首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The cost of rearing the root-feeding weevil, Mogulones cruciger Herbst, to control the invasive weed houndstongue (Cynoglossum officinale L.) was determined for two managed production methods. Production in an insectary setting provides control over rearing and all adult weevils that emerge can be collected, but required facility investment and high labor input. Mass-rearing in a managed ‘field crop’ setting required less facilities and labor while the insects were multiplying, but capture of the emerged adults was challenging and labor intensive. Estimated per adult weevil production costs were $CDN 2.65 for the insectary approach, and from $CDN 0.10 to $CDN 0.14 for mass-rearing in the managed field crop setting. Even though collection of adult weevils in the field crop production system was challenging, commercial production of M. cruciger should consider use of this mass-rearing method because of its lower cost.  相似文献   

2.
First released in Canada in 1997 to control the invasive rangeland weed, houndstongue (Cynoglossum officinale), the European root weevil, Mogulones cruciger, is showing early potential as a successful biocontrol agent. Out of 22 experimental releases in southeastern British Columbia, Canada, 100% established, regardless of initial release size (range 100-400). These founding populations persisted beyond 2 years, and quickly dispersed through a treed and variable landscape to colonise new houndstongue patches surrounding the original release patches. Within 3 years, the weevil had moved 1.42 km. Both initial, within-patch and later, between-patch dispersal followed a similar pattern, with M. cruciger adults and/or their feeding/oviposition damage being more concentrated nearest the original points of release and declining with distance. Within-patch, this pattern of distribution and also the rate of spread of weevils were similar regardless of initial release size; suggesting density-independence in dispersal behaviour at this scale. Closer investigation of the sequence of invasion at a larger spatial scale suggested that the weevil arrived at, colonized and increased in number on the closest host patches first. Three years post release, both distance from release patch and the number of M. cruciger released, were significant predictors of the amount of feeding/oviposition damage, and presumably weevil population size, within newly colonized houndstongue patches surrounding the original releases. These data, and the finding that more weevils were retrieved from patches where higher numbers of weevils were released in the previous year (i.e., 300 or 400 vs 100 or 200), suggest that release number and placement of releases within a landscape can be manipulated for effective houndstongue control.  相似文献   

3.
Mile-a-minute weed, Persicaria perfoliata (L.) H. Gross, is an invasive annual vine of Asian origin that has developed extensive monocultures, especially in disturbed open areas in the Mid-Atlantic region of the United States. A host-specific Asian weevil, Rhinoncomimus latipes Korotyaev, was approved for release in North America in 2004, and weevils have been reared at the New Jersey Department of Agriculture Beneficial Insect Laboratory since then. By the end of 2007 more than 53,000 weevils had been reared and released, mostly in New Jersey, but also in Delaware, Maryland, Pennsylvania, and West Virginia. The beetles established at 63 out of 65 sites (96.9%) where they were released between 2004 and 2007, with successful releases consisting of as few as 200 weevils. Weevils were recorded at 30 additional non-release sites in New Jersey, where they had dispersed at an average rate of 4.3 km/year. Standardized monitoring of fixed quadrats was conducted in paired release and control sites at eight locations. Significant differences in mile-a-minute weed populations in the presence and absence of weevils were found at three locations, with reduction in spring densities to 25% or less of what they had been at the start within 2–3 years at release sites, while weed densities at control sites were largely unchanged. Mile-a-minute weed populations at a fourth site were similarly reduced at the release site, but without control data for comparison due to rapid colonization of the paired control site. At the other four locations, all on islands, mile-a-minute weed populations were reduced at both release and control sites without large weevil populations developing, apparently due to environmental conditions such as late frost and extreme drought.  相似文献   

4.
Azolla filiculoides (red waterfern) is a small, floating fern native to South America, that has invaded aquatic habitats, predominantly water resevoirs in southern Africa. A frond-feeding weevil, Stenopelmus rufinasus Gyllenhal (Coleoptera: Curculionidae), was imported from Florida, USA, and released as a biological control agent against this weed in South Africa at the end of 1997. To date, 24,700 weevils have been released, which has resulted in local extinction of red waterfern at 81% of the 112 release sites. The weevil has not failed to control a single site. Several sites were, however, lost due to flooding or drainage of dams. The surface area of weed controlled totalled 203.5 ha. On average, A. filiculoides was controlled in infested sites in 6.9 (±4.3) months. The weed recolonized at 22 of the sites (through either spore germination or dispersal by waterfowl), but the weevils subsequently spread to all of these sites and successfully caused local extinction of the weed at 18 of the sites. Five years after the release of the weevil, the weed no longer poses a threat to aquatic systems in southern Africa. In comparison to other biological control programs of aquatic weeds, the program against A. filiculoides in southern Africa ranks among the most successful cases anywhere in the world.  相似文献   

