首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteomic analysis of rice (Oryza sativa) seeds during germination   总被引:8,自引:0,他引:8  
Yang P  Li X  Wang X  Chen H  Chen F  Shen S 《Proteomics》2007,7(18):3358-3368
Although seed germination is a major subject in plant physiological research, there is still a long way to go to elucidate the mechanism of seed germination. Recently, functional genomic strategies have been applied to study the germination of plant seeds. Here, we conducted a proteomic analysis of seed germination in rice (Oryza sativa indica cv. 9311) - a model monocot. Comparison of 2-DE maps showed that there were 148 proteins displayed differently in the germination process of rice seeds. Among the changed proteins, 63 were down-regulated, 69 were up-regulated (including 20 induced proteins). The down-regulated proteins were mainly storage proteins, such as globulin and glutelin, and proteins associated with seed maturation, such as "early embryogenesis protein" and "late embryogenesis abundant protein", and proteins related to desiccation, such as "abscisic acid-induced protein" and "cold-regulated protein". The degradation of storage proteins mainly happened at the late stage of germination phase II (48 h imbibition), while that of seed maturation and desiccation associated proteins occurred at the early stage of phase II (24 h imbibition). In addition to alpha-amylase, the up-regulated proteins were mainly those involved in glycolysis such as UDP-glucose dehydrogenase, fructokinase, phosphoglucomutase, and pyruvate decarboxylase. The results reflected the possible biochemical and physiological processes of germination of rice seeds.  相似文献   

2.
3.
Germination of barley is accompanied by changes in water-soluble seed proteins. 2-DE was used to describe spatio-temporal proteome differences in dissected seed tissues associated with germination and the subsequent radicle elongation. Protein identification by MS enabled assignment of proteins and functions to the seed embryo, aleurone, and endosperm. Abundance in 2-DE patterns was monitored for 48 different proteins appearing in 79 gel spots at 8 time-points up to 72 h post imbibition (PI). In embryo, a beta-type proteasome subunit and a heat shock protein 70 fragment were among the earliest proteins to appear (at 4 h PI). Other early changes were observed that affected spots containing desiccation stress-associated late embryogenesis abundant and abscisic acid (ABA)-induced proteins. From 12 h PI proteins characteristic for desiccation stress disappeared rapidly, as did a putative embryonic protein and an ABA-induced protein, suggesting that these proteins are also involved in desiccation stress. Several redox-related proteins differed in spatio-temporal patterns at the end of germination and onset of radicle elongation. Notably, ascorbate peroxidase that was observed only in the embryo, increased in abundance at 36 h PI. The surprisingly early changes seen in the protein profiles already 4 h after imbibition indicate that germination is programmed during seed maturation.  相似文献   

4.
The study of desiccation tolerance in bryophytes avoids thecomplications of higher-plant vascular systems and complex leaf structures, butremains a multifaceted problem. Some of the pertinent questions have at leastpartial analogues in seed biology – events during a drying-rewettingcyclewith processes in seed maturation and germination, and the gradual loss ofviability on prolonged desiccation, and the relation of this to intensity ofdesiccation and temperature, with parallel questions in seed storage. Pastresearch on bryophyte desiccation tolerance is briefly reviewed. Evidence ispresented from chlorophyll-fluorescence measurements and experiments withmetabolic inhibitors that recovery of photosynthesis in bryophytes followingdesiccation depends mainly on rapid reactivation of pre-existing structures andinvolves only limited de novo protein synthesis. Followinginitial recovery, protein synthesis is demonstrably essential to themaintenanceof photosynthetic function in the light, but the rate of maintenance turnoverinthe dark appears to be slow. Factors leading to long-term desiccation damagearediverse; indications are that desiccation tolerant species often survive bestinthe range –100 to –200 MPa.  相似文献   

