首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A monolayer of endothelial cells (ECs) lines the lumen of blood vessels and forms a multifunctional transducing organ that mediates a plethora of cardiovascular processes. The activation of ECs from as state of quiescence is, therefore, regarded among the early events leading to the onset and progression of potentially lethal diseases, such as hypertension, myocardial infarction, brain stroke, and tumor. Intracellular Ca2+ signals have long been know to play a central role in the complex network of signaling pathways regulating the endothelial functions. Notably, recent work has outlined how any change in the pattern of expression of endothelial channels, transporters and pumps involved in the modulation of intracellular Ca2+ levels may dramatically affect whole body homeostasis. Vascular ECs may react to both mechanical and chemical stimuli by generating a variety of intracellular Ca2+ signals, ranging from brief, localized Ca2+ pulses to prolonged Ca2+ oscillations engulfing the whole cytoplasm. The well-defined spatiotemporal profile of the subcellular Ca2+ signals elicited in ECs by specific extracellular inputs depends on the interaction between Ca2+ releasing channels, which arelocated both on the plasma membrane and in a number of intracellular organelles, and Ca2+ removing systems. The present article aims to summarize both the past and recent literature in the field to provide a clear-cut picture of our current knowledge on the molecular nature and the role played by the components of the Ca2+ machinery in vascular ECs under both physiological and pathological conditions.  相似文献   

2.
3.
New neurons are continuously generated from resident pools of neural stem and precursor cells(NSPCs)in the adult brain.There are multiple pathways through which adult neurogenesis is regulated,and here we review the role of the N-methyl-D-aspartate receptor(NMDAR)in regulating the proliferation of NSPCs in the adult hippocampus.Hippocampal-dependent learning tasks,enriched environments,running,and activity-dependent synaptic plasticity,all potently up-regulate hippocampal NSPC proliferation.We first consider the requirement of the NMDAR in activity-dependent synaptic plasticity,and the role the induction of synaptic plasticity has in regulating NSPCs and newborn neurons.We address how specific NMDAR agonists and antagonists modulate proliferation,both in vivo and in vitro,and then review the evidence supporting the hypothesis that NMDARs are present on NSPCs.We believe it is important to understand the mechanisms underlying the activation of adult neurogenesis,given the potential that endogenous stem cell populations have for repopulating the hippocampus with functional new neurons.In conditions such as age-related memory decline,neurodegeneration and psychiatric disease,mature neurons are lost or become defective;as such,stimulating adult neurogenesis may provide a therapeutic strategy to overcome these conditions.  相似文献   

4.
To scrutinize the disorders caused by human mutant apoE7/apoE4, human apoE4 and E7 transgenic mice were established with microinjection technique to examine molecular genetic phenomena in vivo. The integration and expression of h-apoE mutant genes in transgenic mice were determined with Southern blot, Northern blot and ELISA. The current studies indicated that the transgenes and the phenotypes regarding expression of transgenes could be transmitted stably in transgenic lines. The levels of serum lipid in transgenic mice showed the characteristics of hyperlipidemia. Besides, behavior tests demonstrated the degeneration of learning and memory in transgenic mice. Short life span was observed in 2 transgenic lines. After fed with high lipid food high serum lipid was found both in normal and transgenic mice, but their mechanism regulating lipid metabolism was different. It was also verified that the human apoE mutants located at either N-terminal or C-terminal had the same pathogenesis regarding disorders of  相似文献   

5.
The psychostimulant methylphenidate (MPD; also called Ritalin) is a blocker of dopamine and norepi-nephrine transporter. It has been clinically used for treatment of Attention Deficit and Hyperactivity Disorder (ADHD). There have been inconsistent reports regarding the effects of systemically adminis-tered MPD on learning and memory, either in animals or humans. In the present study, we investigated the effect of direct infusion of MPD into the basolateral nucleus of amygdala (BLA) or the anterior cin-gulate cortex (ACC) on conditioned fear memory. Rats were trained on a one-trial step-through inhibi-tory avoidance task. MPD was infused bilaterally into the BLA or the ACC, either at ‘0’ or 6 h post-training. Saline was administered as control. Memory retention was tested 48 h post-training. In-tra-BLA or intra-ACC infusion of MPD ‘0’ h but not 6 h post-training significantly improved 48-h memory retention: the MPD-treated rats had significant longer step-through latency than controls. The present results indicate that action of MPD in the BLA or the ACC produces a beneficial effect on the consoli-dation of inhibitory avoidance memory.  相似文献   