5.
《Biological Control》2010,52(3):450-457
Mile-a-minute weed, Persicaria perfoliata (L.) H. Gross, is an invasive annual vine of Asian origin that has developed extensive monocultures, especially in disturbed open areas in the Mid-Atlantic region of the United States. A host-specific Asian weevil, Rhinoncomimus latipes Korotyaev, was approved for release in North America in 2004, and weevils have been reared at the New Jersey Department of Agriculture Beneficial Insect Laboratory since then. By the end of 2007 more than 53,000 weevils had been reared and released, mostly in New Jersey, but also in Delaware, Maryland, Pennsylvania, and West Virginia. The beetles established at 63 out of 65 sites (96.9%) where they were released between 2004 and 2007, with successful releases consisting of as few as 200 weevils. Weevils were recorded at 30 additional non-release sites in New Jersey, where they had dispersed at an average rate of 4.3 km/year. Standardized monitoring of fixed quadrats was conducted in paired release and control sites at eight locations. Significant differences in mile-a-minute weed populations in the presence and absence of weevils were found at three locations, with reduction in spring densities to 25% or less of what they had been at the start within 2–3 years at release sites, while weed densities at control sites were largely unchanged. Mile-a-minute weed populations at a fourth site were similarly reduced at the release site, but without control data for comparison due to rapid colonization of the paired control site. At the other four locations, all on islands, mile-a-minute weed populations were reduced at both release and control sites without large weevil populations developing, apparently due to environmental conditions such as late frost and extreme drought.  相似文献   

6.
《Biological Control》2008,47(3):304-311
Reports on nontarget attack by introduced biological control agents have caused debate over the safety of biological control of weeds. One outcome of this dialogue is the importance of monitoring for nontarget attack and its effects as part of post-release assessments. This is particularly vital in the case of the root-mining weevil Mogulones cruciger, which was approved and released in Canada, but not in the United States, to control Cynoglossum officinale. Mogulones cruciger was first released in British Columbia in 1997, following recommendations of the American Technical Advisory Group and the Canadian Biological Control Review Committee. During the same year, the US Fish and Wildlife Service raised concerns about potential nontarget effects by this insect to Boraginaceae species on the endangered species list. To assess the occurrence of nontarget attack, and its potential for nontarget effects, we identified and monitored confamilial species co-occurring with C. officinale at six M. cruciger release sites in Alberta and British Columbia over a two year period. All four co-occurring species were attacked by the weevil to varying degrees, although attack was inconsistent between years and sites. Nontarget species were attacked to a lesser degree than C. officinale, but differences were not consistent for species, sites, or years. There was a positive relationship between the probability of nontarget attack and C. officinale attack rate by M. cruciger. Our data suggest that the immigration of M. cruciger into the US may expose certain Boraginaceae to nontarget attack, but the transitory nature of that attack and consequently the risk to native species is unknown.  相似文献   

7.
Mile-a-minute weed, Persicaria perfoliata (L.) H. Gross (Polygonaceae), is an annual vine from Asia that has invaded the eastern US where it can form dense monocultures and outcompete other vegetation in a variety of habitats. The host-specific Asian weevil Rhinoncomimus latipes Korotyaev (Coleoptera: Curculionidae) was first released in the US in 2004 as part of a classical biological control program. The weevil was intensively monitored in three release arrays over 4 years, and field cages at each site were used to determine the number of generations produced. The weevil established at all three sites and produced three to four generations before entering a reproductive diapause in late summer. Weevils dispersed at an average rate of 1.5–2.9 m wk−1 through the 50 m diameter arrays, which had fairly contiguous mile-a-minute cover. Weevils dispersing in the broader, more variable landscape located both large monocultures and small isolated patches of mile-a-minute 600–760 m from the release within 14 months. Weevil density ranged from fewer than 10 to nearly 200 weevils m−2 mile-a-minute weed. Mile-a-minute cover decreased at the site with the highest weevil density. The production of P. perfoliata seed clusters decreased with increasing weevil populations at two sites, and seedling production declined over time at two sites by 75% and 87%. The ability of the weevil to establish, produce multiple generations per season, disperse to new patches, and likelihood of having an impact on plants in the field suggests that R. latipes has the potential to be a successful biological control agent.  相似文献   