5.
The purification to homogeneity of p16, a protein with an electrophoretic mobility compatible with an apparent molecular mass of 16 kDa, from nuclei of ungerminated pea embryonic axes is described. A cDNA clone of its gene, which was designated psp54, was also isolated. The psp54 cDNA contains an open reading frame coding for a 54.4-kDa polypeptide (p54). p16 corresponds to the C-terminal third of p54, although the mechanisms by which the primary polypeptide could be processed are not yet known. The sequence of p54 is 60% identical with that of the precursor of a sucrose-binding soybean protein, and, to a lesser extent (31-34%), it shares homology with some storage proteins. p16 is also 30% homologous with Nhp2p, a yeast nuclear protein. The psp54 gene, present in a single copy in pea genome, starts being expressed during seed desiccation. Soon after rehydration in seed germination, p54 mRNA disappears and is no longer detectable in vegetative tissues, except in response to hydric stress (exposure to abscisic acid, osmolites or desiccation). p16 can be recovered from nuclei cross-linked to histone H3, when the disulfide bridges that occur in vivo are preserved. On the other hand, p16 shares some properties with dehydrins, which are thought to protect cellular structures against desiccation. We propose that the possible precursor polypeptide p54 belongs to the vicilin superfamily, members of which play a variety of roles. The function of p16 may be related to the protection of chromatin structure against desiccation during seed development.  相似文献   

6.
Under defined environmental conditions (20°C, continuous light of 15 klx) development of mustard seeds from artificial pollination to maturity takes about 60 d. After surpassing the period of embryo cell division and histodifferentiation (12–14d after pollination = dap), the seed enters into a maturation period. The time courses of various physiological, biochemical, and structural changes of embryo and testa during seed maturation were analyzed in detail (dry and fresh mass changes, osmotic and water potential changes, respiration, DNA amplification by endomitosis, total ribosome and polysome formation, storage protein synthesis and accumulation, storage lipid accumulation). In addition to the final storage products protein and lipid, embryo and testa accumulate transiently large amounts of starch within the chloroplasts during early maturation. Concomitantly with the subsequent total breakdown of the starch, the plastids lose most of their internal structure and chlorophyll and shrink into proplastids, typical for the mature seed. At about 30 dap the seeds shift from a desiccation-sensitive to a desiccation-tolerant state and are able then to germinate rapidly upon drying and reimbibition. If isolated from the immature fruit and sown directly on water, the seeds demonstrate precocious germination from about 13 dap onwards. Young seeds (isolated ≦ 38 dap) germinate only after surpassing a lag-phase of several days (after-ripening) during which the embryo continues to accumulate storage protein and lipid at the expense of the surrounding seed tissues. We conclude from these results that the maturing seed represents a rather closed developmental system which is able to continue its development up to successful germination without any specific regulatory influence from the mother plant. Immature seeds are able to germinate without a preceding dehydration treatment, which means that partial or full desiccation does not serve as an environmental signal for reprogramming seed development from maturation to germination. Instead, it is argued that the water relations of the seed are a critical element in the control of maturation and germination: during maturation on the mother plant the embryo is subject to a considerable turgor pressure (of the order of 12 bar) accompanied by a low water potential (of the order of ?12 bar). This turgor permits maturation growth but is subcritical for germination growth. However, upon imbibition in water, the low water potential provides a driving force for a burst of water uptake overcoming the critical turgor threshold and thereby inducing germination.  相似文献   

7.
研究白木香种子发育进程中种子性状、萌发能力和脱水耐性的变化,以及不同光温条件对种子萌发的影响和种子的贮藏特性。结果表明:白木香种子在花后78d获得最大干重,进入生理成熟期,此时萌发率接近最大值;胚在花后57~85d,脱水耐性逐渐增强,并在花后85d获得最大脱水耐性。种子萌发的适宜温度范围为25℃-35℃,光照对种子萌发有一定的抑制作用。新鲜自木香种子(含水量27.45%)在4℃低温条件下贮藏1个月后萌发率仅为30%左右,而含水量7.38%的干燥种子在4℃低温条件下贮藏120d,萌发率仍有53.33%,因此,4℃低温和适度脱水有利于种子短期贮藏。白木香种子能忍耐一定程度的脱水,但干燥至含水量7.50%以下时种子会发生损伤,因此推测白木香种子是一种中间性种子。  相似文献   

8.
Drying of seeds at certain stages prior to maturation, i.e.premature desiccation, will terminate synthetic events uniqueto development, for example, storage protein synthesis, andinitiate processes associated with germination. In this studywe have investigated the role of desiccation in the expressionof a storage protein gene, ß-phaseolin, to determineif such a developmentally-regulated gene remains sensitive todrying when controlled by a promoter that has no known sensitivityto this treatment. We compared, in transgenic tobacco seeds,the effects of maturation and premature drying on the expressionof a full ß-phaseolin gene, and ß-phaseolingenes driven by a cauliflower mosaic virus 35S promoter withor without an alfalfa mosaic virus (AMV) 5' untranslated leadersequence. The results indicate that the ß-phaseolinpromoter is directly down-regulated by desiccation during maturationand, although activated during the drying phase of a prematuredesiccation event, it is not active upon rehydration or imbibition.The 35S promoter is down-regulated also by both maturation dryingand premature desiccation but unlike the ß-phaseolinpromoter it is reactivated upon rehydration or imbibition. Key words: Desiccation, ß-phaseolin, gene regulation, Phoseolus vulgaris, seed development  相似文献   

