首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monoclonal antibody 9.6 is specific for a 50 kd T cell surface protein (p50) associated with the sheep erythrocyte (E)-receptor on human T lymphocytes. This antibody interferes with many T cell functions. We have examined the effect of antibody 9.6 on lymphocyte proliferation and interleukin 2 (IL 2) production triggered by mitogens, soluble antigens, and alloantigens to elucidate the mechanism(s) of its immunosuppressive action. At concentrations as low as 50 ng/ml, 9.6 suppressed lymphocyte proliferation and the elaboration of IL 2 by T cells stimulated by PHA, alloantigens, or low concentrations of the phorbol ester TPA (less than or equal to ng/ml). Furthermore, in cultures stimulated by a combination of PHA plus TPA, 9.6 did not inhibit the acquisition of IL 2 receptors but inhibited proliferation and IL 2 production. Immunoaffinity-purified IL 2 completely restored lymphocyte proliferation in cultures inhibited by 9.6. Studies of kinetics of inhibition by 9.6 showed that this antibody inhibited lymphocyte proliferation induced by PHA, alloantigen, and PPD even when added at 24, 48, and 72 hr, respectively, after the initiation of these cultures, suggesting that 9.6 does not block lectin binding or antigen recognition by T cells and that it can inhibit lymphocyte proliferation even after cells have undergone one or more rounds of cell division. A dose-response analysis of lymphocyte proliferation induced by PHA or by TPA demonstrated that the degree of inhibition by 9.6 decreased with increasing concentrations of these mitogens. Antibody 9.6 did not inhibit lymphocyte response induced by optimal concentrations of PHA (50 to 100 micrograms/ml; PHA-M) but inhibited proliferation of maximally induced lymphocytes by using a synergistic combination of low concentrations of PHA (5 micrograms/ml, PHA-M) plus TPA (1 ng/ml). Taken together, these findings indicate that 1) 9.6 inhibits lymphocyte proliferation by affecting IL 2 production, 2) 9.6 does not inhibit the acquisition of 9.6 receptors induced by a synergistic combination of PHA plus TPA, and 3) p50 molecules may be involved in multiple pathways of T cell activation.  相似文献   

2.
We studied IL 2 production and proliferation induced by OKT3 mitogenic monoclonal antibody in the OKT8+ T cell subset. OKT3 antibody induced IL 2 production and proliferation in OKT8+ cells in a typical time-dependent manner: maximal IL 2 levels were found in 24 hr culture supernatants; maximal proliferation was found on day 3. OKT3 antibody was mitogenic over a wide range of concentrations (0.125 to 500 ng/ml). The presence of OKT8 antibody (greater than or equal to 100 ng/ml) in these cultures resulted in almost complete inhibition of IL 2 production and proliferation. Kinetic studies demonstrate that OKT8 antibody suppresses both IL 2 production and response to exogenous IL 2 in OKT8+ cells when added within the first 2 hr of culture. After 14 to 20 hr of culture, addition of OKT8 only blocks IL 2 production but not the IL 2 response of activated OKT8+ cells. The specificity of inhibition by OKT8 antibody of OKT3 mitogenicity on OKT8+ cells was confirmed by the failure of Leu-I and OKT4 antibody to produce the same effect and by the lack of inhibition by OKT8 antibody of OKT3-induced IL 2 production and proliferation in OKT4+ cells.  相似文献   

