased drought tolerance did so either through better than average maintenance (compared to non-stress environments) of harvest index, or harvest index and biomass productivity. It is concluded that there is considerable potential for marker-assisted backcross transfer of selected QTLs to the elite parent of the mapping population and for their general use in the improvement of pearl millet productivity in water-limited environments. Received: 15 November 2000 / Accepted: 12 April 2001  相似文献   

13.
A pearl millet inbred germplasm association panel (PMiGAP) comprising 250 inbred lines, representative of cultivated germplasm from Africa and Asia, elite improved open-pollinated cultivars, hybrid parental inbreds and inbred mapping population parents, was recently established. This study presents the first report of genetic diversity in PMiGAP and its exploitation for association mapping of drought tolerance traits. For diversity and genetic structure analysis, PMiGAP was genotyped with 37 SSR and CISP markers representing all seven linkage groups. For association analysis, it was phenotyped for yield and yield components and morpho-physiological traits under both well-watered and drought conditions, and genotyped with SNPs and InDels from seventeen genes underlying a major validated drought tolerance (DT) QTL. The average gene diversity in PMiGAP was 0.54. The STRUCTURE analysis revealed six subpopulations within PMiGAP. Significant associations were obtained for 22 SNPs and 3 InDels from 13 genes under different treatments. Seven SNPs associations from 5 genes were common under irrigated and one of the drought stress treatments. Most significantly, an important SNP in putative acetyl CoA carboxylase gene showed constitutive association with grain yield, grain harvest index and panicle yield under all treatments. An InDel in putative chlorophyll a/b binding protein gene was significantly associated with both stay-green and grain yield traits under drought stress. This can be used as a functional marker for selecting high yielding genotypes with ‘stay green’ phenotype under drought stress. The present study identified useful marker-trait associations of important agronomics traits under irrigated and drought stress conditions with genes underlying a major validated DT-QTL in pearl millet. Results suggest that PMiGAP is a useful panel for association mapping. Expression patterns of genes also shed light on some physiological mechanisms underlying pearl millet drought tolerance.  相似文献   

14.
The principal landraces of the pearl millet,Pennisetum glaucum (L.)R. Br., from Niger have been analysed for their genetic structure at eight enzyme systems coded by 12 loci and 46 alleles. Three groups have been identified: (1) early-maturing pearl millets, cultivated between 8° and 13°E longitude, including the oases from Aïr mountains; (2) early-maturing millets situated more to the west (1° and 8°E longitude), and (3) late-maturing millets. Group 1 shows the highest isozyme diversity. The differences between the accessions represent 8.8% of the total diversity and the differences between the three groups 4.5%. The accessions from groups 1 and 3 are the least distant. When considering pearl millets from areas outside Niger, the chadian and sudanese millets are enzymatically close to the Niger group 1. The pearl millets from Niger group 2 are close to millets from east Mali, northern Burkina Faso and Senegal, and the Niger group 3 to the late-maturing millets group from West Africa. This study should help breeders to select the landraces for improvement and parents for crosses from cultivars of Niger and introduced germ plasm.  相似文献   

15.
Summary In a dryland cropping systems study preceding crops either of groundnuts, cowpea or pigeon pea were found to increase the early seedling vigour, rate of plant growth and grain production of the subsequent pearl millet. No such benefit was noted from a previous crop of mung. Grown after groundnuts and cowpea the unfertilized pearl millet removed from the soil 39.9 and 32.5 kg N compared to 18.9 kg N per hectare following a pearl millet crop. At harvest the number of viable nodules was the highest in groundnuts and cowpea. Especially in groundnuts the number of viable nodules increased after flowering stage.  相似文献   

16.
Miura R  Terauchi R 《Molecular ecology》2005,14(4):1251-1261
Pearl millet (Pennisetum glaucum), a diploid outcrossing crop widely grown in semiarid tropics, provides a unique extant material for the study of crop-weed interactive evolution. Co-occurrence of a weedy, shattering type of pearl millet with the cultivated one is the rule in the traditional agro-ecosystem in the Sahel zone of Africa. Selfed progeny of weed-type plants invariably segregated into distinct weed and crop types in an approximately 3:1 ratio. Genetic analysis using a cleaved amplified polymorphic sequence (CAPS) marker strongly suggested that a series of differences between the crop and the weed types are determined by a single putative supergene that has two allelic types, C and W. The crop-type plants are CC homozygotes, and the weed-type plants are CW heterozygotes. WW homozygotes are sterile and rare in the field. Thus, the CW weed plants recurrently arise from crosses between the crop and the weed, as well as from crosses among the weed-type plants. The weed type appears to have a sufficiently high fitness to maintain the W allele in the pearl millet population, resulting in the perpetuation of this unique crop-weed polymorphism.  相似文献   