9.
Germination of Archontophoenix alexandrae seeds and embryos were studied under gradient water content treatments throughout the seed development phases of maturation in 2005 to investigate seed desiccation tolerance and storage characteristics. During the maturation process, seed water content decreased gradually from55 DAF (days after flowering) to 70 DAF, and seeds reached the maximum dry-weight at 90 DAF. Seed germinability appeared after 60 DAF. Seeds germinated with a temperature range from15℃- 40℃ under alternating photoperiod (14 h light, 10 h dark, 12μmol m- 2s - 1 ), while the best germination percentage was obtained between 30℃- 35℃. A maximum germination capacity reached at 70 DAF. However, seed germination was greatly inhibited by light. Desiccation tolerance of seeds and embryos increasedgradually from 55 DAF to 90 DAF and reached the maximum at 90 DAF with a semilethal water content of 0.18 g/g ( seed) and 0.3 g/g ( embryo) respectively. Rapid dehydration maintained higher seed germination percentage than thatof slow dehydration when drying to the same water content. Seeds with without water content treatments failed to germinate after 1 month storage under - 18℃, whereas appropriate desiccation treatment prolonged seed longevity under 4℃, 10℃ and 15℃ storage temperatures. It revealed obviously the recalcitrant characteristics of Archontophoenix alexandrae seeds torage behaviour which are tolerant toward neither deep desiccation nor low temperatures.  相似文献   

10.
11.
Abstract

The electrophoretic analysis of nuclear proteins extracted from root meristems at different times of germination puts in evidence the variations of content of specific proteins. Several nuclear proteins are phosphorylated by endogenous protein kinase and often the maximum rate of phosphorylation it has been observed in proteins present in the nucleus at low concentrations. Moreover also the phosphorylation rate of specific proteins changes at different times of germination. It is interesting the fact that both variations of concentration and phosphorylation in nuclear proteins occurr at the time when root meristems leave the quiescence to enter a proliferating state. We suggest that these variations play a role in this physiological event.  相似文献   

12.
Total protein patterns were studied in the course of development of pea somatic embryos using simple protocol of direct regeneration from shoot apical meristems on auxin supplemented medium. Protein content and total protein spectra (SDS-PAGE) of somatic embryos in particular developmental stages were analysed in Pisum sativum, P. arvense, P. elatius and P. jomardi. Expression of seed storage proteins in somatic embryos was compared with their accumulation in zygotic embryos of selected developmental stages. Pea vegetative tissues, namely leaf and root, were used as a negative control not expressing typical seed storage proteins. The biosynthesis and accumulation of seed storage proteins was observed during somatic embryo development (since globular stage), despite of the fact that no special maturation treatment was applied. Major storage proteins typical for pea seed (globulins legumin, vicilin, convicilin and their subunits) were detected in somatic embryos. In general, the biosynthesis of storage proteins in somatic embryos was lower as compared to mature dry seed. However, in some cases the cotyledonary somatic embryos exhibited comparatively high expression of vicilin, convicilin and pea seed lectin, which was even higher than those in immature but morphologically fully developed zygotic embryos. Desiccation treatments did not affect the protein content of somatic embryos. The transfer of desiccated somatic embryos on hormone-free germination medium led to progressive storage protein degradation. The expression of true seed storage proteins may serve as an explicit marker of somatic embryogenesis pathway of regeneration as well as a measure of maturation degree of somatic embryos in pea.  相似文献   