3.
The effects of anti-CD3 mAb on MHC-unrestricted cytotoxic activity of NK depleted PHA-activated human T cells were examined. Anti-CD3 mAb had variable effects on killing of K562 or Daudi targets. Whereas lower concentrations of OKT3 often inhibited lysis of either target, higher concentrations (greater than 1 micrograms/ml) frequently increased K562 killing and always augmented Daudi lysis. However, lysis of the renal cell carcinoma, Cur, was consistently inhibited by OKT3 over a broad concentration range. Such variable effects were not related to differential regulation of heterogeneous subsets of effector cells, as similar patterns of OKT3-mediated modulation of tumor cell lysis by T cell clones was also observed. Another IgG2a anti-CD3 mAb, 64.1, and either F(ab')2 fragments of OKT3 or intact OKT3 in the presence of aggregated human Ig were found to inhibit lysis of Cur, K562, and Daudi targets consistently. Additional experiments were carried out to determine whether modulation of CD3 accounted for the inhibitory effects of the anti-CD3 mAb. PMA was noted to cause modulation of CD3 from the surface of PHA or alloantigen-activated T cells, and the combination of anti-CD3 and PMA caused even more marked modulation of CD3. Whereas preincubation with PMA and/or anti-CD3 decreased alloantigen-specific cytotoxic T cell function in relative proportion to the loss of CD3 expression, no consistent relationship between CD3 expression and the capacity of PHA-activated T cells to kill Cur targets was noted. PMA alone caused no consistent alteration of Cur lysis. Moreover, in the presence of PMA, anti-CD3 mAb caused no significant inhibitory effect on Cur lysis, in spite of increased modulation and in some cases virtual total loss of surface CD3 expression. These findings indicate that when FcR interactions are prevented, anti-CD3 mAb consistently inhibit MHC-unrestricted cytotoxicity by PHA-activated T cells. Despite this, the data support the conclusion that CD3/TCR complex interactions with target cells are not required for either target cell recognition or triggering of lysis by MHC-unrestricted cytotoxic T cells.  相似文献   

4.
Human peripheral blood T cells were stimulated to proliferate when cultured with submitogenic doses of PMA and goat antibodies to 5'-nucleotidase (5'-NT). The degree of proliferation, as measured by [3H]TdR incorporation on day 3, was similar to that achieved by stimulation with PHA. Anti-5'-NT antibodies had no effect on PHA-induced proliferation. Maximal stimulation was achieved with 0.6 to 1.0 ng/ml of PMA and 125 micrograms/ml of IgG isolated from a goat anti-5'-NT antiserum. Both intact IgG and F(ab')2 fragments were stimulatory. IL-2R expression and IL-2 secretion were also induced by anti-5'-NT antibodies and PMA. Anti-5'-NT-induced proliferation was inhibited greater than 95% by a murine anti-IL-2 receptor mAb and required less than 0.3% monocytes. Similar results have been obtained with a murine mAb specific for 5'-NT. As expected, anti-5'-NT antibodies and PMA did not induce the proliferation of ecto-5'-NT-T cells isolated by cell sorting. Pretreatment of total T cells with phosphatidylinositol-specific phospholipase C removed an average of 89% of the 5'-NT activity from the cell surface and also inhibited by 83% the ability of the cells to proliferate in response to anti-5'-NT antibodies and PMA. Thus, the activation signal provided by anti-5'-NT antibodies is apparently transduced, in large part, by a form of the enzyme that is attached to the membrane via glycosyl-phosphatidylinositol linkage. These data suggest that 5'-NT may play a role in lymphocyte activation as has been proposed for other glycosyl-phosphatidylinositol-anchored lymphocyte surface proteins.  相似文献   