8.
Arthropods released for weed biocontrol can have effects other than simply removing biomass and frequently decrease photosynthetic rate more than can be attributed to the mere loss of photosynthetic surface area. Some of this effect may result because biological control agents facilitate the transfer and ingress of deleterious microbes into plant tissues on which they feed. We evaluated this facilitation effect using water hyacinth (Eichhornia crassipes) and a weevil (Neochetina eichhorniae) and compared the reductions in photosynthetic rates between leaves subject to herbivory by adult weevils sterilized with 3.5% chlorine bleach, to those that were unsterilized. The results showed that weevils carried both fungi and bacteria, transferred these to leaves on which they fed, and that microbes and biomass removal contributed almost equally to the 37% decrease in photosynthetic productivity. Hence, maximising the effectiveness of using arthropods that damage leaf surfaces for biocontrol requires the presence of microorganisms that are deleterious to plants.  相似文献   

9.
In weed biocontrol, there is a need for pre-release efficacy assessments for potential agents. Genista monspessulana ((L.) L. A. S. Johnson (Fabaceae), French broom) is an invasive perennial shrub in the western U.S. The galling weevil Lepidapion argentatum Gerstaecker is a potential biocontrol agent. The impact of increasing weevil density on galling damage, plant height, width, leaf damage, and relative growth rate (RGR) was assessed in greenhouse experiments on two to three-month-old seedlings infested with either one or three weevils. Infestation by three female weevils caused 48% more galls producing 27% more larvae than did infestation with one female while causing only 1% leaf damage and no difference in total leaf area. Infestation with multiple weevils caused a 55% and 29% decrease in plant height and canopy width respectively, while single-weevil infestation decreased height by 32% and width to the same degree as for multiple weevils. The RGR of seedlings infested with three weevils was three times slower than the controls, while growth was reduced 2-fold by single-weevil infestation. Reductions in plant size and growth rate induced by weevil galling could reduce plant competitive survival to reproduction and also plant population dispersal as seedlings. Our results suggest that L. argentatum has the potential to cause impact to French broom seedlings if released in the invasive range.  相似文献   

10.
Gerard  Philippa  Wilson  Derrick  Upsdell  Martin 《BioControl》2021,66(6):727-737

Two species from the genus Microctonus Wesmael (Hymenoptera: Braconidae) have been introduced into New Zealand as biocontrol agents of pest weevils in pasture. Both parasitoids have similar life cycles and co-exist in pasture along with their respective weevil hosts. However, winter parasitism rates by M. hyperodae Loan are low in comparison to the Irish biotype of M. aethiopoides’ Loan. Population studies at two Waikato sites over three consecutive seasons of parasitoid activity showed that M. aethiopoides recovered from near extinction each spring and built up to effective levels by winter because hosts were available continuously throughout summer and autumn. In contrast, M. hyperodae began each season at higher larval populations and parasitism levels than M. aethiopoides, but populations and parasitism levels declined during late summer and early autumn due to low host availability. The contrast between species is consistent with the high levels of endophyte-conferred pest-resistant grass in the pastures, which impacts strongly on M. hyperodae’s host weevil abundance during summer but has no effect on M. aethiopoides’ host weevils which feed only on clovers. It was accentuated by a warming climate with the now regular occurrence of a third host generation after most M. hyperodae adult activity had ceased.