13.
Life strategy of plants depends on successful seed germination in the available environment, and sufficient soil water is the most important external factor. Taking into account a broad spectrum of roles played by water in seed viability and its maintenance during germination, the review embraces early germination events in seeds different in their water status. Two seed types are compared, namely orthodox and recalcitrant seeds, in terms of water content in the embryonic axes, vacuole biogenesis, and participation of water channels in membrane water transport. Mature orthodox seeds desiccate to low water content and remain viable during storage, whereas mature recalcitrant seeds are shed while well hydrated but die during desiccation and cannot be stored. In orthodox Vicia faba minor air-dry seeds remaining viable at 8–10% water content in embryonic axes, the vacuoles in hypocotyl are preserved as protein storage vacuoles, then restored to vacuoles in imbibing seeds in the course of protein mobilization. However, in newly produced meristematic root cells, the vacuoles are formed de novo from provacuoles. In recalcitrant Aesculus hippocastanum seeds, embryonic axes have a water content of 63–64% at shedding and they lack protein storage vacuoles but preserve vacuoles preformed in maturing seeds. Independent of the vacuolar biogenetic patterns, their further trend is similar; they expand and fuse, thus producing an osmotic compartment, which precedes and becomes an obligatory step for the initiation of cell elongation. Prior to this, water moves in imbibing seeds through the membranes by diffusion, although the aquaporins forming water channels are present. In both seed types, water channels are opened and actively participate in water transport only after growth initiation. Aquaporin gene expression and their composition change in broad bean embryonic axes after growth initiation. This is the way how a mass water flow into growing seedling cells is achieved, independent of differences in seed water content and vacuole biogenesis patterns.  相似文献   

14.
15.
Development of yellow cedar seeds is completed by about 17-21 months after pollination. Following dispersal from the parent plant, the seeds exhibit a low capacity for germination and typically require an additional year to meet their moist chilling requirements and break dormancy. Biochemical analyses were undertaken in order to address whether seed dormancy is imposed and maintained because the embryo or megagametophyte is immature at the time of seed shedding and hence requires time to complete developmental events before dormancy can be terminated. Major protein reserves of the embryo and megagametophyte are the buffer-insoluble crystalloid (legumin) storage proteins and the water-soluble albumin proteins. SDS-PAGE, fluorography of in vivo synthesized proteins and Western blot analyses showed that the greatest increase in protein reserve synthesis and accumulation occurred between the first and second years of development; deposition of soluble and insoluble storage protein was largely completed in seeds of second-year cones by August, 2-3 months prior to seed dispersal. The period associated with greatest accumulation of storage proteins was accompanied by an increased accumulation of two ER-resident proteins associated with post-translational maturation of storage proteins (binding protein and protein disulphide isomerase). Accumulation of proteins implicated in the acquisition of desiccation tolerance (dehydrins and the tonoplast intrinsic protein, -TiP) occurred between the first and second years of development. Several heat-stable proteins and some of the proteins associated with late development continued to be synthesized after seed shedding and in 13 d moist-chilled mature seeds. However, this did not include the major dehydrin-like protein of yellow cedar seeds. Further, the continued synthesis of heat-stable proteins does not appear to be a factor preventing the germination of yellow cedar seeds following dispersal from the parent plant; rather, the mechanism of dormancy is primarily coat-imposed.  相似文献   

16.
黄皮种子发育过程中脱水敏感性与细胞膜透性的关系   总被引:3,自引:0,他引:3  
黄皮(Clausena lansium (Lour.) Skeels)胚轴与完整种子的发育模式以及发育中电解质渗漏率变化有些不同. 种子生理成熟前、后的胚轴对脱水的反应也不同,前者经轻微脱水可提高萌发率和活力指数,后者不耐任何程度的脱水.活力指数的急剧下降伴随着电解质渗漏率的迅速上升.实验表明,黄皮种子在发育过程中没有形成耐脱水性. 细胞膜透性变化可反映脱水对种子的伤害程度  相似文献   

17.
木波罗种子脱水敏感性与膜脂过氧化的研究   总被引:2,自引:0,他引:2  
刚采收的木波罗种子含水量为58.6%。随着含水量下降,种子的发芽率和发芽指数迅速下降,种子对脱水非常敏感,是典型的顽拗性种。自然脱水时,种子胚轴和子叶中超氧物歧化酶的活性先上升,然后下降,丙二醛和脂质氢过氧化物的含量显著增加。其脱水敏感性的原因可能是当种子脱水时,植物酶SOD的活性下降,膜脂过氧化作用加强,从而使膜的结构和功能受到破坏,种子生活力丧失。  相似文献   