5.
Suppressor T cell activation by human leukocyte interferon   总被引:2,自引:0,他引:2  
Murine fibroblast interferon (IFN beta) activates murine suppressor T lymphocytes in vitro, which suppress plaque-forming cell responses by spleen cells. Suppression of human in vitro immune responses by IFN was investigated to determine whether human IFN also activates suppressor T cells. Human leukocyte IFN (IFN alpha) suppressed pokeweed mitogen-induced polyclonal immunoglobulin production by human peripheral blood mononuclear cells (PBMC) by 80 to 90% at doses of 200 to 350 U/ml. Responses by IFN alpha-treated PBMC were suppressed in a dose-dependent manner; control cultures had maximal responses on day 7. PBMC incubated with 10,000 U/ml of IFN alpha contained activated suppressor cells that decreased pokeweed mitogen-stimulated, polyclonal immunoglobulin production by autologous cells by 70 to 80%. Suppression mediated by these cells was prevented by catalase, ascorbic acid, and 2-mercaptoethanol (2-ME). In murine systems, these reagents interfere with expression of suppressor T cell activity by preventing activation of soluble immune response suppressor. Selection procedures with monoclonal antibodies identified the suppressor cell as an OKT8+ (suppressor/cytotoxic) T lymphocyte. Selected OKT8+ cells required less IFN alpha (1000 U/ml) for activation and were effective in smaller numbers than unfractionated activated PBMC. IFN alpha-activated suppressor cells also inhibited proliferation in mixed lymphocyte and mitogen-stimulated PBMC cultures; again, catalase and 2-ME blocked suppression. These results indicate that IFN alpha activates suppressor T cells in human PBMC cultures; the ability of catalase, 2-ME, and ascorbic acid to block suppression suggests that these suppressor T cells have certain similarities to IFN beta or to concanavalin A-activated murine suppressor T cells.  相似文献   

6.
Functional studies were performed on human peripheral blood T lymphocytes stained with goat anti-5'-nucleotidase antibodies and separated into ecto-5'-nucleotidase (ecto-5'-NT)-positive and -negative populations using the FACSTAR fluorescence-activated cell sorter. On the average, ecto-5'-NT+ T cells contained 34 +/- 13% CD4+ and 55 +/- 15% CD8+ cells, whereas ecto-5'-NT-T cells contained 65 +/- 12% CD4+ and 23 +/- 8% CD8+ cells. Staining with anti-5'-NT antibodies did not significantly alter the ability of unseparated T cells to proliferate in response to PHA or PMA, or in a MLR. However, prior incubation with anti-5'-NT antibodies did inhibit the ability of irradiated T cells to provide help for PWM-stimulated Ig synthesis by as much as 55%. In five separate experiments, ecto-5'-NT-T cells demonstrated an equal or better ability to incorporate [3H]TdR after PHA stimulation or in a MLR, as compared with ecto-5'-NT+ T cells. Similarly, ecto-5'-NT- T cells were not diminished in their ability to provide help for autologous B cells in a PWM-driven system. Clearly, the inability of ecto-5'-NT- T cells from patients with a variety of immunodeficiency diseases to function in these assays cannot be explained solely by their lack of ecto-5'-NT activity. In contrast, ecto-5'-NT-positive and -negative T cells showed markedly different dose-response curves for proliferation in response to PMA. Ecto-5'-NT+ T cells responded to lower doses of PMA (1.0 ng/ml) than did ecto-5'-NT- T cells and showed a two- to eight-fold greater rate of [3H]TdR incorporation at 3 to 10 ng of PMA per ml. Ecto-5'-NT+ T cells may have a protein kinase C that is more accessible or more easily activated or may utilize an alternate pathway of activation when stimulated with low concentrations of PMA.  相似文献   

7.
8.
We compared transferrin receptor (TfR) expression on human peripheral blood lymphocytes (PBL) activated by phorbol myristate acetate (PMA) or L-phytohemagglutinin (LPHA) using two techniques: (1) 125I-iron-saturated transferrin (FeTf) binding, (2) reactivity with monoclonal anti-TfR antibodies--OKT9 and B3/25. These monoclonal antibodies do not block FeTf binding, and therefore bind to TfR domains separate from the ligand binding site. Unstimulated PBL bound fewer than 1,000 molecules of 125I-FeTf per cell, and less than 5% of cells expressed TfR antigens detected by OKT9 or B3/25. 125I-FeTf binding and antibody binding increased in parallel on LPHA-activated PBL. After exposure to LPHA for 72 hr, 125I-FeTf binding increased 100-fold to 10(5) molecules per cell and greater than 50% of cells expressed TfR antigens. By contrast, PMA activation of PBL markedly increased binding of OKT9 and B3/25 but not the binding of 125I-FeTf. Cell surface expression of TfR antigens seen by OKT9 and B3/25 did not differ between LPHA- and PMA-activated PBL. However, after 72 hr with PMA, 125I-FeTf binding increased only 6-fold and consistently remained at less than 10(4) molecules per cell. Therefore, PMA induced a disparity between expression of TfR ligand binding domains and immunological domains at the cell surface. Cell proliferation assessed by fluorescent DNA analysis was similar in cultures stimulated by LPHA or PMA. These data indicate that lymphoid cells may possess a mechanism for modulating TfR expression in which down-regulation of FeTf binding occurs without receptor internalization. Alternatively, it is possible that this observation may reflect a membrane perturbation effect of PMA.  相似文献   