  相似文献   

11.
Disturbed natural areas frequently experience invasion by introduced plant species that can reduce native biodiversity. Biological control can suppress these introduced species, but without restoration another introduced species can invade. Integration of biological control with concurrent revegetation can both aid in weed reduction via interspecific plant competition and establish a restored native plant community. This 3‐year study investigated an integrated approach to controlling the introduced annual Mile‐a‐minute weed (Persicaria perfoliata [L.] H. Gross [Polygonaceae]) using the biocontrol weevil Rhinoncomimus latipes Korotyaev (Coleoptera: Curculionidae) and restoration planting using a native seed mix. A fully factorial design tested weevils and seeding, separately and together, using insecticide to eliminate weevils. The weevils together with the native seed mix reduced P. perfoliata percent cover in 2009 and 2010, and peak seed cluster production in 2010, compared to the insecticide ? no seed control treatment. Persicaria perfoliata final dry biomass was reduced by 75% in 2010 and by 57% in 2011 in the weevils plus seed treatment compared to the control, with weevils having the greatest effect in 2010 and the seed treatment having the greatest impact in 2011. Results suggest an additive effect of biocontrol and seeding in suppressing P. perfoliata. Seeded treatments also developed the highest native plant species richness and diversity, comprised of spontaneous recolonization in addition to species from the seed mix. Results support the use of integrated management of this invasive weed, with suppression through biological control and native revegetation together helping prevent reinvasion while restoring native plant biodiversity.  相似文献   

12.
The Curculionid weevil, Cyrtobagous salviniae Calder & Sands, has been established on Salvinia molesta (salvinia) in Botswana. The study determined the intensity of weevil activity on the weed at the margin and the centre of four selected sites on the Khwai system of the Okavango Delta. Random samples of salvinia were collected from each site at monthly intervals in 1998 to extract weevils and to demonstrate the effect of weevil on the weed. The rate at which the weed was controlled at different sites varied with mat and weevil density. The biological control at Paradise Pools was moderate without much increase in the weed biomass per m2, while fluctuations in both weevil and plant populations were noticed in the Khwai streams. Weevil numbers remained low at Dombo for the first nine months of the year, during which time the mat density increased. With the onset of higher temperatures, weevil numbers increased to 155 and 457/kg fresh weight of salvinia at the margin and centre respectively in Dombo Pool in early summer. A significant control in MGR 6 HATAB pool between mat biomass and the weevil number resulted in the disappearance of the weed in three months. This study shows that C. salviniae is an effective biological control agent of S. molesta in semiarid areas.  相似文献   

13.
Linaria vulgaris, common or yellow toadflax, and Linaria dalmatica, Dalmatian toadflax (Plantaginaceae), are Eurasian perennial forbs invasive throughout temperate North America. These Linaria species have been the targets of classical biological control programmes in Canada and the USA since the 1960s. The first effective toadflax biological control agent, the stem‐mining weevil Mecinus janthinus (Coleoptera: Curculionidae) was introduced from Europe in the 1990s. This weevil has become established on L. dalmatica and L. vulgaris in both countries, although it has shown greater success in controlling the former toadflax species. Genetic and ecological studies of native range M. janthinus populations revealed that weevils previously identified as a single species in fact include two cryptic species, now recognised as M. janthinus, associated with yellow toadflax, and the recently confirmed species Mecinus janthiniformis, associated with Dalmatian toadflax. The results of a comprehensive study characterising haplotype identities, distributions and frequencies within M. janthinus s.l. native range source populations were compared to those populations currently established in the USA and Canada. The presence of both Mecinus species in North America was confirmed, and revealed with a few exceptions a high and consistent level of host fidelity throughout the adopted and native ranges. Genetic analysis based on mitochondrial cytochrome oxidase subunit II gene (mtCOII) defined the origin and records the subsequent North American establishment, by haplotype, of the European founder populations of M. janthinus (northern Switzerland and southern Germany) and M. janthiniformis (southern Macedonia), and provided population genetic indices for the studied populations. This analysis together with existing North American shipment receipt, release and rearing records elucidates probable redistribution routes and sources of both weevil species from initially released and established adopted range populations.  相似文献   