6.
Using alginic acid to adsorb polypeptides at pH 2.7, we isolated a peptide pea albumin 1b (PA1b) from pea seeds. The PA1b is a single chain peptide consisting of 37 amino acid residues with 6 cysteines which constitutes the cystine-knot structure. Using microfluorometry and patch clamp techniques, we found that PA1b significantly elevated the intracellular calcium level ([Ca2 ]i) and elicited membrane capacitance increase in the primary rat pancreatic β cells. The PA1b effect on [Ca2 ]i elevation was abolished in the absence of extracellular Ca2 or in the presence of L-type Ca2 channel blocker, ni- modipine. Interestingly, we found that PA1b significantly depolarized membrane potential, which could lead to the opening of voltage-dependent L-type Ca2 channels and influx of extracellular Ca2 , and then evoke robust secretion. In this study we identified the plant peptide PA1b which is capable of affecting the excitability and function of mammalian pancreatic β cell.  相似文献   

7.
Changes of intracellular Ca 2+ ,pH value and mitochondria membrane potential(△Ψ m) in the apoptosis of MGC 803 cells induced by water soluble constituents of Glycyrrhiza uralensis Fisch(WSCG) were investigated.MGC 803 cells were incubated with 0.5,0.75,1.0 and 1.5 g/L WSCG for 1,4,7,11,15,19 and 23 hours respectively.The percentage of apoptosis and intracellular Ca 2+ content increased in a dose and time dependent manner,except that the intracellular Ca 2+ content of 1.5 g/L WSCG treated cells started to decrease after 11 hours.The cells were alkalized after various treatments,except that 1.5 g/L WSCG treated cells turned to acidify after 11 hours.It was found that the mitochondria △Ψ m of all treated cells decreased drastically at the first hour,then kept decreasing slowly until the 23rd hour.The results indicated that intracellular Ca 2+ ,pH and mitochondria △Ψ m all played pivotal roles in the apoptosis of MGC 803 cells induced by WSCG.  相似文献   

8.
Association between the reward caused by consuming drugs and the context in which they are consumed is essential in the formation of morphine-induced conditioned place preference (CPP). Glucocorticoid receptor (GRs) activation in different regions of the brain affects reward-based reinforcement and memory processing. A wide array of studies have demonstrated that blockage of GRs in some brain areas can have an effect on reward-related memory; however, to date there have been no systematic studies about the involvement of glucocorticoids (GCs) in morphine-related reward memory. Here, we used the GR antagonist RU38486 to investigate how GRs blockage affects the sensitization and CPP behavior during different phases of reward memory included acquisition, retrieval and reconsolidation. Interestingly, our results showed RU38486 has the ability to impair the acquisition, retrieval and reconsolidation of reward-based memory in CPP and sensitization behavior. But RU38486 by itself cannot induce CPP or conditioned place aversion (CPA) behavior. Our data provide a much more complete picture of the potential effects that glucocorticoids have on the reward memory of different phases and inhibit the sensitization behavior.  相似文献   

9.
Obesity is an important inducing factor for type 2 diabetes. However, the mechanism underlying high-fat-(HF) diet- induced obesity in pancreatic beta cell dysfunction is still unclear. Toll-like receptor-4 (TLR4) is a key mediator of innate immunity. To investigate the effects of TLR4 in obesity-induced pancreatic beta cell dysfunction, we used male diabetic (db/db), obese (ob/ob) mice, TLR4-wild type (WT), and TLR4-knockout mice that were fed with normal diet or HF diet for 24 weeks. Immunostaining of TLR4 and TLR4 mRNA level in pancreatic islet were assessed. The results from biological characteristics, glucose tolerance test, insulin tolerance test, and insulin release test showed that the function of pancreatic islet was impaired in HF-fed TLR4 WT mice, but was protected in HF-fed TLR4 deficient (TLR4-/-) mice. By electron microscope detection, we observed that beta cell insulin secretory vesicles increased in HF-fed TLR4 WT mice. Ultrastructure of beta cell in HF-fed TLR4-/- mice was similar to that in normal chow diet-fed TLR4 WT mice. Then, glucose-stimulated insulin secretion assay by using primary pancreatic islet showed that the secretion function of pancreatic islet in HF-fed TLR4-/- mice was better than that in HF-fed TLR4 WT mice. Furthermore, in HF-fed TLR4-/- mice, the mRNA levels of IL-6, TNF-α, and MCP-1 genes in pancreatic islet were sig- nificantly lower than those in HF-fed TLR4 WT mice. Consistent with the change in gene expression, HF-fed TLR4 WT mice but not HF-fed TLR4-/- mice exhibited macro- phage invasion in pancreatic island. Taken together, our data indicated that HF diet-induced obesity can stimulate the up-regulation of TLR4 locating on the surface of pancreatic beta cell, and subsequently lead to the recruitment of macro- phage into pancreatic islet, which finally results in pancreatic beta cell dysfunction. This process is a possible mechanism involved in obesity-induced pancreatic beta cell dysfunction.  相似文献   