9.
Gangliosides obtained from normal human brain were found to inhibit the in vitro activation of human lymphocytes by nonspecific mitogens and allogeneic cells at concentrations between 3 to 50 microgram/1.5 to 1.7 X 10(5) lymphocytes/0.2 ml culture. Ganglioside inhibition did not represent cytotoxic effects or altered lectin binding and was independent of the mitogen concentration. In addition to concentration, the degree of inhibition was dependent on the mode of presentation to lymphocytes, since gangliosides incorporated within liposomal membranes displayed a synergistic inhibitory effect greater than predicted from the cultures receiving either gangliosides or liposomes alone. In binding experiments, radiolabeled ganglioside GM1 became associated with human lymphocytes within 10 min. However, approximately 72 hr pre-exposure of human lymphocytes to gangliosides was required to induce impaired lymphocyte responses to mitogens and allogeneic cells. Thus, concentrations of human gangliosides equivalent to the levels occurring in the sera of patients with certain malignancies are capable of actively inhibiting lymphocyte stimulation in addition to inducing impaired lymphocyte responses.  相似文献   

10.
We report a new, monocyte-independent system for the induction of activation and proliferation of human T cells in response to murine hybridomas expressing the OKT3 monoclonal antibody (OKT3 hybridomas). Incubation of nylon-wool-nonadherent (NA) lymphocytes or purified T cells with OKT3 hybridomas resulted in interleukin-2 (IL-2) production, expression of IL-2 receptor, modulation of the CD3 antigen, and proliferation. In contrast, murine hybridomas (OKT4, OKT8, anti-HLA-DR, and others) expressing monoclonal antibodies (mAb) other than OKT3 did not induce T-cell activation and proliferation. T cells did not respond to OKT3 mAb alone. OKT3 hybridomas alone did not produce interleukin-1 (IL-1) or other soluble factors that might be involved in the induction of IL-2 production by T cells, and they did not contain membrane-bound IL-1. In addition, IL-1 activity was not detected in cultures of NA-lymphocytes and OKT3 hybridomas, clearly demonstrating that IL-1 was not required, at least in this system, for T-cell activation and proliferation. Direct cell-cell contact between T cells and OKT3 hybridomas was required for IL-2 production. Thirty to fifty percent of T cells formed conjugates with the OKT3 hybridomas but not with the OKT4 or OKT8 hybridomas. Both conjugate formation and IL-2 production were significantly inhibited by the OKT3 mAb and by the anti-LFA-1 mAb. The cells responsible for IL-2 production were found to be of the T3+ T4+ T8- Leu 7- Leu 11- phenotype. IL-2 activity produced by NA-lymphocytes in response to OKT3 hybridomas became detectable as early as 1 hr and reached a maximum by 8 hr, preceding IL-2 receptor expression, modulation of the CD3 antigen, and [3H]thymidine incorporation of T cells. T cells produced higher concentrations of IL-2 in response to OKT3 hybridomas than in response to equal numbers of monocytes and OKT3 mAb. Addition of monocytes to cultures of T cells and OKT3 hybridomas resulted in suppression of IL-2 production in a concentration-dependent manner, suggesting that monocytes regulate the levels of IL-2 production. This monocyte-independent system may be useful for further dissection of T-cell activation and proliferation and its regulation by monocytes.  相似文献   