14.
Recent concerns over the safety of native North American plant species in the family Boraginaceae, especially those of endangered status in the USA, prompted additional host specificity testing of the European root weevil Mogulones cruciger , a proposed agent for the biocontrol of houndstongue in the USA. M. cruciger can complete full development on species within closely-related genera in the Boraginaceae, but prefers houndstongue as a host. Of the 22 species of native North American Boraginaceae that were tested in this study, nine species from four genera within the tribe Eritrichieae ( Cryptantha, Hackelia, Mertensia and Lappula ) clearly supported development of M. cruciger . However, generally these non-target species experienced less attack by M. cruciger relative to houndstongue. There were differences in the incidence and degree of attack depending on the test type, which included the use of potted test plants in laboratory no-choice and open-field choice situations. The least non-target attack occurred on rangeland in British Columbia, Canada, where potted test plants were introduced into sites where the insect had been previously released on houndstongue. These results suggest that M. cruciger has a narrow ecological host range. Special emphasis was placed on testing species of Cryptantha because C. crassipes is listed as endangered in the USA. Six of 12 Cryptantha species tested supported full development, but generally, the incidence and intensity of attack were less for these species relative to houndstongue. There was no, or incomplete development, on tested species of Plagiobothrys , a genus that contains two species listed as endangered in the USA.  相似文献   

15.
Experimental studies can be useful tools to test plant responses to herbivory and to quantify the impact of potential biological control agents prior to their release. We evaluated the per-capita effect of Ceutorhynchus alliariae and C. roberti, two stem-boring weevils currently being investigated as potential biological control agents for garlic mustard, Alliaria petiolata, in North America. Weevils were released at three different densities in individual and mixed-species treatments onto potted plants of A. petiolata. Damage by C. roberti alone and by both weevils combined caused an increase in the numbers of inflorescences produced per plant. Although plants could compensate for low levels of damage, moderate to high levels of damage by both C. alliariae and C. roberti, individually and in combination, caused a decrease in plant height and a reduction in seed output per plant. The damage inflicted by both weevil species is similar so the overall impact of both species combined can be predicted by summing the impact of each species alone. Provided they are sufficiently host specific, both weevils could be released as biocontrol agents. Because reduced seed production is necessary to suppress A. petiolata populations, both species have the potential to contribute to control of A. petiolata in North America.  相似文献   

16.
Native to Asia, mile-a-minute Persicaria perfoliata, is an invasive weed in North America, and the weevil Rhinoncomimus latipes is a host-specific insect agent which occurs widely in China. We conducted a common garden experiment to compare P. perfoliata plant responses of native and invasive populations to herbivory by the weevils from different origins. We found weevils from Hunan, Hubei and Heilongjiang Provinces had strong, moderate and weak ability to suppress host plant, respectively. Weevils from Hunan and Hubei Provinces had stronger impact on the growth of both native and invasive plant populations than the weevil from Heilongjiang Province. The losses in seed output of invasive plants were also significantly greater than natives in the weevil treatments. Our results suggested that the weevil population from Hunan Province may be the most suitable for the control of mile-a-minute, while the population from Heilongjiang Province may be the least suitable due to climate matching.  相似文献   

17.
Eurasian watermilfoil (Myriophyllum spicatum L.) is a nuisance aquatic weed, exotic to North America. The freshwater weevil Euhrychiopsis lecontei (Dietz) is a potential control agent of Eurasian watermilfoil and is a fully submersed aquatic specialist herbivore. Its presumed original host is the native northern watermilfoil (Myriophyllum sibiricum Komarov). We conducted a set of oviposition experiments to reveal first and second oviposition preference of Euhrychiopsis lecontei when presented with seven macrophytes. We tested differences between source (lake) populations of weevils, differences in behavior between weevils reared on the exotic Eurasian watermilfoil and the native northern watermilfoil and between weevils in the presence and absence of their preferred hostplant. Oviposition assays confirmed that E. lecontei is a watermilfoil specialist. Out of the 207 females that laid eggs, only three oviposited on a non-watermilfoil plant, Megalodonta beckii. The weevils' degree of specificity was influenced by the watermilfoil species on which they were reared. Weevils reared on Eurasian watermilfoil tended to oviposit on Eurasian watermilfoil, spent more time on Eurasian watermilfoil than on other plants, and spent more time off plants and took longer to oviposit when Eurasian watermilfoil was removed. Weevils reared on northern watermilfoil did not exhibit a preference for either watermilfoil species in oviposition or in time allocation, although they oviposited on and spent significantly more time on watermilfoils than on other species. Rearing of the two populations on their complementary watermilfoil hostplant resulted in responses typical of the rearing plant, not the original host. These results show that although both weevil populations are watermilfoil specialists, Eurasian-reared weevils prefer Eurasian watermilfoil in general host attraction and oviposition, whereas northern-reared weevils do not. The results support the contention that E. lecontei may be a good biocontrol agent for Eurasian watermilfoil because of its high specificity. The results also suggest that the current host range expansion of the weevil to Eurasian watermilfoil has the potential to become a host shift due to the increased specificity. Herbivory in freshwater systems is not well studied, and the E. lecontei-M. spicatum relationship is a rare example of submersed freshwater specialist herbivore-host-plant interactions.  相似文献   