10.
Compelling evidences from transgenic mice, immunoprecipitation data, gene expression analysis, and functional heterologous expression studies supported the role of Kv channel interacting proteins (KChIPs) as modulators of Kv4 (Shal) channels underlying the cardiac transient outward current and neuronal A-type current. Till now, there are four members (KChIP1-4) identified in this family. KChIP1 is expressed predominantly in brain, with relative abundance in Purkinje cells of cerebellum, the reticular thalamic nuclei, the medial habenular nuclei, the hippocampus, and striaturn. Our results from in situ hybridization and immunostaining assay revealed that KChIP1 was expressed in a subpopulation of parvalbumin-positive neurons suggesting its functional relationship with the GABAergic inhibitory neurons. Moreover, results obtained from KChIP1-deficient mice showed that KChIP1 mutation did not impair survival or alter the overall brain architecture, arguing against its essential function in brain development. However, the mice bearing KChIP1 deletion showed increased susceptibility to anti-GABAergic convulsive drug pentylenetetrazole-induced seizure, indicating that KChIP1 might play pivotal roles in the GABAergic inhibitory system.  相似文献   

11.
Store-operated Ca2+ entry(SOCE) controls intracellular Ca2+ homeostasis and regulates a wide range of cellular events including proliferation,migration and invasion.The discovery of STIM proteins as Ca2+ sensors and Orai proteins as Ca2+ channel pore forming units provided molecular tools to understand the physiological function of SOCE.Many studies have revealed the pathophysiological roles of Orai and STIM in tumor cells.This review focuses on recent advances in SOCE and its contribution to tumorigenesis.Altered Orai and/or STIM functions may serve as biomarkers for cancer prognosis,and targeting the SOCE pathway may provide a novel means for cancer treatment.  相似文献   

12.
In this study we evaluated the effect of quercetin on D-galactose-induced aged mice using the Morris water maze (MWM) test. Based on the free radical theory of aging,experiments were performed to study the possible biochemical mechanisms of glutathione (GSH) level and hydroxyl radical (OH-) in the hippocampus and cerebral cortex and the brain tissue enzyme activity of the mice. The results indicated that quercetin can enhance the exploratory behavior,spatial learning and memory of the mice. The effects relate with enhancing the brain functions and inhibiting oxidative stress by quercetin,and relate with increasing the GSH level and decreasing the OH-content. These findings suggest that quercetin can work as a possible natural anti-aging pharmaceutical product.  相似文献   

13.
Using alginic acid to adsorb polypeptides at pH 2.7, we isolated a peptide pea albumin 1b (PA1b) from pea seeds. The PA1b is a single chain peptide consisting of 37 amino acid residues with 6 cysteines which constitutes the cystine-knot structure. Using microfluorometry and patch clamp techniques, we found that PA1b significantly elevated the intracellular calcium level ([Ca2 ]i) and elicited membrane capacitance increase in the primary rat pancreatic β cells. The PA1b effect on [Ca2 ]i elevation was abolished in the absence of extracellular Ca2 or in the presence of L-type Ca2 channel blocker, nimodipine. Interestingly, we found that PA1b significantly depolarized membrane potential, which could lead to the opening of voltage-dependent L-type Ca2 channels and influx of extracellular Ca2 , and then evoke robust secretion. In this study we identified the plant peptide PA1b which is capable of affecting the excitability and function of mammalian pancreatic β cell.  相似文献   

14.
The change of cholinergic transmission of p-amyloid protein (P-AP) treated rats was studied by intracerebral microdialysis sampling combined with HPLC analysis. β-AP1-40 was injected into nucleus basalis magnocellularis (NBM). Passive avoidance response test (step-down test) and delayed alternation task were used for memory testing. The impairment of memory after injection of β-AP1-40 into NBM exhibited mainly the deficiency of short-term working memory. One week after injection of β-AP1-40 the release of acetylcholine (ACh) from frontal cortex of freely-moving rats decreased significantly, and the response of cholinergic nerve ending to the action of high [K+] solution was rather weak. In control animals the percentage of increase of ACh-release during behavioral performance was 57%, while in β-AP1-40-treated rats it was 34%. The temporary increase of the ACh-release of the rat put into a new place was also significantly diminished in β-AP1-40 -treated rats. The results show that the injection of   相似文献   