11.
The ability of different anti-human T-cell lymphocyte monoclonal antibodies to inhibit the effector function of the cytotoxic T-cell response against autologous Epstein-Barr virus (EBV)-infected B-cell targets has been tested. It was found that monoclonal antibody, OKT3, which reacts with most human T cells, blocks the effector cell function in the absence of complement, an effect that was dose dependent. When monoclonal antibody OKT3 was tested at a concentration of 1 μg/ml, inhibition of cytotoxicity ranged between 50 and 80%. The F(ab′)2 fragment of OKT3 inhibited as well as the intact IgG molecule, indicating that the Fc portion of the antibody is not necessary for the cytotoxicity blocking. The Fab fragment of OKT3 had lower blocking activity per microgram of protein tested. Antibodies SC1, OKT11 (anti-pan T cell), OKT8 (anti-cytotoxic/suppressor subset), and L368 (anti-HLA) did not have any discernible blocking effects. However, antibodies SC1, OKT8, and L368 could abrogate the cytotoxic activity in the presence of complement. Blocking by OKT3 was not due to its being present on the cell surface in higher concentrations than the other monoclonal antibodies since cytofluorographic analysis demonstrated that the amount of OKT8 or L368 antibodies bound on the cells was greater than OKT3. In addition, blocking was not due to antigenic modulation since incubation with antibody OKT3-F(ab′)2 was not associated with a significant decrease in the amount of its reactive antigen. Under the conditions tested OKT3 did not affect cell viability or cause agglutination.  相似文献   

12.
12-O-Tetradecanoylphorbol-13-acetate (TPA) modulates DNA synthesis and differentiation of normal and malignant human lymphoid cells. Using the reverse plaque forming assay and radioimmunoassay, we showed that nontoxic concentrations of TPA (5 to 10 ng/ml) inhibited Ig secretion of peripheral blood lymphocytes. This inhibition was dependent on T lymphocytes and not monocytes; TPA treatment of the B cell-enriched fraction slightly enhanced Ig secretion. Suppression was evident when the proportion of TPA-pretreated T lymphocytes exceeded 50%. TPA-induced suppressor cells were present in both OKT8+ (suppressor/cytotoxic) and OKT4+ ("helper/inducer") subpopulations. The suppression was diminished but not abolished by the irradiation of T lymphocytes. In addition, TPA treatment modulated the expression of OKT4 antigen, whereas the expression of OKT8, 9.6 (sheep erythrocyte receptors) and surface Ig remained unchanged. Modulation of OKT4 was energy dependent and was not blocked by a maximal saturation of TPA receptors at 4 degrees C. We postulate that TPA-induced suppression of Ig secretion is T cell dependent and is likely to be associated with proliferation and activation of OKT8+ and OKT4+ lymphocytes and the induction of OKT4+ suppressor cells.  相似文献   

13.
Infusion of the thromboxane A2 analogue U-46619 into isolated perfused rat livers resulted in dose-dependent increases in glucose output and portal vein pressure, indicative of constriction of the hepatic vasculature. At low concentrations, e.g. less than or equal to 42 ng/ml, glucose output occurred only during agonist infusion; whereas at concentrations greater than or equal to 63 ng/ml, a peak of glucose output also was observed upon termination of agonist infusion coincident with relief of hepatic vasoconstriction. Effluent perfusate lactate/pyruvate and beta-hydroxybutyrate/acetoacetate ratios increased significantly in response to U-46619 infusion. Hepatic oxygen consumption increased at low U-46619 concentrations (less than or equal to 20 ng/ml) and became biphasic with a transient spike of increased consumption followed by a prolonged decrease in consumption at higher concentrations. Increased glucose output in response to 42 ng/ml U-46619 was associated with a rapid activation of glycogen phosphorylase, slight increases in tissue ADP levels, and no increase in cAMP. At 1000 ng/ml, U-46619 activation of glycogen phosphorylase was accompanied by significant increases in tissue levels of AMP and ADP, decreases in ATP, and slight increases in cAMP. In isolated hepatocytes, U-46619 did not stimulate glucose output or activate glycogen phosphorylase. Reducing the perfusate calcium concentration from 1.25 to 0.05 mM resulted in a marked reduction of the glycogenolytic response to U-46619 (42 ng/ml) with no efflux of calcium from the liver. U-46619-induced glucose output and vasoconstriction displayed a similar dose dependence upon the perfusate calcium concentration. Thus, U-46619 exerts a potent agonist effect on glycogenolysis and vasoconstriction in the perfused rat liver. The present findings support the concept that U-46619 stimulates hepatic glycogenolysis indirectly via vasoconstriction-induced hypoxia within the liver.  相似文献   

