首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The primary cilium constitutes an organelle that orchestrates signal transduction independently from the cell body. Dysregulation of this intricate molecular architecture leads to severe human diseases, commonly referred to as ciliopathies. However, the molecular underpinnings how ciliary signaling orchestrates a specific cellular output remain elusive. By combining spatially resolved optogenetics with RNA sequencing and imaging, we reveal a novel cAMP signalosome that is functionally distinct from the cytoplasm. We identify the genes and pathways targeted by the ciliary cAMP signalosome and shed light on the underlying mechanisms and downstream signaling. We reveal that chronic stimulation of the ciliary cAMP signalosome transforms kidney epithelia from tubules into cysts. Counteracting this chronic cAMP elevation in the cilium by small molecules targeting activation of phosphodiesterase‐4 long isoforms inhibits cyst growth. Thereby, we identify a novel concept of how the primary cilium controls cellular functions and maintains tissue integrity in a specific and spatially distinct manner and reveal novel molecular components that might be involved in the development of one of the most common genetic diseases, polycystic kidney disease.  相似文献   

2.
Strategies to induce fetal hemoglobin (HbF) synthesis for the treatment of β-hemoglobinopathies probably involve protein modifications by histone deacetylases (HDACs) that mediate γ-globin gene regulation. However, the role of individual HDACs in globin gene expression is not very well understood; thus, the focus of our study was to identify HDACs involved in γ-globin activation. K562 erythroleukemia cells treated with the HbF inducers hemin, trichostatin A, and sodium butyrate had significantly reduced mRNA levels of HDAC9 and its splice variant histone deacetylase-related protein. Subsequently, HDAC9 gene knockdown produced dose-dependent γ-globin gene silencing over an 80-320 nm range. Enforced expression with the pTarget-HDAC9 vector produced a dose-dependent 2.5-fold increase in γ-globin mRNA (p < 0.05). Furthermore, ChIP assays showed HDAC9 binding in vivo in the upstream Gγ-globin gene promoter region. To determine the physiological relevance of these findings, human primary erythroid progenitors were treated with HDAC9 siRNA; we observed 40 and 60% γ-globin gene silencing in day 11 (early) and day 28 (late) progenitors. Moreover, enforced HDAC9 expression increased γ-globin mRNA levels by 2.5-fold with a simultaneous 7-fold increase in HbF. Collectively, these data support a positive role for HDAC9 in γ-globin gene regulation.  相似文献   

3.
Targeting of gene expression by siRNA in CML primary cells   总被引:1,自引:0,他引:1  
Development of array methods contributes to elucidation of many genes expressed during oncogenesis. Our array-based analyses of gene expression in patients with chronic myeloid leukemia (CML) revealed several genes (MMP8, MMP9, PCNA, JNK2, MAPK p38) with significant increased expression. We suppose that the genes may be implicated in the disease development and a siRNA-suppression can elucidate their functions in leukemogenesis. One of the crucial requirements for this purpose is a high efficiency of siRNA delivery into CML primary cells. Using fluorescein-labeled siRNAs we systematically tested a variety of physical and chemical non-vector based transfection methods in order to evaluate which of them gave the most suitable transfer. Chemically synthesized siRNAs against mentioned genes were transfected into the cells and level of knockdown was determined by real time RT-PCR. Chemical transfection reagents (Oligofectamine, Metafectene, siPORT Amine) commonly used to transfect siRNAs in CML cell lines showed very low siRNA delivery in CML primary cells—mRNA levels decreased at the most to 76%. Electroporation achieved better results (suppression to 63%) but it was associated with high degree of cell death (more than 60%). In the study we obtained the best transfection efficiency using nucleofector technology. Gene expressions ranged 22–37% that remained from original levels. According to our results, nucleofection appears to be the only suitable non-viral method for siRNA delivery into the hard-to-transfect CML primary cells.  相似文献   