18.
Maturation proteins associated with desiccation tolerance in soybean   总被引:17,自引:2,他引:15       下载免费PDF全文
A set of proteins that accumulates late in embryogenesis (Lea proteins) has been hypothesized to have a role in protecting the mature seed against desiccation damage. A possible correlation between their presence and the desiccation tolerant state in soybean seeds (Glycine max L. Chippewa) was tested. Proteins that showed the same temporal pattern of expression as that reported for Lea proteins were identified in the axes of soybean. They were distinct from the known storage proteins and were resistant to heat coagulation. The level of these “maturation” proteins was closely correlated with desiccation tolerance both in the naturally developing and in the germinating seed: increasing at 44 days after flowering, when desiccation tolerance was achieved, and decreasing after 18 hours of imbibition, when desiccation tolerance was lost. During imbibition, 100 micromolar abscisic acid or Polyethylene glycol-6000 (−0.6 megapascals) delayed disappearance of the maturation proteins, loss of desiccation tolerance, and germination. During maturation, desiccation tolerance was prematurely induced when excised seeds were dried slowly but not when seeds were held for an equivalent time at high relative humidity. In contrast, maturation proteins were induced under both conditions. We conclude that maturation proteins may contribute to desiccation tolerance of soybean seeds, though they may not be sufficient to induce tolerance by themselves.  相似文献   

19.
Soybean seeds [Glycine max (L.) Merr.] synthesize de novo andaccumulate several non-storage, soluble polypeptides duringnatural and precocious seed maturation. These polypeptides havepreviously been coined ‘maturation polypeptides’.The objective of this study was to determine the fate of maturationpolypeptides in naturally and precociously matured soybean seedsduring rehydration, germination, and seedling growth. Developingsoybean seeds harvested 35 d after flowering (mid-development)were precociously matured through controlled dehydration, whereasnaturally matured soybean seeds were harvested directly fromthe plant. Seeds were rehydrated with water for various timesbetween 5 and 120 h. Total soluble proteins and proteins radio-labelledin vivo were extracted from the cotyledons and embryonic axesof precociously and naturally matured and rehydrated seed tissuesand analyzed by one-dimensional PAGE and fluorography. The resultsindicated that three of the maturation polypeptides (21, 31and 128 kDa) that had accumulated in the maturing seeds (maturationpolypeptides) continued to be synthesized during early stagesof seed rehydration and germination (5–30 h after imbibition).However, the progression from seed germination into seedlinggrowth (between 30 and 72 h after imbibition) was marked bythe cessation of synthesis of the maturation polypeptides followedby the hydrolysis of storage polypeptides that had been synthesizedand accumulated during seed development. This implied a drasticredirection in seed metabolism for the precociously maturedseeds as these seeds, if not matured early, would have continuedto synthesize storage protein reserves. Glycine max (L.) Merr, soybean, cotyledons, maturation, germination/seedling growth  相似文献   

20.
Seed traits are related to several ecological attributes of a plant species, including its distribution. While the storage physiology of desiccation‐sensitive seeds has drawn considerable attention, their ecology has remained sidelined, particularly how the strong seasonality of precipitation in monsoonal climate affects their temporal and spatial distribution. We compiled data on seed mass, seed desiccation behavior, seed shedding, and germination periodicity in relation to monsoon and altitude for 198 native tree species of Indian Himalayas and adjoining plains to find out (1) the adaptive significance of seed mass and seed desiccation behavior in relation to monsoon and (2) the pattern of change in seed mass in relation to altitude, habitat moisture, and succession. The tree species fall into three categories with respect to seed shedding and germination periodicities: (1) species in which both seed shedding and germination are synchronized with monsoon, referred to as monsoon‐synchronized (MS, 46 species); (2) species in which seed germination is synchronized with monsoon, but seeds are shed several months before monsoon, referred to as partially monsoon‐synchronized (PMS, 112 species); and (3) species in which both shedding and germination occur outside of monsoon months, referred to as monsoon‐desynchronized (MD, 39 species). The seed mass of MS species (1,718 mg/seed) was greater than that of PMS (627 mg/seed) and MD (1,144 mg/seed). Of the 40 species with desiccation‐sensitive seeds, 45% belong to the MS category, almost similar (approx. 47%) to woody plants with desiccation‐sensitive seeds in evergreen rain forests. Seed mass differed significantly as per seed desiccation behavior and successional stage. No relationship of seed mass was found with altitude alone and on the basis of seed desiccation behavior. However, seed mass trend along the altitude differed among monsoon synchronization strategies. Based on our findings, we conclude that in the predicted climate change (warming and uncertain precipitation pattern) scenario, a delay or prolonged break‐spell of monsoon may adversely affect the regeneration ecology of desiccation‐sensitive seed‐bearing species dominant over large forest areas of monsoonal climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号