14.
OKT3 monoclonal antibody (mab) recognizes a membrane antigen associated with the T cell antigen recognition receptor, and is known to be mitogenic and to induce lymphokine production. Our studies demonstrate the ability of OKT3 mab to induce from cultures of human T lymphocytes supplemented with adherent cells the production of colony-stimulating factor(s) for granulocytes and macrophages (GM-CSF) and interferon-gamma (IFN-gamma), an inhibitor of clonal growth of hematopoietic progenitor cells. As has been shown for the mitogenic and IFN-gamma-inducing activity of OKT3 mab, the induction of GM-CSF release in cultures of T cells is strictly dependent on the presence of adherent cells. However, the concentrations of OKT3 mab required for optimal GM-CSF production (50 ng/ml) were found to be 80-fold higher than those sufficient for maximal IFN-gamma production, proliferation, and interleukin 2 production. IFN-gamma activity induced by OKT3 mab partially inhibited colony and cluster formation from progenitor cells of granulocytes and macrophages in vitro. Therefore, neutralization of the IFN-gamma by monoclonal anti-human-IFN-gamma antibody before assay of conditioned medium in bone marrow cultures significantly enhanced the detection of GM-CSF. Kinetic studies demonstrated maximal cumulative GM-CSF production in response to optimal OKT3 mab concentrations on days 4 through 6 in cultures of T cells supplemented with 15% adherent cells. Highly enriched OKT4+ and OKT8+ T cell subsets co-cultured with adherent cells in the presence of OKT3 mab both produced GM-CSF and IFN-gamma and showed similar dose-response curves to OKT3 mab. The requirement for the presence of adherent cells could not be overcome by the addition of purified interleukin 1 or macrophage supernatants. Studies using irreversible inhibitors of DNA (mitomycin C) or protein biosynthesis (emetine-HCl) revealed the necessity of intact DNA synthesis and translation in mononuclear cells to produce GM-CSF in response to OKT3 mab. Loss of GM-CSF production was observed when either adherent cells or T lymphocytes were treated with emetine before co-culture with untreated cells of the other population in the presence of OKT3 mab. In contrast, mitomycin C reduced GM-CSF production significantly when T cells, but not adherent cells, were pretreated. These results suggest that T lymphocytes and adherent cells closely cooperate in the production of GM-CSF induced by OKT3 mab.  相似文献   