4.
Recently, we showed that transfection of GD3 synthase cDNA into Neuro2a cells, a mouse neuroblastoma cell line, causes cell differentiation with neurite sprouting. In a search for the genes involved in this ganglioside-induced Neuro2a differentiation, we used a tetracycline-regulated GD3 synthase cDNA expression system combined with differential display PCRs to identify mRNAs that were differentially expressed at four representative time points during the process. We report here the identification of 10 mRNAs that are expressed highly at the Neuro2a differentiated stage. These cDNAs were named GDAP1-GDAP10 for (ganglioside-induced differentiation-associated protein) cDNAs. It is interesting that in retinoic acid-induced neural differentiated mouse embryonic carcinoma P19 cells, GDAP mRNA expression levels were also up-regulated (except that of GDAP3), ranging from three to >10 times compared with nondifferentiated P19 cells. All the GDAP genes (except that of GDAP3) were developmentally regulated. The GDAP1, 2, 6, 8, and 10 mRNAs were expressed highly in the adult mouse brain, whereas all the other GDAP mRNAs were expressed in most tissues. Our results suggested that these GDAP genes might be involved in the signal transduction pathway that is triggered through the expression of a single sialyltransferase gene to induce neurite-like differentiation of Neuro2a cells.  相似文献   

5.
Mel-18 is a mammalian homolog of Polycomb group (PcG) genes. Microarray analysis revealed that Mel-18 expression was induced during endothelial progenitor cell (EPC) differentiation and correlates with the expression of EC-specific protein markers. Overexpression of Mel-18 promoted EPC differentiation and angiogenic activity of ECs. Accordingly, silencing Mel-18 inhibited EC migration and tube formation in vitro. Gene expression profiling showed that Mel-18 regulates angiogenic genes including kinase insert domain receptor (KDR), claudin 5, and angiopoietin-like 2. Our findings demonstrate, for the first time, that Mel-18 plays a significant role in the angiogenic function of ECs by regulating endothelial gene expression.  相似文献   

6.
7.
Summary Increased expression of basic fibroblast growth factor (bFGF), platelet-derived growth factor (PDGF) A chain, and tissue plasminogen activator (tPA) by smooth muscle cells (SMC) has been postulated to mediate the progression of intimal hyperplasia. We tested whether heparin would suppress the expression of these genes in stimulated human saphenous vein SMC. Quiescent cultured human saphenous vein SMC were stimulated for 4 h with heat-inactivated fetal bovine serum (10% by vol) in the presence or absence of heparin (1 to 250μg/ml). Heparin (50μg/ml) attenuated the induction by serum of bFGF mRNA, tPA mRNA, and tPA secretion. Nonanticoagulant heparin also attenuated serum induction of bFGF and tPA mRNA levels. To further study the role of second messenger signaling, a more specific mode of SMC stimulation was used with thrombin (3 U/ml) in the presence or absence of dibutyryl cyclic AMP (Bu2-cAMP; 0.5 mM). In contrast to heparin, which had no effect on PDGF expression, Bu2-cAMP decreased the induction by thrombin of PDGF-A chain mRNA levels. In thrombin-stimulated SMC, Bu2-cAMP significantly decreased secretion of PDGF-AA protein. Thrombin, however, caused an increase in bFGF mRNA levels which was potentiated by Bu2-cAMP with associated potentiation by Bu2-cAMP of intracellular bFGF protein levels. The induction of tPA mRNA and tPA secretion by thrombin was sharply blocked by Bu2-cAMP. These results suggest that heparin reduces intimal hyperplasia at least partly via partial inhibition of SMC gene expression.  相似文献   