15.
It is well documented that γ-aminobutyric acid (GABA) system existed in reproductive organs. Recent researches showed that GABA_A and GABA_B receptors were present in testis and sperm, and might mediate the acrosome reaction induced by GABA and progesterone. GABA transporter Ⅰ (GAT1) also existed in testis and sperm, but its physiological function was unknown. In the present study, we used GAT1 overexpressing mice to explore GAT1 function in male reproductive system. We found that the expression level of GAT1 continuously increased in wild-type mouse testis from 1 month to 2 months after birth. GAT1 overexpression in mouse affected testis development, which embodied reduced testis mass and slowed spermatogenesis in transgenic mice. Moreover, transgenic mice showed increase of the percentage of broken sperm. The further study revealed that the reproductive capacity was impaired in GAT1 overexpressing mice. In addition, testosterone level was significantly low in transgenic mice compared with that in wi  相似文献   

16.
The activation of NLR family pyrin domain containing 3(NLRP3)inflammasome can be induced by a wide spectrum of activators.This is unlikely achieved by the binding of different activators directly to the NLRP3 protein itself,as the activators found so far show different forms of chemical structures.Previous studies have shown that these activators can induce potassium ion(K+)and chloride ion(Cl?)efflux,calcium(Ca2+)and other ion mobilization,mitochondrial dysfunction,and lysosomal disruption,all of which are believed to cause NLRP3 inflammasome activation;how these events are induced by the activators and how they coordinate with each other in inducing the NLRP3 inflammasome activation are not fully understood.Increasing evidence suggests that the coordinated change of intracellular ion concentrations may be a common mechanism for the NLRP3 activation by different activators.In this mini-review,we present a brief summary of the current knowledge about how different ionic flows(including K+,sodium ion,Ca2+,magnesium ion,manganese ion,zinc ion,iron ion,and Cl?)are involved in regulating the NLRP3 inflammasome activation in macrophages.  相似文献   

17.
Calcium is a crucial element for striated muscle function. As such, myoplasmic free Ca2+ concentration is delicately regulated through the concerted action of multiple Ca2+ pathways that relay excitation of the plasma membrane to the intracellular contractile machinery. In skeletal muscle, one of these major Ca2+ pathways is Ca2+ release from intracellular Ca2+ stores through type-1 ryanodine receptor/Ca2+ release channels (RyR1), which positions RyR1 in a strategic cross point to regulate Ca2+ homeostasis. This major Ca2+ traff ic point appears to be highly sensitive to the intracellular environment, which senses through a plethora of chemical and protein-protein interactions. Among these modulators, perhaps one of the most elusive is Triadin, a musclespecif ic protein that is involved in many crucial aspect of muscle function. This family of proteins mediates complex interactions with various Ca2+ modulators and seems poised to be a relevant modulator of Ca2+ signaling in cardiac and skeletal muscles. The purpose of this review is to examine the most recent evidence and current understanding of the role of Triadin in muscle function, in general, with particular emphasis on its contribution to Ca2+ homeostasis.  相似文献   

18.
Dear Editor, Extracellular Ca2+ influx focusing at the tips of pollen tubes is the main source of Ca2+ for the pollen tube tip cytosolic Ca2+ gradient, which is essential for both polar growth and orientation of pollen tubes in plants, and plasma membrane Ca2+ channels were proposed to be present in the tips and function as key proteins by mediating and regulating extracellular Ca2+ influx (for a review, see Guan et al., 2013).  相似文献   

19.
20.
正Vesicular exocytosis is a key process involved in neurotransmitter release, whereas vesicle recycling is critical for the homeostasis of plasma membrane structures and the maintenance of neurotransmission. Ca~(2+)regulates several fundamental cellular processes (Zhu et al., 2016; Xiong and Zhu, 2016). Especially, Ca~(2+)influx plays a dual role of triggering vesicular exocytosis and modulating compensatory endocytosis in neurons and endocrine cells. Vesicular exocytosis occurs either by Ca~(2+)-dependent or Ca~(2+)-independent mechanisms (Chai et al., 2017), and local Ca~(2+)signals beneath the plasma membrane plays a critical role in the determination of the fusion pore dilation and fusion  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号