15.
In a previous study we reported that cord blood lymphocytes show lower OKT3 responses as compared to their mothers and to other, unrelated adults. In the study reported here, we investigated the interactions between lymphocytes and adherent accessory cells in OKT3-stimulated cultures of newborn (cord), maternal, and other adult peripheral blood mononuclear leukocytes (PBML) and determined the following. (1) Removal of adherent cells (AC), by two cycles of plastic adherence or by nylon wool columns, impaired the OKT3-induced proliferation of maternal/adult cells, but significantly enhanced the OKT3 responsiveness of cord cells. (2) Addition of indomethacin, and other prostaglandin (PG) synthesis inhibitors, caused a more than twofold augmentation of cord PBML OKT3 responses, but had only a small, if any, enhancing effect on maternal/adult PBML. Cord PBML cultures deprived of AC were no longer enhanced by indomethacin. (3) Exogenous PGE2 (1.4 X 10(-6) through 1.4 X 10(-9) M) strongly inhibited OKT3-induced proliferation of maternal, cord, and adult PBML, at a wide range of antibody concentrations (5-100 ng/ml). However, an obvious difference in the extent of PG-mediated inhibition was observed among these three populations, and the order of PG sensitivity, from most to least sensitive, was cord greater than maternal greater than adult. (4) Purified interleukin-1 (IL-1) could not replace the accessory function of AC in the OKT3-induced proliferation of maternal/adult lymphocytes. In contrast, IL-1 increased by greater than 50% the OKT3 responsiveness of cord PBML in the absence, but not in the presence, of cord monocytes. Our observations strongly argue for a distinct, predominantly suppressive function of cord monocytes as compared to maternal/adult monocytes in OKT3-induced mitogenesis, and indicate prostaglandins as major mediators of this suppression.  相似文献   

16.
Lysozyme-induced inhibition of the lymphocyte response to mitogenic lectins   总被引:4,自引:0,他引:4  
Both human lysozyme (HL) and hen egg white lysozyme (HEWL) inhibited the proliferative response of peripheral blood lymphocytes to T cell mitogens such as the lectins phytohemagglutinin and concanavalin A. This inhibition was observed both when HL or HEWL was added to the lymphocyte cultures in combination with phytohemagglutinin or concanavalin A and when lymphocytes were pretreated with either lysozyme and extensively washed prior to culture with mitogens. Under both conditions, the effects were strictly dose dependent; the lysozyme concentrations yielding maximal inhibitory effect were 5 micrograms/ml for HL and 1 microgram/ml for HEWL, while both lower and higher concentrations were less effective. Specific antilysozyme rabbit sera completely prevented the inhibitory effects of both HL and HEWL on the proliferative response of lymphocytes to phytohemagglutin or concanavalin A. Chitotriose (a lysozyme inhibitor) caused a strong reduction in the inhibitory effects of the two lysozymes on the lymphocyte response to either lectin. HL and HEWL also were found to markedly inhibit the polyclonal B cell proliferation and differentiation induced by pokeweed mitogen and T cells. A less marked inhibition was also obtained when T cells, but not B cells, were pretreated with HL or HEWL. Again, as in the experiments with T cell mitogens, the effects were dose dependent and 5 micrograms/ml HL and 1 microgram/ml HEWL proved to be the most effective concentrations. The possible mechanisms by which lysozyme inhibits the lymphocyte response to mitogenic lectins are considered and discussed. The enzymatic activity seemed to perform an essential function, as shown by the loss of effect when the heat- or trypsin-inactivated lysozymes were used and by the fact that only the enzymatically active compound, among certain semisynthetic derivatives of HEWL, inhibited the lymphocyte response to the mitogens. However, the cationic properties of the lysozyme molecule appeared to be essential too, since enzymes with a similar specificity of action showed effects similar to those observed with HL or HEWL only when they carried a strong positive charge. It is suggested that lysozyme, which is naturally secreted by monocytes and macrophages, might interact with lymphocyte surface receptor sites and participate in the complex mononuclear phagocyte-lymphocyte interactions and in the modulation of lymphocyte activation.  相似文献   