8.
9.
Tyrosine hydroxylase (TH) gene promoter activity is increased in PC12 cells that are treated with the phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA). Mutagenesis of either the cAMP responsive element (CRE) or the activator protein-1 element (AP1) within the TH gene proximal promoter leads to a dramatic inhibition of the TPA response. The TH CRE and TH AP1 sites are also independently responsive to TPA in minimal promoter constructs. TPA treatment results in phosphorylation of cAMP responsive element binding protein (CREB) and activation of cAMP-dependent protein kinase (PKA) in PC12 cells; hence, we tested whether CREB and/or PKA are essential for the TPA response. In CREB-deficient cells, the response of the full TH gene proximal promoter or the independent response of the TH CRE by itself to TPA is inhibited. The TPA-inducibility of TH mRNA is also blocked in CREB-deficient cells. Expression of the PKA inhibitor protein, PKI, also inhibits the independent response of the TH CRE to TPA. Our results support the hypothesis that TPA stimulates the TH gene promoter via signaling pathways that activate either the TH AP1 or TH CRE sites. Both signaling pathways are dependent on CREB and the TH CRE-mediated pathway is dependent on PKA.  相似文献   

10.
Previous work has led us to propose that close cell-cell associations duringD. discoideum development serve as a signal to deactivate expression of discoidin I mRNA, and that intracellular cAMP serves as a mediator of this regulatory pathway. This model is based in part on the failure of a morphogenetic mutant, EB-21, to deactivate discoidin I expression under conditions where these cells fail to acquire cell-cell cohesiveness and hence remain as single cells, unlike the wild type strain which forms multicellular aggregates. Here we show that the failure of EB-21 to express specific cohesiveness depends on developmental conditions, and that under conditions where close cell-cell associations are allowed to form, discoidin I mRNA expression is deactivated normally. Furthermore, in both wild type and EB-21 there is a close correlation between formation close cell-cell associations and elevation of intracellular cAMP under different developmental conditions. Additional analyses of the biological behavior of EB-21 indicate that it acquires a normal cAMP chemotactic signal-response system, and that the morphogenetic defect cannot be corrected by co-development with wild type cells. The results are discussed in terms of possible relationships between cell-cell interactions, cAMP metabolism, and developmental gene expression in this organism.Dedicated to Dr. E. M. Shooter and Dr. S. Varon as part of a special issue (Neurochemical Research, Vol. 12, No. 10, 1987).  相似文献   

11.
Previous research has indicated that the cyclic AMP (cAMP) signal transduction system plays an important role in the predisposition to and development of ethanol abuse in humans. Our laboratory has demonstrated that ethanol is capable of enhancing adenylyl cyclase (AC) activity. This effect is AC isoform-specific; type 7 AC (AC7) is most enhanced by ethanol. Therefore, we hypothesized that the expression of a specific AC isoform will play a role on the effect of ethanol on cAMP regulated gene expression. We employed NIH 3T3 cells transfected with AC7 or AC3 as a model system. To evaluate ethanol's effects on cAMP regulated gene expression, a luciferase reporter gene driven by a cAMP inducing artificial promoter was utilized. Stimulation of AC activity leads to an increase in the reporter gene activity. This increase was enhanced in the presence of ethanol in cells expressing AC7, while cells expressing AC3 did not respond to ethanol. cAMP reporter gene expression was increased in the presence of 8-bromo-cAMP; this expression was not enhanced by ethanol. These observations are consistent with our hypothesis. The basal level of CREB phosphorylation was high and did not change by cAMP stimulation or in the presence of ethanol. However, there were significant changes in the TORC3 amount in nuclei depending on stimulation conditions. The results suggest that nuclear translocation of TORC3 plays a more important role than CREB phosphorylation in the observed changes in the cAMP driven reporter gene activity.  相似文献   

12.
13.
The regulation of early B cell development and the interaction of hematopoietic precursors with stromal cells in the bone marrow (BM) are controlled by various secreted signaling molecules. Several recent studies showed Wnt signaling involved in B-lymphogenesis through stromal cells. However, the molecules modulated by Wnt signaling in stromal cells regulating B-lymphogenesis have not been identified yet. Interleukin (IL)-7 and CXC chemokine ligand (CXCL) 12 are known to be express in stromal cells, and both molecules are essential for B-lymphogenesis. In the present study, we examined the role of Wnt signaling in regulating IL-7 and CXCL12 expression and in affecting B-lymphogenesis. In mouse stromal ST2 cells, expression of IL-7 and CXCL12 mRNA was augmented by noncanonical Wnt5a. When mouse BM-derived cells were cultured on Wnt5a-overexpressing ST2 cells, an increased number of B220+/IgM- B-lymphoid precursor cells was observed. These results show that Wnt5a regulates IL-7 gene expression in stromal cells and suggest the possibility that noncanonical Wnt regulates B-lymphogenesis via IL-7 expression in stromal cells.  相似文献   