17.
In the Sahel of Africa, farmers often modify their cultivation practices to adapt to environmental changes. How these changes shape the agro-biodiversity is a question of primary interest for the conservation of plant genetic resources. We addressed this question in a case study on pearl millet in south western Niger where farmers used to cultivate landraces with different cycle length in order to cope with rain uncertainty. Early and late landraces were previously grown on distant fields. Nowadays, mostly because of human population pressure and soil impoverishment, it happens that the two types of landraces are grown on adjacent fields, opening the question whether gene flow between them may occur. This question was tackled through a comparative study among contrasting situations pertaining to the spatial distribution of early and late landraces. Observations of flowering periods showed that pollen flow between the two landraces is possible and has a preferential direction from early to late populations.  相似文献   

18.
Quantitative trait loci (QTLs) for resistance to pathogen populations of Scelerospora graminicola from India, Nigeria, Niger and Senegal were mapped using a resistant x susceptible pearl millet cross. An RFLP map constructed using F2 plants was used to map QTLs for traits scored on F4 families. QTL analysis was carried out using the interval mapping programme Mapmaker/QTL. Independent inheritance of resistance to pathogen populations from India, Senegal, and populations from Niger and Nigeria was shown. These results demonstrate the existence of differing virulences in the pathogen populations from within Africa and between Africa and India. QTLs of large effect, contributing towards a large porportion of the variation in resistance, were consistently detected in repeated screens. QTLs of smaller and more variable effect were also detected. There was no QTLs that were effective against all four pathogen populations, demonstrating that pathotype-specific resistance is a major mechanism of downy mildew resistance in this cross. For all but one of the QTLs, resistance was inherited from the resistant parent and the inheritance of resistance tended to be the result of dominance or over-dominance. The implications of this research for pearl millet breeding are discussed.  相似文献   

19.
Brück  H.  Sattelmacher  B.  Payne  W.A. 《Plant and Soil》2003,251(1):175-185
Root parameters are important traits for the acquisition of nutrients and water under resource-limited conditions. In order to investigate the extent of varietal differences in rooting parameters in pearl millet, we compared a total of eight pearl millet varieties in two experiments (ridging and traditional sowing) over four years at the ICRISAT Sahelian Centre, Niger. We found substantial genotypic variation for root length density (RLD), root dry matter, and total root length (RL), but not for specific root length, depth of rooting, or partitioning of roots between topsoil and subsoil (>20 cm depth). RL showed a highly dynamic pattern over the growing season. RL and shoot dry matter were positively correlated over P supplies and contrasting levels of field productivity. The relationship between RL and grain yield as well as harvest index were less clear. The root fraction responded to variation in soil productivity, increasing from roughly 20% under high productivity to more than 40% at low productivity, but we found no evidence of varietal differences in this trait despite pronounced differences in maturity and plant stature. Identification of pearl millet varieties suited for growth under low input conditions in south-west Niger can potentially make use of existing genotypic variability in root parameters, but we suggest that, due to high variability for root traits, indirect selection for shoot parameters (e.g., number of stems) is more promising than direct selection for RLD or RL.  相似文献   

20.
Rockström  J.  de Rouw  A. 《Plant and Soil》1997,195(2):311-327
In the Sahel, short periods of intra-seasonal drought, caused by unfavourable rainfall distribution, often have stronger effect on crop growth than fluctuations in annual rainfall. The interactive effects of nutrient deficiency and water shortage (during panicle initiation, flowering and grain filling) on yield and yield components of pearl millet (Pennisetum glaucum (L.) R. Br.), were studied on-farm along a cultivated slope, during three years with close to average annual rainfall. Grain yield was correlated to plant nutrient availability but not to annual rainfall, which was explained by the capacity of the crop to compensate for damage caused by water shortage during early growth phases. The performance of each yield component was positively correlated to cumulative rainfall during the growth phase when it was formed. Leaf area index (LAI) was very low, and leaf development followed rainfall distribution. Water and nutrients interacted during each growth phase for all fertility levels. Fertilised millet suffered less during water shortage at panicle initiation and at grain filling compared to non-fertilised millet. However, compared to favourable soil water conditions yield components were systematically lower for all treatments, indicating the synergistic effect of water and nutrients. The results suggest that water availability plays an exclusive role during flowering. Grain number dropped significantly due to water shortage and was similar for all treatments. Despite extremely high spatial variability in yields (varying with a factor 46 within the field), a significant slope effect was observed, of progressively increasing yields when moving downslope. Spatial redistribution of surface runoff resulting in higher soil water availability on lower slope positions, contributed to the yield gradient, which was reinforced for fertilised millet. For each drought period, yield components suffered systematically more upslope than downslope. This slope effect was smoothed out for manured millet, which indicates that manure increased soil infiltrability on crusted zones upslope. The slope interaction observed here – indicating that downslope (i) the risk for crop failure during droughts is lower and (ii) the response to fertilisers is greater – suggests that farmers can benefit relatively more from fertilisers applied in lower parts of the watershed. Taking advantage of spatial soil and water variability is an interesting system of low technology precision farming, which combined with water harvesting systems to master droughts, can constitute options for increased crop yields in the Sahel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号