17.
The fluoresceinated chemotactic factors, C5a, formyl-methionyl-leucyl-phenylalanyl-lysine (FMLPL), and casein were used in conjunction with flow cytometry to examine chemotactic factor receptor expression on polymorphonuclear leukocytes (PMN) activated with phorbol myristate acetate (PMA), C5a, or formyl-methionyl-leucyl-phenylalanine. Activation with PMA resulted in a dose-dependent increase in binding of fluorescein-labeled (FL)-casein and (FL-FMLPL) over the range of PMA concentrations from 0.5 to 50 ng/ml. In contrast, activation of PMN with PMA resulted in a dose-dependent decrease in FL-C5a binding, and activation with concentrations above 5 ng/ml resulted in a complete loss of binding. This loss of binding was not caused by inactivation of the ligand or prevented by the addition of superoxide dismutase and catalase or protease inhibitors. Furthermore, incubation of PMN with supernatants from PMN stimulated to degranulate did not reduce the availability of C5a receptors. This pattern of increased FMLPL and casein binding with decreased C5a binding was also observed with cytochalasin B-pretreated PMN that were stimulated with chemotactic factors. Parallel studies of superoxide anion generation demonstrated that PMA-treated PMN were still responsive to formyl-methionyl-leucyl-phenylalanine, but not to C5a. These data demonstrate that the activation of PMN up-regulates formyl peptide and casein receptors whereas C5a receptors are down-regulated under similar conditions.  相似文献   

18.
Interleukin-6 (IL-6) and soluble interleukin-6 receptor (sIL-6R) were detected in supernatants of cultures of B chronic lymphatic leukaemia (CLL) lymphocytes. Phorbol-12-myristate 13 acetate (PMA) caused a decrease in the levels of IL-6 in 14 out of 16 cultures and an increase in levels of sIL6R in all 15 cases. The effect of pokeweed mitogen (PWM) was variable and not significant. The levels of IL-6 were below the detection limit (60 pg/ml) in sera of 13 CLL patients whereas sIL-6R was detected (13 ng/ml to 97 ng/ml) in the 13 sera. IL6 was not detected in cultures of unstimulated or stimulated with PMA or PWM normal human B cells. Levels of sIL-6R were minimal in cultures of normal B lymphocytes and were increased in PMA stimulated cultures. The results are consistent with the view that B-CLL cells produce spontaneously IL-6 which could act in an autocrine fashion to cause shedding of surface IL-6R and account for the correlation found between serum levels of sIL-6R and B-CLL lymphocyte numbers. The fall in levels of IL-6 in PMA stimulated CLL cultures might express masking or degradation of IL-6 after combination with the receptor.  相似文献   

19.
20.
L-Leucyl-L-leucine methyl ester (Leu-Leu-OMe), a dipeptide condensation product of L-leucine methyl ester generated by human monocytes (M phi) or polymorphonuclear leukocytes, eliminates all natural killer cell (NK) function from mixed lymphocyte populations. In the present studies, the specificity of the action of Leu-Leu-OMe was examined. It was found that a variety of tissue culture cells and tumor lines of nonlymphoid origin were completely resistant to any demonstrable Leu-Leu-OMe-mediated toxicity. Furthermore, the erythroleukemia line K562, the T cell line Molt-4, the B cell lines HS-Sultan and Daudi, and EBV-transformed B cell lines were unaffected by concentrations of this compound that completely eliminated NK cells. Similarly, the vast majority of OKT4+ lymphocytes manifested no significant toxicity after Leu-Leu-OMe exposure. Furthermore, they retained the capacity to proliferate normally in response to allogeneic cells as well as the ability to provide help for the generation of immunoglobulin-secreting cells (ISC). However, Leu-Leu-OMe caused partial depletion of OKT8+ cells from mixed populations of lymphocytes. After such exposure, the remaining OKT8+ cells were still capable of proliferating in mixed lymphocyte cultures, but the suppressive effect of these cells on ISC generation was abolished. Furthermore, both precursors and activated effectors of cytotoxic T lymphocyte (CTL) and activated NK-like activity generated in mixed lymphocyte cultures were eliminated by exposure to low concentrations of Leu-Leu-OMe. Indeed, both OKT4+ and OKT8+ CTL were eliminated by Leu-Leu-OMe. In addition, both peripheral blood M phi and U937 cells, a human cell line with many M phi-like characteristics, were sensitive to Leu-Leu-OMe-mediated toxicity, although only at two- to fivefold higher concentrations than those completely eliminating NK cells. These findings indicate that Leu-Leu-OMe has selective toxicity for NK cells, CTL, and M phi without adverse effects on a variety of other lymphoid or nonlymphoid cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号