14.
Bone marrow stromal cells (BMSCs) are common progenitors of both adipocytes and osteoblasts. We recently suggested that increased [Ca2+]o caused by bone resorption might accelerate adipocyte accumulation in response to treatment with both insulin and dexamethasone. In this study, we investigated the mechanism by which high [Ca2+]o enhances adipocyte accumulation.We used primary mouse BMSCs and evaluated the levels of adipocyte accumulation by measuring Oil Red O staining. CaSR agonists (both Ca2+ and Sr2+) enhanced the accumulation of adipocytes among BMSCs in response to treatment with both insulin and dexamethasone. We showed that high [Ca2+]o decreases the concentration of cAMP using ELISA. Real-time RT-PCR revealed that increasing the intracellular concentration of cAMP (both chemical inducer (1 μM forskolin and 200 nM IBMX) and a cAMP analog (10 μM pCPT-cAMP)) suppressed the expression of PPARγ and C/EBPα. In addition, forskolin, IBMX, and pCPT-cAMP inhibited the enhancement in adipocyte accumulation under high [Ca2+]o in BMSCs. However, this inhibited effect was not observed in BMSCs that were cultured in a basal concentration of [Ca2+]o. We next observed that the accumulation of adipocytes in the of bone marrow of middle-aged mice (25–40 weeks old) is higher than that of young mice (6 weeks old) based on micro CT. ELISA results revealed that the concentration of cAMP in the bone marrow mononuclear cells of middle-aged mice is lower than that of young mice. These data suggest that increased [Ca2+]o caused by bone resorption might accelerate adipocyte accumulation through CaSR following a decrease in cAMP.  相似文献   

15.
16.
17.
18.
为了构建包含牛c-myc基因编码序列的重组载体,以胎牛原始生殖嵴为材料,用RT-PCR方法克隆出牛c-myc 基因的编码序列,将其亚克隆至pMD19-T载体,再从酶切鉴定和测序正确的质粒上切下目的片段,定向克隆到pIRES2-AcGFP1-Nuc表达载体上,挑选序列正确的重组真核表达质粒转染牛皮肤成纤维细胞,用RT-PCR和Western blotting分别检测c-myc mRNA和蛋白的表达。结果表明,从胎牛原始生殖嵴中正确克隆了c-myc基因的全长编码序列,所构建的重组质粒能够在皮肤成纤维细胞中有效  相似文献   

19.
20.
Hepatitis C virus (HCV) infection is a major cause of chronic liver disease, including chronic hepatitis, fibrosis, and cirrhosis. Fibrosis often develops in HCV-infected livers and ultimately leads to cirrhosis and carcinoma. During fibrosis, hepatic stellate cells (HSC) play important roles in the control of extracellular matrix synthesis and degradation in fibrotic livers. In this study, we established a subgenomic replicon (SGR) cell line with human hepatic stellate cells to investigate the effect of HCV RNA replication on HSC. Isolated SGR clones contained HCV RNA copy numbers ranging from 104 to 107 per μg total RNA, and long-term culture of low-copy number SGR clones resulted in markedly increased HCV RNA copy numbers. Furthermore, HCV RNA replication affected gene expression of extracellular matrix-related molecules in both hepatic stellate cells and hepatic cells, suggesting that HCV RNA replication and/or HCV proteins directly contribute to liver fibrosis. The HCV RNA-replicating hepatic stellate cell line isolated in this study will be useful for investigating hepatic stellate cell functions and HCV replication machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号