18.
Since 1999, four specific weevils (Coleoptera, Curculionidae) were released in the Republic of Congo against three exotic floating water weeds: Neochetina eichhorniae Warner and N. bruchi Hustache against water hyacinth, Neohydronomus affinis Hustache against water lettuce, and Cyrtobagous salviniae Calder and Sands against water fern. Recoveries of exotic weevils were made from all 24 release sites except one, and all four species have established and spread (up to 800 km for water hyacinth weevils). Within a few years of releases, control of water fern and water lettuce was such that fishing and navigation could be resumed, while reductions of water hyacinth populations were only beginning.  相似文献   

19.
The noxious weed houndstongue (Cynoglossum officinale) has become a major problem on the forested rangelands in the interior of British Columbia. However, recently the fungus Phoma pomorum and the ranchman's tigermoth (Platyprepia virginalis) were identified as potential biocontrol agents of this biennial weed. Infection by the fungus Ph. pomorum resulted in the formation of large brown lesions on leaves of houndstongue. In culture, the fungus readily produced pycnidia with pycnidiospores measuring 5.7 μm × 1.7 μm. The effect of Ph. pomorum and P. virginalis on the growth of houndstongue was examined over a six week period. Leaf age strongly influenced the intra plant distribution of insect feeding and lesion formation with Ph. pomorum primarily attacking the older leaves, while P. virginalis larvae preferred feeding on young leaves. Infection of leaves by Ph. pomorum resulted in their premature death. The effect of infection by Ph. pomorum on plant weight varied among tests, but the disease usually increased the number or percentage of dead leaves and reduced root biomass. A study of the effect of plant age and disease on houndstongue showed that younger plants infected with Ph. pomorum had a slightly higher percentage of dead leaves than older plants, but that reductions in live leaf weight and root weight were similar for different age groups. Six weeks after exposure to feeding damage by P. virginalis, there was no significant effect of P. virginalis on plant weight either acting alone or in combination with Ph. pomorum.  相似文献   

20.
Overwintering conditions affect the physiological state of ectotherms, and therefore, their cold hardiness and survival. A measure of the lethal and sublethal impacts of overwintering conditions on pest populations is crucial to predict population dynamics and to manage pests the following spring. The impact of winter conditions can be most intense for invasive insects undergoing range expansion. Insect herbivores can display plastic host use behaviours that depend on their body condition following winter. The pea leaf weevil, Sitona lineatus L. (Coleoptera: Curculionidae), is an invasive pest of field peas, Pisum sativum L., and faba bean, Vicia faba L. (Fabaceae). Pea leaf weevil has expanded its range in North America to include the Prairie Provinces of Canada. This study investigated the effects of temperature and microhabitat on overwintering survival and cold hardiness of pea leaf weevil in its expanded range. Further, we investigated the sublethal effect of overwintering temperature and duration on post-overwintering survival, feeding, and oviposition of pea leaf weevil. We also investigated the role of juvenile hormone in modulating body condition of overwintering weevils. The overwintering survival of pea leaf weevil adults increased with soil temperature and varied with region and microhabitat. More weevils survived winters when positioned near tree shelterbelts compared to open alfalfa fields. The supercooling point of pea leaf weevil varied throughout its expanding range but did not differ for weevils held in the two microhabitats. The average threshold lethal temperature of pea leaf weevil at all three sites was −9.4 °C. Weevils that overwintered for a longer duration and at a higher temperature subsequently fed more on faba bean foliage and laid more eggs compared to those which overwintered for a shorter duration at a lower temperature. Our findings highlight that warm winters would increase overwintering survival and post-overwintering fitness, facilitating further pea leaf weevil invasion northward in the Prairie Provinces of Canada.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号